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Numerical simulation of thermal radiative heat transfer
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Abstract. Electrohydrodynamic Fe3O4-Ethylene glycol nanouid forced convection was
simulated in presence of thermal radiation. The porous lid driven cavity had one moving
positive electrode. A single-phase model was applied to simulate nanouid behavior.
Control volume based �nite element method was employed to obtain the results, which
showed the roles of Darcy number (Da), radiation parameter (Rd), Reynolds number (Re),
nanouid volume fraction (�), and supplied voltage (�'). Results depicted that maximum
values of the temperature gradient were obtained for platelet-shape nanoparticles. Nusselt
number was enhanced with increase in Darcy number and supplied voltage. Convection
mode rose with increase in permeability of porous media and nanouid volume fraction,
but it decreased with the rise in Hartmann number.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

One of the e�ective active techniques for heat transfer
augmentation is Electrohydrodynamic. Rarani et al. [1]
reported good correlation for viscosity of nanouid.
Nanouid has various applications in presence of vari-
ous external forces [2,3]. Three-dimensional nanouid
ows were studied by Sheikholeslami and Ellahi [4].
They illustrated that velocity decreased with the
augmentation of Lorentz forces. Sheikholeslami and
Ganji [5] studied the nanouid ow in a porous channel
in presence of Lorentz forces. Sheikholeslami and
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Shehzad [6] presented the inuence of radiative mode
on ferrouid motion. They took variable viscosity
into account. Nanouid concentration was surveyed by
Hayat et al. [7] in radiative mode. Sheikholeslami and
Seyednezhad [8] utilized CVFEM for nanouid natural
convection in presence of electric �eld in a porous
cavity. Sheikholeslami et al. [9] investigated nanouid
intensi�cation in a curved porous cavity considering
various shapes of nanoparticles.

Conjugate heat transfer of nanouid was studied
by Selimefendigil and Oztop [10]. They considered
various inclination angles. Sheikholeslami et al. [11]
simulated MHD nanouid forced convection by means
of LBM. Sheikholeslami and Rokni [12] addressed the
nanouid behavior under the e�ect of Coulomb force in
a porous cavity. Sheikholeslami [13] presented a meso-
scopic simulation of nanouid convective ow in pres-
ence of magnetic �eld. E�ect of variable Kelvin forces
on ferrouid motion was simulated by Sheikholeslami
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Kandelousi [14]. Heat ux boundary condition was
utilized by Sheikholeslami and Shehzad [15] to investi-
gate the ferrouid ow in porous media. Nanoparticle
movement in a channel due to Lorentz forces was
demonstrated by Akbar et al. [16]. Sheikholeslami et
al. [17] examined nanoparticle transportation under the
impact of thermal radiation. In recent decades, various
researchers have published papers on heat transfer [18-
32].

This study intends to model the inuence of
thermal radiation on nanouid behavior in presence
of Coulomb forces via CVFEM. Roles of Darcy num-
ber, Reynolds number, supplied voltage, radiation
parameter, and Fe3O4 volume fraction are presented
in outputs.

2. Problem de�nition

Figure 1 depicts the porous enclosure and its boundary
conditions. Ethylene glycol-Fe3O4 nanouid is utilized.
All walls are stationary except for the bottom wall.
Inuence of Darcy and Reynolds numbers on contour
of q is demonstrated in Figure 2. As observed, the e�ect
of Re on q is less sensible than that of Da. As Darcy
number increases, the distortion of isoelectric density
lines becomes more.

3. Governing formulae and modeling

3.1. Governing formulae
The de�nition of electric �eld is [33]:
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(�Cp)nf ; �nf , and �nf can be obtained as [34]:

(�Cp)nf = (�Cp)f (1� �) + (�Cp)s�;

� = A1 +A2 (�') +A3(�')2 +A4(�')3;

Figure 1. (a) Geometry and the boundary conditions with (b) a sample triangular element and its corresponding control
volume.
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Figure 2. Electric density distribution injected by the bottom electrode when �' = 10 kV, � = 0:05, and Rd = 0:8.

�nf = �f (1� �) + �s�: (6)

Properties of Fe3O4 and ethylene glycol are illustrated
in Table 1 [1]. EFD viscosity is presented by Monajjemi
Rarani et al. [1]. Table 2 illustrates the values of

Table 1. Thermo-physical properties of ethylene glycol
and nanoparticles.

� (kg/m3) Cp (J/kgk) k (W/m.k)

Ethylene glycol 1110 2400 0.26

Fe3O4 5200 670 6

Table 2. The values of coe�cients for Eq. (6).

Coe�cient values � = 0 � = 0:05

A1 1.0603E+001 9.5331

A2 -2.698E-003 -3.4119E-003

A3 2.9082E-006 5.5228E-006

A4 -1.1876E-008 -4.1344E-008

coe�cients for this formula. knf can be expressed as:

knf
kf

=
�m (kf�kp)�+(kp � kf )�+mkf+kp+kf

mkf + (kf � kp)�+ kf + kp
:
(7)

Di�erent values of shape factors for various shapes of
nanoparticles are illustrated in Table 3.

Thus, the �nal PDE in presence of thermal

Table 3. The values of shape factors for di�erent shapes
of nanoparticles.

m

Spherical 3

Platelet 5.7

Cylinder 4.8

Brick 3.7
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Table 4. Comparison of values of Nuave along lid wall for di�erent grid resolutions at Rd = 0:8, Re = 6000, Da = 105,
�' = 10, � = 0:05, and Pr = 6.8.

51� 151 61� 181 71� 211 81� 241 91� 271 101� 301

6.827544 6.835511 6.838134 6.841524 6.842627 6.843308

radiation and electric �eld in porous media is:
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Vorticity and stream function should be employed in
order to diminish pressure gradient:
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Nuloc and Nuave along the bottom wall are calculated
as:
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3.2. CVFEM
CVFEM uses the bene�ts of both common CFD meth-
ods. This method uses triangular element (see Figure
1(b)). Upwind approach is utilized for the advection
term. Gauss-Seidel method is applied to �nd the
solution to the algebraic system. Further notes exist
in [35].

4. Mesh study and code validation

Di�erent mesh sizes were tested to �nd the mesh
independent result. Table 4 demonstrates an example.
This table indicates that the size of 81 � 241 can
be selected. The CVFEM code was validated by
comparing the outputs with those reported in [34] and
[36] (see Figure 3). Good agreement was found.

5. Results and discussion

Thermal radiation impact on nanouid forced convec-
tion in presence of electric �eld was investigated by
means of CVFEM. The porous enclosure was �lled
with Fe3O4-ethylene glycol and had one lid wall. EFD
viscosity was taken into account for nanouid. Roles of
Darcy number (Da = 102 to 105), Radiation parameter
(Rd = 0 to 0.8), supplied voltage (�' = 0 to 10 kV),
volume fraction of Fe3O4 (� = 0% to 5%), and
Reynolds number (Re = 3000 to 6000) were addressed.

E�ect of shape factor on Nusselt number is
simulated in Table 5. In this table, various shapes
of nanoparticles are utilized. The maximum Nu is

Table 5. E�ect of shape of nanoparticles on Nusselt
number when Rd = 0:8, Re = 6000, �' = 10, and
� = 0:05.

Da
102 105

Spherical 5.243563 6.596998
Brick 5.298611 6.665156

Cylinder 5.379728 6.765308
Platelet 5.441616 6.841524
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Figure 3. (a) Comparison between the local Nusselt numbers over the lid wall in the present results and those of
Moallemi and Jang [36] at Re = 500, Ri = 0:4, and Pr = 1. (b) Comparison between temperature pro�les of the present
results and the numerical results of Khanafer et al. [34] for Gr = 104, � = 0:1 and Pr = 6:8 (Cu-water).

Figure 4. E�ect of Darcy number on streamlines and isotherm when Re = 3000, �' = 0 kV, � = 0:05, and Rd = 0:8.

achieved by m = 5:7. Therefore, platelet nanoparticle
will be utilized for further investigation.

Figures 4, 5, and 6 show isotherm and streamlines
for various values of Da, �', and Re. When Re = 3000,
the center of the main eddy is near the bottom wall. As
Darcy number increases, the center of the main eddy
shifts to wavy wall and a new secondary rotating vortex
is generated. Thus, isotherms become more complex in
high values of Darcy number. Applying electric �eld
causes  max to increase and shift the center of the
eddy to the upper region. Shape of isotherms becomes

complex when electric �eld increases and thermal
plume is generated. Also, by increasing Re,  max
increases. As Coulomb force increases, the strength
of the main eddy increases and stronger thermal plume
appears.

Nuave versus Re, Da, Rd, and �' is depicted in
Figure 7. The associated formula is:

Nuave = �0:99 + 0:06�'+ 1:5Re� + 0:75 log(Da)

+5:07Rd� 0:015�'Re� + 0:012�' log (Da)
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Figure 5. E�ect of Darcy number on streamlines and isotherm when Re = 3000, �' = 10 kV, � = 0:05, and Rd = 0:8.

Figure 6. E�ect of Darcy number on streamlines and isotherm when Re = 6000, �' = 10 kV, � = 0:05, and Rd = 0:8.

�0:03�'Rd� 0:09Re� log (Da)

�1:53Re�Rd+ 0:45 log (Da)Rd+ 0:006�'2

�0:16(Re�)2�0:015(log (Da))2+0:01Rd2; (13)

where Re� = 0.001 Re and �' is voltage supply
in kilovolts. In presence of Coulomb force, Nusselt
number decreases with the rise of the Reynolds number.
Electric �eld helps the convective mode to increase.
Therefore, Nuave increases with increase in �'. As
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Figure 7. E�ects of Da, �';Rd, and Re on average Nusselt number.
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Figure 7. E�ects of Da, �';Rd, and Re on average Nusselt number (continued).

Rd rises, the temperature gradient near the hot wall
increases. Inuence of Darcy number is same as that
of radiation parameter. Thus, Nuave is an increasing
function of Rd, Da.

6. Conclusions

E�ect of Coulomb forces on nanouid laminar convec-
tive heat transfer in a lid driven porous enclosure in
presence of thermal radiation was simulated by means
of CVFEM. Outputs were reported for various values
of Da, Rd �; �', and Re. Outputs demonstrated
that the distortion of isotherms increased with the rise
of radiation parameter, Darcy number, and Coulomb
forces. Increasing Coulomb forces made the secondary
eddy diminish. Nusselt number increases with the rise
of radiation parameter.
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Nomenclature

SE Lorentz force number
De Di�usion number

v; u Vertical and horizontal velocities�!
FE Electric force
NE Electric �eld number
Re Reynolds number
PrE Electric Prandtl number�!
E ;Ex; Ey Electric �eld
Greeksymbols
� Volume fraction
� Density
� Electric conductivity
� Dynamic viscosity
' Electric �eld potential
Subscripts
s Solid particles
f Base uid
c cold
nf Nanouid
h Hot
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