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Abstract. In this paper, a new tra�c assignment model is proposed based on fuzzy
equilibrium condition where perceived travel times of users are assumed to follow fuzzy
values. First, a new method is proposed to determine the membership function based on
link congestion levels using probabilistic models. Then, a new index is presented based on
percentage of users' risk-acceptance for comparison of fuzzy numbers. Using this index,
two approaches, fuzzy Dijkestra shortest path algorithm and defuzzi�cation method, are
established for solving the shortest path problem. Fuzzy equilibrium condition is de�ned
based on the two proposed fuzzy shortest path methods, and a tra�c assignment model
is developed with consideration of fuzzy equivalency equilibrium condition. Frank-Wolfe
algorithm and fuzzy shortest path method are combined to solve the proposed tra�c
assignment problem. The assignment model is applied to a small and medium-sized
network. Sensitivity analysis for link ows is performed under di�erent levels of users'
risk-acceptance to understand the route choice of di�erent types of users. To apply the
model to a large-scale network, the network of Mashhad, Iran is considered as a case study.
The fuzzy tra�c assignment model provides more accurate estimation of volume compared
to conventional tra�c assignment.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Tra�c assignment problem determines ow patterns
in a transportation network, and is essential to many
transportation network planning applications. Numer-
ous e�orts with di�erent approaches have been made
to estimate the ows in a network. All of them deal
with two important assumptions. The �rst one is
about the nature of link travel time, and the second is
about travelers' route choice behaviors. The Wardrop's
principles are widely-used assumptions on travelers'
route choice behaviors.
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Wardrop [1] proposed two principles for link
ow prediction, known as the User Equilibrium (UE)
and the System Optimum (SO) for tra�c assignment
problems. UE assumes that each user tries to minimize
his or her own travel time from origin to destination.
SO ow pattern minimizes total network travel time.
The UE model is widely used in practice because it
considers user behavior, is computationally convenient,
and leads to a relatively reasonable approximation of
link ows in the network over the long run. However, a
number of studies have shown that the user equilibrium
models are not able to represent real situations [2].
The UE model is based on some ideal assumptions
which further models have tried to relax. For example,
UE assumes that travelers have perfect information
about travel times. However, travelers' perceived travel
times are subject to multiple sources of variability.
Stochastic User Equilibrium (SUE) is commonly used
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to account for imperfect information. SUE considers
the perceived travel times that follow a certain distribu-
tion. However, it still assumes that travelers' perceived
travel times have exact crisp values and thus travelers
choose paths with perfect rationality. In an e�ort to
relax this assumption and model the behavior of users
more realistically, many researchers investigated the
concept of bounded rational user equilibrium where
travelers choose acceptable routes, whose travel times
can be higher than the travel time of the shortest
path up to a certain value. Based on this assumption,
they developed a bounded rational user equilibrium
model [3,4].

This study adopts fuzzy and probability theories
to relax user equilibrium assumptions. The fuzzy
theory can be considered as an alternative way to model
the route choice decision-making process, since it is
proposed to represent real-world human perception.
The concept of fuzzy theory was proposed in 1965.
Fuzzy logic is a very powerful tool for drawing de�nite
conclusions from complex systems that generate vague,
imprecise, or ambiguous information. This theory
has been applied in di�erent �elds of transportation
to capture more realistic behavior of travelers and
improve the predicted results. For example, Foulds
et al. [5] proposed the fuzzy approach to capture the
imprecision in the link count to estimate the Origin-
Demand (O-D) tra�c demands. EL-Rashidy and
Grant-Muller [6] employed a fuzzy logic to measure
the mobility of transportation network in terms of
physical connectivity and level of service. Fuzzy logic
is capable of accommodation of relative importance
of each element under di�erent tra�c conditions, i.e.
free ow condition. The tasks of determining the
path travel time and �nding the shortest path are
other examples of complex systems. In fuzzy tra�c
assignment, perceived travel time of a speci�c route is
de�ned as a set of values with speci�c possibilities.

Many e�orts have been made to combine the
notion of fuzzy logic with tra�c assignment. These
studies can be categorized into two groups. The
�rst group maintains a fuzzy approach throughout the
process. The work of Wang and Liao [7] is an example
of the �rst class of fuzzy models. In their work, they
proposed a model with fuzzy travel cost and demand
function and, consequently, their optimal solution was
a fuzzy set. Zhang et al. [8] developed a hierarchical
fuzzy rule base system to increase the accuracy in
prediction of short-term tra�c congestion using a large
number of input variables, i.e. vehicle speed measured
by loop detector. They employed the genetic algorithm
to optimize the system and maintain a high degree of
accuracy. The second group, which is more common,
has a defuzzi�cation approach toward the assignment.
Given a fuzzy set and its corresponding membership
function, models with defuzzi�cation approach attempt

to derive crisp numbers for the �nal assignment result.
Decreasing the computational burden is the main
objective of defuzzi�cation of fuzzy models. Wang
and Liao [9] formulated a model with defuzzi�cation
approach. They considered the node-arc incidence
matrix with fuzzy nodes due to arc uncertainties in
membership of paths. In contrary to previous studies,
they assumed travel cost and demand as crisp variables
and functions. Chang and Chen [10] assumed that link
travel times are fuzzy numbers. They proposed a fuzzy
assignment model by applying the concept of �-cut. In
other words, they utilized the crisp assignment model
based on travel times with certain possibility. Chen
and Tzeng [11] emphasized that since travelers are not
able to precisely determine the increase in link travel
time due to link congestion, perceived link travel times
should be fuzzy. They utilized the concepts of fuzzy
measure and fuzzy integral to construct the perceived
link costs and, subsequently, ows are determined by
the diagonalization approach.

Liu et al. [12] proposed a fuzzy dynamic network
assignment model based on linguistic descriptions.
They modeled travelers' perception of travel time using
linguistic descriptions, or in other words, discrete fuzzy
sets with certain membership values. These models are
called fuzzy rule-based models. In their study, fuzzy
shortest path algorithm is implemented using defuzzi-
�cation. Ridwan [13] formulated a tra�c assignment
model within fuzzy preference. Fuzzy preference is a
method to compare the alternatives di�erent from the
traditional binary preference (YES/NO). He employed
fuzzy concept to consider both rational travelers who
always follow the shortest path and bounded rational
travelers who would accept paths that are in a certain
range (bound) of the shortest path. Ghatee and
Hashemi [14] introduced a network assignment model
with a fuzzy level of travel demand. They suggested
a fuzzy model with binary variables to maximize the
degree of certainty. By fuzzy comparison of possible
paths and fuzzy subsets for travel time, Henn [15]
derived a degree of attractiveness for each path. The
risk attitudes of travelers are considered toward path
travel time, and an assignment model that is similar to
the Logit model is proposed based on fuzzy indices.

In a follow-up study, Henn [16] formulated a
method for constructing the fuzzy set, based on a more
detailed discussion on the reasons for adopting fuzzy
concepts. He argued that travel time is a fuzzy set
due to two reasons: travelers' imprecise perception
and uncertain path travel times. Subsequently, a fuzzy
tra�c assignment model that combines decision theory
and probability measure is developed. Ramezani and
Shafahi [17] suggested a fuzzy shortest path algorithm
by modifying the Dijkestra algorithm and utilizing
fuzzy indices. They considered both path travel time
and degree of saturation for congested networks in their
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algorithm. In the line of their research, Ramezani et
al. [18] proposed fuzzy user equilibrium to determine
the ows in a network by implementation of incremen-
tal tra�c assignment.

In this study, fuzzy perceived travel times would
be considered in tra�c assignment with defuzzi�cation
approach. A new method is proposed to construct
fuzzy travel times based on congestion levels in a
network. It allows us to calibrate the fuzzy travel
time of di�erent links based on a proposed distribu-
tion of the random actual travel time. Triangular
membership function is utilized herein to de�ne fuzzy
numbers which model the perceived travel time. Fuzzy
shortest path algorithm of Ramezani and Shafahi [17]
is extended to include the risk-taking behavior in route
decision making.

The rest of the paper is organized as follows. After
de�ning the membership function for perceived travel
time in Section 2, the ranking method of fuzzy numbers
is explained in Section 3. Fuzzy assignment model
and the concept of fuzzy user equilibrium condition are
presented in Section 4. Section 5 de�nes the extension
of fuzzy shortest path problem, new defuzzi�cation
method for simplifying the algorithm, and reducing
the arithmetic calculations. In order to examine the
e�ciency of model in Section 6, the fuzzy assignment
model is applied to three networks with di�erent sizes.
Section 7 concludes the paper.

2. Fuzzy perceived link travel time

In the �rst step of fuzzy network assignment, the
membership function should be de�ned as a tool for
modeling uncertainty in travel time with fuzzy concept.
Flat L-R type fuzzy number is one of the simplest
forms for representation of Fuzzy Perceived Link Travel
Time (FPLTT) which was �rst proposed by Dubois
and Prade [19]. Since our major interest is tra�c
assignment rather than individual's route choice, the
membership functions of individual traveler have to be
simple enough so that the aggregation of individual
choices in a macroscopic assignment is possible [12].
Triangular fuzzy numbers are used as a special case
of the L-R fuzzy numbers in this study. Triangular
membership function of a fuzzy number, ~m, can be
written as:

� ~m(x) =

8>>><>>>:
mL

�m�x
L

�
if x < m

1 if x = m

mR
�m�x

R

�
if x > m

(1)

where L > 0 and R > 0 are the left and right spreads
of ~m. Figure 1 shows the shape of a triangular
membership function and its parameters. It should
be noted that L � R fuzzy number can be denoted

Figure 1. Shape of triangular membership function and
its parameters.

Figure 2. Range of perceived travel time with respect to
real travel time.

by (mL;m;mR). Left bound, center and right bound
of fuzzy number ~m are denoted by mL;m, and mR,
respectively. The fuzzy sets of perceived link travel
times should be de�ned to reect travelers' perception
of link travel time. Left and right bounds of fuzzy
perceived travel time are the minimum and maximum
perceptions of the users in respect to their travel time.

With the consideration of a variety of users, left
and right bounds of fuzzy travel time are derived by
using stochastic distributions. The schematic �gure of
parameters of FPLTT is presented in Figure 2. The
aggregate value of central value has the highest prob-
ability to perceive by travelers where this probability
reduces by decreasing/increasing the value of perceived
travel time. In this paper, travel times are considered
as fuzzy numbers and their boundaries depend on real
travel time and vary for di�erent users.

2.1. Weibull distribution for establishing
boundaries of membership function

In the absence of necessary information like perceived
travel time in di�erent types of links for di�erent trav-
elers, Weibull distribution is used as a rough model for
following the perception of users [20]. This distribution
has some distinct characteristics. First, it has simple
closed form of distribution function. Second, it can be
calibrated such that it includes only positive numbers
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which results in exibility due to di�erent values of
shape parameter. Let's refer to x as the perceived value
of travel time. The cumulative distribution function of
random variable x, which has a Weibull distribution, is
given by:

F (x) =

8<:1� exp
�x
�

�k x > v

0 otherwise
(2)

where v is the location parameter, � is the scale
parameter, and k is the shape parameter. To model
FPLTT, it is assumed that v is equal to zero.

If we want to model the FPLTT of P percent of
users, the lower bound can be given by:

1� exp
�
��x

�

�k�
=

1� p
2
!

xl = � �
�

ln
2

1 + p

� 1
k

: (3)

Considering the equation of the mode of Weibull's
distribution, we have:

� = �
�
k � 1
k

� 1
k

: (4)

The lower bound of the fuzzy number can be written
as:

xl = �

0@ ln
�

2
1+p

�
k � 1

� k
1A 1

k

� xl = �:�l: (5)

Similarly, the upper bound is:

xR = �

0@ ln
�

2
1�p
�

k � 1
� k
1A 1

k

� xR = �:�R; (6)

where � is mode value of distribution and �l; �R are the
left and right coe�cients of the fuzzy number. In this
study, mode would be used as a center value of fuzzy
set and computed from the performance function.

2.2. Analysis of membership function
parameters

In order to make the proposed model more realistic,
parameters of the distribution function should be ana-
lyzed. At �rst, skewness of FPLTT as one of criteria
of its shape is examined. Figure 3 presents the shape
of the di�erence between right and left spreads versus
k when P is set to 95%. The curve's equation is as
follows:

R� L =

 �
3:69
k � 1

� k
� 1
k

+
�

0:025
k � 1

� k
� 1
k � 2

!
:�

� �R + �l � 2: (7)

As can be seen in the Figure 3, FPLTT is a right

Figure 3. Relation between di�erence of right and left
spreads and shape parameter k.

skewed fuzzy set as it has a wider right spread than
left spread when the value of k is between 1 and 3.41.
This assumption is valid in the roads with prevailing
recurrent tra�c congestion in which travelers expect
to face a longer time (compared to actual commuter
experience) [7]. When k equals 3.41, it has the same
right and left spreads and it is applicable to links with
few opportunities of congestion occurrence. When the
value of k is more than 3.41, it is a left skewed set
and it is appropriate for road segments where tra�c
congestion hardly appears [7].

After determination and analysis of skewness,
coe�cients �R and �l are examined. Figure 4 presents
the behavior of �R and �l under di�erent values of
k, respectively. It can be seen that as k approaches
in�nity, �l and �R approach one. This presents the
decrease in the left and right spread of FPLTT. In
other words, less uncertainty is presented in the users'
perceived travel time. Clearly, �l and �R should take
values less and more than one, respectively. In this
study, it is supposed that �R is less than two. This
indicates that the right bound of FPLTT is less than
two times of the mode of travel time distribution.
Results can be summarized as follows:

� =

8<:0 < �k < 1 ! k > 1:03

1 < �R < 2 ! k > 2:6
(8)

Combining conditions in Eq. (8), value greater than
2.6 should be selected for k. Finally, Criteria (1) is
suggested by taking advantage of V

c as a criterion for
tra�c congestion in links. For modeling the FPLTT in
the absence of data:

Criteria (1) :

8>>>>>>>>>><>>>>>>>>>>:

For links with v
c > 1

! 2:6 < k < 3:41

For links with 0:5 < v
c < 1

! 3:41 < k < 6:92

For links with v
c < 0:5

! 6:9 < k < 10

(9)

In the formulated fuzzy travel perception time in
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Figure 4. Behavior of left and right coe�cients under di�erent values of k.

Eq. (9), the second rule is proposed because the curve
has a steeper gradient between 3.41 and 6.92 in the
Figure 3. This gives the idea to break the interval of
[3.41,1) to two intervals. Using the observed volume
from di�erent networks, we can calibrate parameter k
for di�erent links. In the next section, a method is
proposed to compare the fuzzy numbers.

3. Ranking fuzzy numbers

Ranking of fuzzy numbers is one of the most important
steps in the fuzzy tra�c assignment. Dubois and
Prade [19] introduced four indexes to describe the
location of fuzzy numbers as below:

I1(M) = Poss(M � N);

I2(M) = Poss(M < N);

I3(M) = Nec(M � N);

I4(M) = Nec(M < N): (10)

In Eq. (10), Poss and Nec denote possibility and
necessity indexes. Each of these indexes has its own
advantages and drawbacks. Figure 5 illustrates the
positions of these indexes. Remarking the drawback
of these indexes, Ramezani et al. [18] proposed the
using of I2 for risk-seeking users and I3 for risk-averse
ones. The results are established under the assumption
that users are pessimistic since they choose the route
with less uncertainty in travel time. However, some of

the users are optimistic in their route choice decision
making. In other words, they seek more risk than
others in the route choice process. Obviously, the
combination of possibility and necessity indexes leads
to a more comprehensive index.

Let us assume that ~m = (ml;m;mR) and ~n =
(nl; n; nR) are two fuzzy numbers. Figure 5 illustrates
that I3 ( ~m; ~n) is the cross-point of ]~n;+1) and the
right side of the ~m. The membership degree of
]~n;+1) and the right side of the ~m are determined
as follows [18]:

I3( ~m; ~n) =
nR �m

(mR + nR)� (m+ n)
: (11)

Similarly, I2 ( ~m; ~n) is derived by:

I2( ~m; ~n) =
n�ml

(m+ n)� (ml + nl)
: (12)

Combination of I2 and I3 in Eqs. (11) and (12) can be
expressed as:

I( ~m; ~n) = �:I2( ~m; ~n) + �:I3( ~m; ~n); (13)

where, � and � are the percent of proportional weights
of optimistic and pessimistic users. The summation of
� and � equals 1. The di�culty caused by this com-
bination is the equation's complexity. However, this
complexity can be simpli�ed under some assumptions,
as it is explained in the next section. For comparison
of the two fuzzy numbers( ~m; ~n), the combination index
can be extended as:

Figure 5. Schematic de�nition of Dubois and Prade indexes.
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I( ~m; ~n) =�:
n�ml

(m+ n)� (ml + nl)

+ �:
nR �m

(mR + nR)� (m+ n)
: (14)

Simply, it can be proven that according to this index,
the two fuzzy numbers ~m and ~n are equal if and only
if:
I( ~m; ~n) = I(~n; ~m) = 0:5: (15)

And ~m is greater than ~n, if and only if:

I( ~m; ~n) < 0:5 < I(~n; ~m): (16)

If we assume that the membership functions of path
travel times are symmetric, by substituting Eq. (14) in
Eq. (16), it can be concluded that ~m is greater than ~n
if and only if:

I(~n; ~m)� 0:5 � 0! DN( ~m)

=
�
�:ml +m+ �:mR� � DN(~n)

=
�
�:nl + n+ �:nR

�
: (17)

DN( ~m) stands for the defuzzi�cation number of fuzzy
number ~m. This assumption is redundant if � or � are
equal to one; in other words, it is not required if all
users are optimistic or pessimistic.

4. Fuzzy user equilibrium model

In this section, the rule of route choice by each motorist
is speci�ed for determination of its formulation. In the
crisp UE, equilibrium condition is reached only when
no traveler can improve his travel time by unilaterally
changing routes. This is the characterization of crisp
user equilibrium condition [21]. However, the drawback
in this de�nition is the assumption that each motorist
has the perfect information about the routes and, hence
they can exactly predict their travel times. Therefore,
travel time should be replaced by fuzzy set. Because
of the fuzziness of user's perception of routes travel
times, possibility and necessity theory can be used for
estimation of FPRTT's utility.

By assuming that FPLTTs are symmetric, the
fuzzy equilibrium assignment program can be written
as:

min
X
a

Z x�

0

�
�:tla(w) + ta(w) + �:tRa (w)

�
dw

�X
a

Z x�

a

�
DN( ~ta(w))

�
dw; (18)X

fr;sm = qrs; (19)

fr;sm � 0; (20)

xa =
X
r

X
s

X
m

fr;sm :�rsa;m; (21)

where tla(w), ta(w), and tRa (w) are the left, center, and
right bounds of fuzzy travel time-value function ~ta(w);
� is the percent of optimistic users; � is the percent of
pessimistic users; and DN((~ta)(w)) is the defuzzi�ed
number of travel time of link `a'.

Proposition 1. Fuzzy and conventional tra�c as-
signments are identical if and only if fuzzy travel time
is singleton.

Proof. To compare the crisp with fuzzy equilibrium
conditions (18), let us assume that fuzzy travel time
is singleton. In other words, the values of left, center
and right bounds of fuzzy travel time are assumed to
be equal. Then, the objective function (18) is reduced
to:X

a

Z xa

0

�
�:tla(w) + ta(w) + �:tRa (w)

�
dw

= 2
X
a

Z xa

0
(ta(w)) dw: (22)

Therefore, the proposed fuzzy equilibrium assignment
program and crisp user equilibrium condition are iden-
tical, if and only if fuzzy travel time is singleton.

Using the Lagrangian of the minimization prob-
lem, it is simple to show that the �rst order conditions
for the model are identical to the below equilibrium
condition, such that:

fr;sm
�
�:tlmrs + tmrs + �:tRmrs)� (u0rs)

�
= 0; (23)�

�:tlmrs + tmrs + �:tRmrs
�� (u0rs) � 0; (24)X

fr;sm = qrs; (25)

fr;sm � 0: (26)

If ulrs; urs, and uRrs are chosen such that \u0rs" La-
grangian multiplier satis�es the below condition:

u0rs = �:ulrs + urs + �:uRrs; (27)

u0rs can be considered as defuzzi�cated number of fuzzy
set ~urs = (ulrs; urs; uRrs). Based on the assumption in
Section 3, these formulations can be expressed as:

fr;sm
�
0:5� Ir;s(~tmrs ; ~urs)� = 0 8m; r; s (28)

0:5� Ir;s �~tmrs ; ~urs� � 0 8r; s (29)X
fr;sm = qrs 8m; r; s (30)

fr;sm � 0 8m; r; s (31)
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where:
~urs : Fuzzy set with the most utility;
~tmrs : Fuzzy perceived travel time of each

route between `r' and `s';
qrs : Travel demand between `r' and `s';
Ir;s(~tmrs ; ~urs) :Utility (or comparison's index) of ~tmrs

with respect to ~urs.

Eq. (28) implies that travelers choose the route
m if and only if it has combination index value of
0.5. Based on Eq. (29), ~urs is less than or equal to
any fuzzy perceived travel time of any path between
origin \r" and destination \s". In other words, if
~tmrs = ~urs according to index Ir;s, ow on path `m'
can be positive. Thus, ~urs equals the minimum fuzzy
path travel time between origin \r" and destination \s"
according to index Ir;s. In the special cases, � and �
should be replaced by one for totally pessimistic and
optimistic users, respectively.

The Frank-Wolfe algorithm is modi�ed to solve
the model. To do so, it is required to replace the
function of ta(w) with DN((~ta)(w)) in the traditional
Frank-Wolfe algorithm. The Bureau of Public Roads
(BPR) equation for road travel time is used in this
study. Since it is monotonically increasing convex
function and depends only on the ows of links, there is
unique global solution for the proposed model. Fuzzy
equilibrium assignment program can be solved by using
any convex combination methods such as the Frank-
Wolfe algorithm. Two di�erent approaches for solving
fuzzy shortest path by using the Frank-Wolfe algorithm
are developed in this study. The most important step
in Frank-Wolfe algorithm is �nding the shortest path
between origins and destinations for �nding improving
direction in each iteration. This step will extensively
be explained in the next section.

5. Fuzzy shortest path algorithm

Finding a path with minimum fuzzy travel time is an
important issue in solution algorithm of any type of
tra�c assignment model. Up to now, most of the
methods fall into two categories of approaches toward
this problem. In the �rst approach, fuzzy shortest
path is defuzzi�ed into crisp ones like Blue et al. [22]
and in second approach, it is solved by using fuzzy
index in spite of crisp comparison like Ramezani et
al. [18]. In this study, both approaches are employed.
Furthermore, level of risk-acceptance is used to gain
the set of fuzzy paths. Here, these two methods are
briey explained.

5.1. Fuzzy Dijkestra shortest path algorithm
Ramezani et al. [18] proposed a fuzzy Dijkestra shortest
path algorithm to �nd the best path based on fuzzy
comparison of travel times. They used the index I3

to �nd a fuzzy shortest path, assuming all users are
pessimistic. With assumption of equal left and right
coe�cients for fuzzy travel time of di�erent paths,
Dijkestra fuzzy algorithm can be used with employing
the index I to compare di�erent paths if and only if it
holds the transitive property. In other words, if fuzzy
travel time ~m is smaller than ~n and fuzzy travel time ~n
is smaller than ~w, then fuzzy travel time ~m is smaller
than ~w.

Proposition 2. Index I is transitive over triangular
fuzzy numbers with equal left and right coe�cients.

Proof. To prove that I is transitive, let's assume that
fuzzy travel time ~m is smaller than fuzzy travel time ~n.
From the de�nition:

I( ~m; ~n) < I(~n; ~m): (32)

Using Eq. (14), it follows:

�
m+ml

(m+ n)� (ml + nl)
+ �:

mR +m
(mR + nR)� (m+ n)

< �:
n+ nl

(m+ n)� (ml � nl)

+ �:
nR + n

(mR+nR)�(m+n)
: (33)

Left and right bounds of fuzzy numbers are derived
using Eqs. (5) and (6) with assuming the same left
coe�cient, �l, and right coe�cient, �R, for fuzzy
numbers ~m and ~n. Combining Eqs. (5), (6) and (33),
we have:

�:
m(1 + �l)
(1� �l) + �:

m(1 + �R)
(1� �R)

< �:
n(1 + �l)
(1� �l)

+ �:
n(1 + �R)
(1� �R)

: (34)

Similarly, fuzzy travel time ~n is smaller than ~w, if and
only if:

�:
n(1 + �l)
(1� �l) + �:

n(1 + �R)
(1� �R)

< �:
w(1 + �l)
(1� �l)

+ �:
w(1 + �R)
(1� �R)

: (35)

Consequently:

�:
m(1 + �l)
(1� �l) + �:

m(1 + �R)
(1� �R)

< �:
w(1 + �l)
(1� �l)

+ �:
w(1 + �R)
(1� �R)

: (36)

So, fuzzy travel time ~m is smaller than ~w and index
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I holds the transitive property. Index I provides the
chance to �nd a set of shortest paths based on di�erent
levels of risk-acceptance.

5.2. Defuzzi�cation method
Applying a convex combination algorithm to solve the
model requires a solution of a linear program and, it can
be shown that this is achieved by assigning all motorists
to the path connecting origin to their destinations with
the shortest travel-defuzzi�ed time. For this purpose,
fuzzy travel times of network link, ~m = (ml;m;mR), is
defuzzi�ed into a crisp number such as:
DN( ~m) = �:ml +m+ �:mR: (37)

These crisp numbers, in Eq. (37), are assigned to
each link based on their FPLTTs. A conventional
shortest path algorithm, such as regular Dijkestra, can
be employed to �nd a shortest path based on these crisp
values. Defuzzi�cation method is simpler than fuzzy
Dijkestra shortest path to be implemented because it
does not need the path enumeration

6. Numerical examples

Three di�erent sized networks are represented to show
how the fuzzy network assignment works. In Sec-
tion 6.1, fuzzy network assignment is applied to a
small network to show the implementation of the model
and to prove that results of fuzzy model obtained
in Section 4 can be the estimations of fuzzy user
equilibrium. Fuzzy shortest path algorithm is applied
to Sioux-Falls city test network in Section 6.2, to show
the performance of this important part of assignment
procedure. Finally, as a case study, link ows of a large
network are calculated by using this model in order to
show the performance of the model by comparing the
result of the model with real data.

6.1. Example 1: Synthetic network
To investigate whether the solution of fuzzy tra�c
assignment model satis�es the fuzzy user equilibrium
condition, the proposed model is tested on the small
network in Figure 6. This network consists of four
nodes and six links.

BPR function is used for travel time function as
follows:

t(x) = t0
�

1 + 0:15(
v
c

)4
�
; (38)

Figure 6. Synthetic network of Example 1.

Table 1. Characteristics of links.

i j t0(i; j) c(i; j) V (i; j) V=c

1 2 4 200 312.66 1.56
1 3 5 150 233.89 1.56
1 4 17 300 153.51 0.51
2 3 7 250 0 0
2 4 7 250 312.6 1.25
3 4 7 250 233.89 0.94

where:
t0 : Free ow travel time, and
c : Practical capacity of each link.

These two are the link parameters and \V " is the
tra�c volume on it. Table 1 shows the values of link
parameters, \t0" and \c", of the network as well as link
ows under the crisp user equilibrium circumstance and
V
c ratios. The travel times of links which are obtained
based on conventional user equilibrium condition are
used as center of fuzzy travel time of each link. The
user equilibrium ows, presented in Table 1, are used
for determination of the condition of links, V

c . Based
on this index, it can be shown that:

1. In the path (1-2-4), recurrent tra�c congestion
prevails and according to Criteria (1), k = 3 is used
for this path;

2. In the path (1-3-4), tra�c congestion hardly ap-
pears but, still, it occurs more in comparison with
path (1-4). So, k = 6 and k = 15 are used for paths
(1-3-4) and (1-4), respectively.

We check the sensitivity of the link ows ac-
cording to the di�erent levels of risk-acceptance by
using model (18)-(21) for �ve combinations of risk-
acceptance scenario of users. The results are reported
in Table 2. Figure 7 shows the ows on the three
speci�ed paths according to the di�erent levels of risk-
acceptance. As can be seen, more users choose the path
(1-2-4) by increasing the level of risk-acceptance. This
means that this path is more attractive for optimistic

Figure 7. Link ow values according to di�erent levels of
risk-acceptance.
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Table 2. Variation of link ows according to di�erent levels of risk-acceptance.

Origin
node

Destination
node

Percentage of risk-acceptance
0% 25% 50% 75% 100%

t(i; j) f(i; j) t(i; j) f(i; j) t(i; j) f(i; j) t(i; j) f(i; j) t(i; j) f(i; j)

1 2 5.56 253.86 6.02 271.07 7.41 308.72 8.47 330.49 10.75 366.29
1 3 8.98 227.73 9.68 237.03 9.47 234.37 10.32 244.77 11.71 259.4
1 4 18.49 218.41 17.89 191.89 17.4 156.91 17.16 124.74 17.02 74.31
2 3 7 0 7 0 7 0 7 0 7 0
2 4 8.12 253.86 8.45 271.07 9.44 308.72 10.21 330.49 11.84 366.29
3 4 7.72 227.73 7.85 237.03 7.81 234.37 7.96 244.77 8.22 259.4

Table 3. Fuzzy index values of di�erent paths in 75% of risk-acceptance.

Path (1-2-4) Path (1-3-4) Path (1-4) Path (1-2-3-4)

Lower bound of fuzzy travel time 6.27 10.21 13.49 12.80
Center value of fuzzy travel time 18.68 18.28 17.15 23.43
Upper bound of fuzzy travel time 33.04 23.42 18.63 32.86

Value of fuzzy indexes in comparison to path (1-2-4) - 0.500 0.506 0.292

users. This can be related to the lower free ow travel
time of link (1-2) in comparison to links (1-3) and (1-4)
where optimistic traveler can experience a lower travel
time in absence of congestion.

Table 3 represents the fuzzy travel time of four
possible paths under the fuzzy equilibrium condition
for 75% risk-acceptance scenario. It is clear that fuzzy
travel time of used paths is equal to each other and less
than used paths according to index I 0. Values of fuzzy
indexes in comparison to path (1-2-4) denote that we
can derive an approximate solution using model (18)-
(21) instead of model (28)-(31) without relaxing index
I 0.

6.2. Example 2: Sioux-Falls network
The second test network used in this study is the
Sioux-Falls city network, which is the most extensively
used test network for the tra�c assignment in the
literature. The Sioux-Falls network, as shown in
Figure 8, has 24 nodes, 76 links, and 528 nonzero
O/D pairs. This network is used to show the di�erent
paths chosen according to the risk-acceptance of users.
First, conventional user equilibrium tra�c assignment
model is solved in order to determine V

c due to lack
of observed link volumes and, consequently, \k" is
calculated similar to the previous example. Results are
presented in Table 4. Then fuzzy shortest path with
indexes I2 and I3 is conducted.

Results prove that chosen paths between 40 non-
zero O/D pairs are sensitive to risk-acceptance of
users. For example, pessimistic users choose the path
6 ! 2 ! 1 ! 3 ! 4 ! 5, while optimistic users
prefer the link 6 ! 5 to reach their destination. In
detail, pessimistic users prefer fuzzy perceived travel

Figure 8. Network of Example 2: Sioux-Falls network.

time of �rst path 0(0:24; 0:36; 0:43)0 to second one
0(0:12; 0:35; 0:62)0.

6.3. Case study: Mashhad city network
The objective of the case study is to demonstrate
the e�ciency as well as accuracy of the fuzzy tra�c
assignment model in estimating the better ows in
real large networks. The network of Mashhad city in



M. Miralinaghi et al./Scientia Iranica, Transactions A: Civil Engineering 22 (2015) 2012{2023 2021

Table 4. Example of di�erent chosen paths according to di�erent levels of risk-acceptance.

Type of users
Link sets of path between O-D

Type of users
Link sets of path between O-D

O-D O-D

1
Pessimistic

22! 15! 10! 11! 4! 3! 1
Optimistic

22! 23! 24! 13! 12! 3! 1
22-1 22-1

2
Pessimistic

22! 15! 10! 11! 4! 3! 1! 2
Optimistic

22! 23! 24! 13! 12! 3! 1! 2
22-2 22-2

3
Pessimistic

22! 15! 10! 11! 4! 3
Optimistic

22! 23! 24! 13! 12! 3
22-3 22-3

4
Pessimistic

21! 20! 18! 7! 8! 9! 5 to4
Optimistic

21! 24! 13! 12! 3! 4
21-4 21-4

5
Pessimistic

22! 15! 10! 11! 4
Optimistic

22! 23! 24! 13! 12! 3! 4
22-4 22-4

6
Pessimistic

6! 2! 1! 3! 4! 5
Optimistic

6! 5
6-5 6-5

7
Pessimistic

13! 12! 3! 4! 5! 9! 8! 7! 18! 20
Optimistic

13! 24! 21! 20
13-20 13-20

Figure 9. Mashhad city network and observed links.

Khorasan state, Iran, is considered as the case study.
This network contains 935 nodes, 2538 links, and 7157
non-zero O/D pairs. The city is divided into 141 tra�c
zones. A one-day origin-destination survey with house
interviewing was conducted. Data were collected from
4% of the households and validated by observation from
several screen lines in the study area. Tra�c volumes
of 112 links were simultaneously counted with data
collected in the same day. Figure 9 shows Mashhad
city network and observed links, which are highlighted
in the black.

Using the fuzzy tra�c assignment, the graph,
depicted in Figure 10, compares the estimated volumes
with observed volumes on the 112 links with observed

Figure 10. Relationship between observed and assigned
volumes.

volumes. The x-axis of the graph corresponds to
the observed volumes, whereas the y-axis corresponds
to the estimated volumes. A linear trend-line, y =
x, passes through the points and the R2 value is
included in Figure 10. The graph shows the high
correlation between assigned and observed volume.
The analysis shows that the users of the Mashhad
network are mostly optimistic rather than pessimistic
in their route choice behavior. If Mashhad users
are assumed to be optimistic, 41% improvement can
be achieved in relative error of assigned volume to
observed ones in comparison to the conventional tra�c
assignment.

All numerical examples are performed on a com-
puter Intel core i5 CPU processor with 4 GB of RAM.
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In Mashhad Network, computation of tra�c volumes in
fuzzy tra�c assignment takes about 1 minute, while it
takes approximately 0.9 minutes for conventional user
equilibrium model. With consideration of calibration
ability of fuzzy user equilibrium model, it is clear
that there is no signi�cant di�erence between these
two models in terms of computational e�ciency. In
terms of accuracy, the result of fuzzy assignment
shows 41% improvement comparing to traditional user
equilibrium.

7. Conclusion remarks

The paper has developed and demonstrated a fuzzy
tra�c assignment model and its solution for modeling
of fuzzy equilibrium condition. In the �rst step,
a new method based on stochastic distribution for
construction of boundaries of fuzzy sets is presented.
Then, a new index is formulated based on the possi-
bility and necessity theory of Dubois and Prade [19].
Di�erent levels of risk-acceptance of users are involved
in choosing paths according to index \I, since it is
an important factor in the fuzzy comparison. Two
approaches are proposed in this study. The �rst one
is based on the fuzzy comparison by index I which is
adopted into the fuzzy Dijkestra shortest path. The
second approach is defuzzi�cation of the �rst approach
with assuming the equality of left and right spreads of
fuzzy perceived travel time.

The validity and robustness of the proposed model
is tested with a hypothetical small network. Using
this example, the e�ect of user's risk-acceptance level
on link's ow pattern in the network is demonstrated.
Next, a medium sized network, Sioux Falls, is tested
under di�erent scenarios using fuzzy equilibrium. Re-
sults show that level of risk-acceptance is an important
factor in determination O/D shortest path. Finally,
a case study is considered to achieve the objective of
developing a fuzzy tra�c assignment model. Accord-
ingly, the fuzzy network assignment of Mashhad city,
Iran, is solved. This network contains 935 nodes and
2538 links. The results of fuzzy network assignment are
compared with observed ones. The signi�cant correla-
tion of observed and assigned volumes and reduction
of relative error of assigned volume in comparison to
conventional tra�c assignment encourages one to use
this fuzzy model.

This model has some potential future works.
First, link-based assignment algorithm is applied with
assumption of equality of left and right spreads, in this
study, to solve the fuzzy user equilibrium condition.
For relaxation of this assumption, a path based assign-
ment algorithm should be adopted to obtain a solution
for fuzzy tra�c assignment model. Di�erent complex
membership functions can be customized for modeling
sets of fuzzy travel time and, �nally, this problem can

be modeled as multiclass user equilibrium in future
studies since there are both optimistic and pessimistic
users in tra�c network.
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