SBA-15-Supported Copper (II) Complex: An Efficient Heterogeneous Catalyst for Azide-Alkyne Cycloaddition in Water

Document Type : Article

Authors

1 Chemistry Department, Sharif University of Technology, Tehran, P.O. Box 11155-3615, Iran

2 Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran

3 University Institute of Chemical Engineering & Technology (SSB UICET), Panjab University Chandigarh, 160-014, India

4 Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791, South Korea

Abstract

he reaction of the functionalized mesoporous SBA-15 in absolute ethanol with copper(II) acetate afforded a novel CuII-Schiff base/SBA-15 catalyst. The compound CuII-Schiff base/SBA-15 was characterized by IR spectroscopy, small-angle X-ray diffraction (SAX), energy dispersive X-ray Analysis (EDXS), X-ray absorption near edge structure (XANES), scanning electron microscope (SEM), transmission electron microscope (TEM) and N2 adsorption/desorption studies. Further, we tested the catalytic activity of this well-defined material in three-component copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions to obtain 1,4-disubstituted-1,2,3-triazoles in good to excellent yields from an organic halide, sodium azide and alkyne in water as a green solvent. More importantly, the catalyst can be recovered and reused efficiently up to five consecutive cycles with negligible loss of catalytic activity.

Keywords

Main Subjects


References
1. Evans, R.A. The rise of azide-alkyne 1,3-dipolar
'click' cycloaddition and its application to polymer
science and surface modi cation", Aust. J. Chem., 60,
pp. 384-395 (2007).
2. Spruell, J.M. The Power of Click Chemistry for
Molecular Machines and Surface Patterning: Power of
Click Chemistry for Molecular Machines and Surface
Patterning, Springer (2011).
M. Bagherzadeh et al./Scientia Iranica, Transactions C: Chemistry and ... 25 (2018) 1335{1343 1341
3. Hein, C., Liu, X.-M., and Wang, D. Click chemistry,
a powerful tool for pharmaceutical sciences", Pharm.
Res., 25, pp. 2216-2230 (2008).
4. Moses, J.E. and Moorhouse, A.D. The growing applications
of click chemistry", Chem. Soc. Rev., 36, pp.
1249-1262 (2007).
5. Thirumurugan, P., Matosiuk, D., and Jozwiak, K.
Click chemistry for drug development and diverse
chemical-biology applications", Chem. Rev., 113, pp.
4905-4979 (2013).
6. Witczak, Z.J. and Bielski, R., Click Chemistry in Glycoscience:
New Developments and Strategies, Wiley
(2013).
7. Padwa, A., 1,3-Dipolar Cycloaddition Chemistry, Wiley
(1984).
8. Amini, M., Naslhajian, H.F., Farnia, S.M., Kyoung
Kang, H., Gautam, S., and Chae, K.H.
Polyoxomolybdate-stabilized Cu2O nanoparticles as
an ecient catalyst for the azide-alkyne cycloaddition",
New J. Chem., 40, pp. 5313-5317 (2016).
9. Donnelly, K.F., Petronilho, A., and Albrecht, M.
Application of 1,2,3-triazolylidenes as versatile NHCtype
ligands: synthesis, properties, and application in
catalysis and beyond", Chem. Commun., 49, pp. 1145-
1159 (2013).
10. Haldon, E., Nicasio, M.C., and Perez, P.J. Coppercatalysed
azide-alkyne cycloadditions (CuAAC): an
update", Org. Biomol. Chem., 13, pp. 9528-9550
(2015).
11. Becer, C.R., Hoogenboom, R., and Schubert, U.S.
Click chemistry beyond metal-catalyzed cycloaddition",
Angew. Chem. Int. Ed., 48, pp. 4900-4908
(2009).
12. Mekhzoum, M.E.M., Benzeid, H., Qaiss, A.E.K., Essassi,
E.M., and Bouh d, R. Copper(I) con ned in
interlayer space of montmorillonite: A highly ecient
and recyclable catalyst for click reaction", Catal. Lett.,
146, pp. 136-143 (2016).
13. Domini, C., Alvarez, M., Silbestri, G., Cravotto,
G., and Cintas, P. Merging metallic catalysts and
sonication: A periodic table overview", Catalysts. 7,
p. 121 (2017).
14. Faraji, M., Amini, M., and Anbari, A.P. Preparation
and characterization of TiO2-nanotube/Ti plates
loaded Cu2O nanoparticles as a novel heterogeneous
catalyst for the azide-alkyne cycloaddition", Catal.
Commun., 76, pp. 72-75 (2016).
15. Akbari, A., Arsalani, N., Amini, M., and Jabbari, E.
Cube-octameric silsesquioxane-mediated cargo copper
Schi base for ecient click reaction in aqueous
media", J. Mol. Catal. A: Chem., 414, pp. 47-54
(2016).
16. Meldal, M. and Torne, C.W. Cu-catalyzed azide{
alkyne cycloaddition", Chem. Rev., 108, pp. 2952-3015
(2008).
17. Hein, J.E. and Fokin, V.V. Copper-catalyzed azidealkyne
cycloaddition (CuAAC) and beyond: new reactivity
of copper(i) acetylides", Chem. Soc. Rev., 39,
pp. 1302-1315 (2010).
18. Jin, T., Yan, M., and Yamamoto, Y. Click chemistry
of alkyne-Azide cycloaddition using nanostructured
copper catalysts", Chem. Cat. Chem., 4, pp. 1217-1229
(2012).
19. Woo, H., Kang, H., Kim, A., Jang, S., Park, J., Park,
S., Kim, B.-S., Song, H., and Park, K. Azide-alkyne
huisgen [3+2] cycloaddition using CuO nanoparticles",
Molecules, 17, p. 13235 (2012).
20. Rostovtsev, V.V., Green, L.G., Fokin, V.V., and
Sharpless, K.B. A Stepwise huisgen cycloaddition
process: Copper(I)-Catalyzed regioselective Ligation
of azides and terminal alkynes", Angew. Chem. Int.
Ed., 41, pp. 2596-2599 (2002).
21. Torn?e, C.W., Christensen, C., and Meldal, M.
Peptidotriazoles on solid phase: [1,2,3]-triazoles by
regiospeci c copper(I)-catalyzed 1,3-dipolar cycloadditions
of terminal alkynes to azides", J. Org. Chem., 67,
pp. 3057-3064 (2002).
22. Shamim, T. and Paul, S. Silica functionalized Cu(I)
as a green and recyclable heterogeneous catalyst for
the huisgen 1,3-dipolar cycloaddition in water at room
temperature", Catal. Lett., 136, pp. 260-265 (2010).
23. Wan, L. and Cai, C. Multicomponent synthesis of
1,2,3-triazoles in water catalyzed by silica-immobilized
NHC-Cu(I)", Catal. Lett., 142, pp. 1134-1140 (2012).
24. Amini, M., Hassandoost, R., Bagherzadeh, M., Gautam,
S., and Chae, K.H. Copper nanoparticles supported
on CeO2 as an ecient catalyst for click
reactions of azides with alkynes", Catal. Commun., 85,
pp. 13-16 (2016).
25. Presolski, S.I., Hong, V.P., and Finn, M.G., Coppercatalyzed
azide-alkyne click chemistry for bioconjugation",
in Current Protocols in Chemical Biology, John
Wiley & Sons, Inc (2009).
26. Amini, M., Bayrami, A., Marashi, M.N., Arab, A.,
Ellern, A., and Woo, L.K. Synthesis, structure, and
catalytic properties of copper, palladium and cobalt
complexes containing an N,O-type bidentate thiazoline
ligand", Inorg. Chim. Acta., 443, pp. 22-27 (2016).
27. Mohammed, S., Padala, A.K., Dar, B.A., Singh, B.,
Sreedhar, B., Vishwakarma, R.A., and Bharate, S.B.
Recyclable clay supported Cu (II) catalyzed tandem
one-pot synthesis of 1-aryl-1,2,3-triazoles", Tetrahedron.,
68, pp. 8156-8162 (2012).
1342 M. Bagherzadeh et al./Scientia Iranica, Transactions C: Chemistry and ... 25 (2018) 1335{1343
28. Jlalia, I., Gallier, F., Brodie-Linder, N., Uziel, J.,
Auge, J., and Lubin-Germain, N. Copper(II) SBA-15:
A reusable catalyst for azide-alkyne cycloaddition", J.
Mol. Catal. A: Chem., 393, pp. 56-61 (2014).
29. Alavi, S., Hosseini-Monfared, H., and Siczek, M. A
new manganese (III) complex anchored onto SBA-15 as
ecient catalyst for selective oxidation of cycloalkanes
and cyclohexene with hydrogen peroxide", J. Mol.
Catal. A: Chem., 377, pp. 16-28 (2013).
30. Katiyar, A., Yadav, S., Smirniotis, P.G., and Pinto,
N.G. Synthesis of ordered large pore SBA-15 spherical
particles for adsorption of biomolecules", J. Chromatogr.
A., 1122, pp. 13-20 (2006).
31. Bagherzadeh, M., Zare, M., Salemnoush, T., Ozkar,
S., and Akbayrak, S. Immobilization of dioxomolybdenum
(VI) complex bearing salicylidene 2-picoloyl
hydrazone on chloropropyl functionalized SBA-15: A
highly active, selective and reusable catalyst in ole n
epoxidation", Appl. Catal., A., 475, pp. 55-62 (2014).
32. Bagherzadeh, M., Zare, M., Amini, M., Salemnoush,
T., Akbayrak, S., and Ozkar, S. Epoxidation of
ole ns catalyzed by a molybdenum-Schi base complex
anchored in the pores of SBA-15", J. Mol. Catal. A:
Chem., 395, pp. 470-480 (2014).
33. Zhang, F., Yan, Y., Yang, H., Meng, Y., Yu, C., Tu, B.,
and Zhao, D. Understanding e ect of wall structure
on the hydrothermal stability of mesostructured silica
SBA-15", J. Phys. Chem. B., 109, pp. 8723-8732
(2005).
34. Stevens, W.J.J., Lebeau, K., Mertens, M., Van Tendeloo,
G., Cool, P., and Vansant, E.F. Investigation of
the morphology of the mesoporous SBA-16 and SBA-
15 materials", J. Phys. Chem. B., 110, pp. 9183-9187
(2006).
35. Enumula, S.S., Gurram, V.R.B., Kondeboina, M.,
Burri, D.R., and Kamaraju, S.R.R. ZrO2/SBA-15 as
an ecient catalyst for the production of [gamma]-
valerolactone from biomass-derived levulinic acid in
the vapour phase at atmospheric pressure", RSC Adv.,
6, pp. 20230-20239 (2016).
36. Mohammadi Ziarani, G., Lashgari, N., and
Badiei, A.R. Green synthesis of spiro[indoline-3,
9-xanthene]trione derivatives using sulfonic acid
functionalized SBA-15 as a new nanoporous acid
catalyst", Sci. Iran. 20, pp. 580-586 (2013).
37. Bhunia, S., Saha, D., and Koner, S. MCM-41-
supported oxo-vanadium (IV) complex: A highly selective
heterogeneous catalyst for the bromination of
hydroxy aromatic compounds in water", Langmuir, 27,
pp. 15322-15329 (2011).
38. Alba, M.D., Luan, Z., and Klinowski, J. Titanosilicate
mesoporous molecular sieve MCM-41: synthesis
and characterization", J. Phys. Chem., 100, pp. 2178-
2182 (1996).
39. Jitianu, A., Crisan, M., Meghea, A., Rau, I., and
Zaharescu, M. In
uence of the silica based matrix on
the formation of iron oxide nanoparticles in the Fe2O3-
SiO2 system, obtained by sol-gel method", J. Mater.
Chem., 12, pp. 1401-1407 (2002).
40. Bagherzadeh, M., Ataie, S., Mahmoudi, H., and
Janczak, J. Synthesis, structure characterization and
study of a new molybdenum Schi base complex as
an epoxidation catalyst with very high turnover numbers",
Inorg. Chem. Commun., 84, pp. 63-67 (2017).
41. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E.,
Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson,
D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B.
and Schlenker, J.L. A new family of mesoporous
molecular sieves prepared with liquid crystal templates",
J. Am. Chem. Soc., 114, pp. 10834-10843
(1992).
42. Joseph, T., Deshpande, S.S., Halligudi, S.B., Vinu, A.,
Ernst, S. and Hartmann, M. Hydrogenation of ole ns
over hydrido chlorocarbonyl tris-(triphenylphosphine)
ruthenium (II) complex immobilized on functionalized
MCM-41 and SBA-15", J. Mol. Catal. A: Chem., 206,
pp. 13-21 (2003).
43. Ying, J.Y., Mehnert, C.P., and Wong, M.S. Synthesis
and applications of supramolecular-templated mesoporous
materials", Angew. Chem. Int. Ed., 38, pp.
56-77 (1999).
44. Srivastava, R., Srinivas, D., and Ratnasamy, P. Sites
for CO2 activation over amine-functionalized mesoporous
Ti(Al)-SBA-15 catalysts", Microporous Mesoporous
Mater., 90, pp. 314-326 (2006).
45. Gurevich, A.B., Bent, B.E., Teplyakov, A.V., and
Chen, J.G. A NEXAFS investigation of the formation
and decomposition of CuO and Cu2O thin lms on
Cu(100)", Surf. Sci., 442, pp. L971-L976 (1999).
46. Sharma, A., Varshney, M., Park, J., Ha, T.-K., Chae,
K.-H., and Shin, H.-J. XANES, EXAFS and photocatalytic
investigations on copper oxide nanoparticles
and nanocomposites", RSC Adv., 5, pp. 21762-21771
(2015).
47. Shaik, S.S. and Pross, A. SN2 reactivity of CH3X
derivatives. A valence bond approach", J. Am. Chem.
Soc., 104, pp. 2708-2719 (1982).
48. Massah, A.R., Kalbasi, R.J., Toghiani, M., Najafabadi,
B.H., and Adibnejad, M. Hydrotalcite as an
ecient and reusable catalyst for acylation of phenols,
amines and thiols under solvent-free conditions", E-J.
Chem., 9, pp. 2501-2508 (2012).