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1. Introduction

Abstract. In this paper, a new traffic assignment model is proposed based on fuzzy
equilibrium condition where perceived travel times of users are assumed to follow fuzzy
values. First, a new method is proposed to determine the membership function based on
link congestion levels using probabilistic models. Then, a new index is presented based on
percentage of users’ risk-acceptance for comparison of fuzzy numbers. Using this index,
two approaches, fuzzy Dijkestra shortest path algorithm and defuzzification method, are
established for solving the shortest path problem. Fuzzy equilibrium condition is defined
based on the two proposed fuzzy shortest path methods, and a traffic assignment model
is developed with consideration of fuzzy equivalency equilibrium condition. Frank-Wolfe
algorithm and fuzzy shortest path method are combined to solve the proposed traffic
assignment problem. The assignment model is applied to a small and medium-sized
network. Sensitivity analysis for link flows is performed under different levels of users’
risk-acceptance to understand the route choice of different types of users. To apply the
model to a large-scale network, the network of Mashhad, Iran is considered as a case study.
The fuzzy traffic assignment model provides more accurate estimation of volume compared
to conventional traffic assignment.

(© 2015 Sharif University of Technology. All rights reserved.

Wardrop [1] proposed two principles for link
flow prediction, known as the User Equilibrium (UE)

Traffic assignment problem determines flow patterns
in a transportation network, and is essential to many
transportation network planning applications. Numer-
ous efforts with different approaches have been made
to estimate the flows in a network. All of them deal
with two important assumptions. The first one is
about the nature of link travel time, and the second is
about travelers’ route choice behaviors. The Wardrop’s
principles are widely-used assumptions on travelers’
route choice behaviors.
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and the System Optimum (SO) for traffic assignment
problems. UE assumes that each user tries to minimize
his or her own travel time from origin to destination.
SO flow pattern minimizes total network travel time.
The UE model is widely used in practice because it
considers user behavior, is computationally convenient,
and leads to a relatively reasonable approximation of
link flows in the network over the long run. However, a
number of studies have shown that the user equilibrium
models are not able to represent real situations [2].
The UE model is based on some ideal assumptions
which further models have tried to relax. For example,
UE assumes that travelers have perfect information
about travel times. However, travelers’ perceived travel
times are subject to multiple sources of variability.
Stochastic User Equilibrium (SUE) is commonly used
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to account for imperfect information. SUE considers
the perceived travel times that follow a certain distribu-
tion. However, it still assumes that travelers’ perceived
travel times have exact crisp values and thus travelers
choose paths with perfect rationality. In an effort to
relax this assumption and model the behavior of users
more realistically, many researchers investigated the
concept of bounded rational user equilibrium where
travelers choose acceptable routes, whose travel times
can be higher than the travel time of the shortest
path up to a certain value. Based on this assumption,
they developed a bounded rational user equilibrium
model [3,4].

This study adopts fuzzy and probability theories
to relax user equilibrium assumptions. The fuzzy
theory can be considered as an alternative way to model
the route choice decision-making process, since it is
proposed to represent real-world human perception.
The concept of fuzzy theory was proposed in 1965.
Fuzzy logic is a very powerful tool for drawing definite
conclusions from complex systems that generate vague,
imprecise, or ambiguous information. This theory
has been applied in different fields of transportation
to capture more realistic behavior of travelers and
improve the predicted results. For example, Foulds
et al. [5] proposed the fuzzy approach to capture the
imprecision in the link count to estimate the Origin-
Demand (O-D) traffic demands. EL-Rashidy and
Grant-Muller [6] employed a fuzzy logic to measure
the mobility of transportation network in terms of
physical connectivity and level of service. Fuzzy logic
is capable of accommodation of relative importance
of each element under different traffic conditions, i.e.
free flow condition. The tasks of determining the
path travel time and finding the shortest path are
other examples of complex systems. In fuzzy traffic
assignment, perceived travel time of a specific route is
defined as a set of values with specific possibilities.

Many efforts have been made to combine the
notion of fuzzy logic with traffic assignment. These
studies can be categorized into two groups. The
first group maintains a fuzzy approach throughout the
process. The work of Wang and Liao [7] is an example
of the first class of fuzzy models. In their work, they
proposed a model with fuzzy travel cost and demand
function and, consequently, their optimal solution was
a fuzzy set. Zhang et al. [8] developed a hierarchical
fuzzy rule base system to increase the accuracy in
prediction of short-term traffic congestion using a large
number of input variables, i.e. vehicle speed measured
by loop detector. They employed the genetic algorithm
to optimize the system and maintain a high degree of
accuracy. The second group, which is more common,
has a defuzzification approach toward the assignment.
Given a fuzzy set and its corresponding membership
function, models with defuzzification approach attempt

to derive crisp numbers for the final assignment result.
Decreasing the computational burden is the main
objective of defuzzification of fuzzy models. Wang
and Liao [9] formulated a model with defuzzification
approach. They considered the node-arc incidence
matrix with fuzzy nodes due to arc uncertainties in
membership of paths. In contrary to previous studies,
they assumed travel cost and demand as crisp variables
and functions. Chang and Chen [10] assumed that link
travel times are fuzzy numbers. They proposed a fuzzy
assignment model by applying the concept of a-cut. In
other words, they utilized the crisp assignment model
based on travel times with certain possibility. Chen
and Tzeng [11] emphasized that since travelers are not
able to precisely determine the increase in link travel
time due to link congestion, perceived link travel times
should be fuzzy. They utilized the concepts of fuzzy
measure and fuzzy integral to construct the perceived
link costs and, subsequently, flows are determined by
the diagonalization approach.

Liu et al. [12] proposed a fuzzy dynamic network
assignment model based on linguistic descriptions.
They modeled travelers’ perception of travel time using
linguistic descriptions, or in other words, discrete fuzzy
sets with certain membership values. These models are
called fuzzy rule-based models. In their study, fuzzy
shortest path algorithm is implemented using defuzzi-
fication. Ridwan [13] formulated a traffic assignment
model within fuzzy preference. Fuzzy preference is a
method to compare the alternatives different from the
traditional binary preference (YES/NO). He employed
fuzzy concept to consider both rational travelers who
always follow the shortest path and bounded rational
travelers who would accept paths that are in a certain
range (bound) of the shortest path. Ghatee and
Hashemi [14] introduced a network assignment model
with a fuzzy level of travel demand. They suggested
a fuzzy model with binary variables to maximize the
degree of certainty. By fuzzy comparison of possible
paths and fuzzy subsets for travel time, Henn [15]
derived a degree of attractiveness for each path. The
risk attitudes of travelers are considered toward path
travel time, and an assignment model that is similar to
the Logit model is proposed based on fuzzy indices.

In a follow-up study, Henn [16] formulated a
method for constructing the fuzzy set, based on a more
detailed discussion on the reasons for adopting fuzzy
concepts. He argued that travel time is a fuzzy set
due to two reasons: travelers’ imprecise perception
and uncertain path travel times. Subsequently, a fuzzy
traffic assignment model that combines decision theory
and probability measure is developed. Ramezani and
Shafahi [17] suggested a fuzzy shortest path algorithm
by modifying the Dijkestra algorithm and utilizing
fuzzy indices. They considered both path travel time
and degree of saturation for congested networks in their
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algorithm. In the line of their research, Ramezani et
al. [18] proposed fuzzy user equilibrium to determine
the flows in a network by implementation of incremen-
tal traffic assignment.

In this study, fuzzy perceived travel times would
be considered in traffic assignment with defuzzification
approach. A new method is proposed to construct
fuzzy travel times based on congestion levels in a
network. It allows us to calibrate the fuzzy travel
time of different links based on a proposed distribu-
tion of the random actual travel time. Triangular
membership function is utilized herein to define fuzzy
numbers which model the perceived travel time. Fuzzy
shortest path algorithm of Ramezani and Shafahi [17]
is extended to include the risk-taking behavior in route
decision making.

The rest of the paper is organized as follows. After
defining the membership function for perceived travel
time in Section 2, the ranking method of fuzzy numbers
is explained in Section 3. Fuzzy assignment model
and the concept of fuzzy user equilibrium condition are
presented in Section 4. Section 5 defines the extension
of fuzzy shortest path problem, new defuzzification
method for simplifying the algorithm, and reducing
the arithmetic calculations. In order to examine the
efficiency of model in Section 6, the fuzzy assignment
model is applied to three networks with different sizes.
Section 7 concludes the paper.

2. Fuzzy perceived link travel time

In the first step of fuzzy network assignment, the
membership function should be defined as a tool for
modeling uncertainty in travel time with fuzzy concept.
Flat L-R type fuzzy number is one of the simplest
forms for representation of Fuzzy Perceived Link Travel
Time (FPLTT) which was first proposed by Dubois
and Prade [19]. Since our major interest is traffic
assignment rather than individual’s route choice, the
membership functions of individual traveler have to be
simple enough so that the aggregation of individual
choices in a macroscopic assignment is possible [12].
Triangular fuzzy numbers are used as a special case
of the L-R fuzzy numbers in this study. Triangular
membership function of a fuzzy number, M, can be
written as:

mp (Z72) i z<m
() =<1 it z=m (1)
mp (25%) if x>m

where L. > 0 and R > 0 are the left and right spreads
of m. Figure 1 shows the shape of a triangular
membership function and its parameters. It should
be noted that L — R fuzzy number can be denoted

Membership degree

|-
>
mr, m mp Value

Figure 1. Shape of triangular membership function and
its parameters.

Right bound

Central value

Left bound

Perceived travel time

Real travel time

Figure 2. Range of perceived travel time with respect to
real travel time.

by (mp,m,mpg). Left bound, center and right bound
of fuzzy number m are denoted by my,m, and mg,
respectively. The fuzzy sets of perceived link travel
times should be defined to reflect travelers’ perception
of link travel time. Left and right bounds of fuzzy
perceived travel time are the minimum and maximum
perceptions of the users in respect to their travel time.

With the consideration of a variety of users, left
and right bounds of fuzzy travel time are derived by
using stochastic distributions. The schematic figure of
parameters of FPLTT is presented in Figure 2. The
aggregate value of central value has the highest prob-
ability to perceive by travelers where this probability
reduces by decreasing/increasing the value of perceived
travel time. In this paper, travel times are considered
as fuzzy numbers and their boundaries depend on real
travel time and vary for different users.

2.1. Weibull distribution for establishing
boundaries of membership function
In the absence of necessary information like perceived
travel time in different types of links for different trav-
elers, Weibull distribution is used as a rough model for
following the perception of users [20]. This distribution
has some distinct characteristics. First, it has simple
closed form of distribution function. Second, it can be
calibrated such that it includes only positive numbers
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which results in flexibility due to different values of
shape parameter. Let’s refer to = as the perceived value
of travel time. The cumulative distribution function of
random variable z, which has a Weibull distribution, is
given by:
1—exp(2)" z>w
T @
0 otherwise

where v is the location parameter, A is the scale
parameter, and k is the shape parameter. To model
FPLTT, it is assumed that v is equal to zero.

If we want to model the FPLTT of P percent of
users, the lower bound can be given by:

1—exp (— (i)k) - 1%1” -

9 \%
:vl_)\*(lnl_l_p) . (3)

Considering the equation of the mode of Weibull’s
distribution, we have:

= (51) n

The lower bound of the fuzzy number can be written

as:
1
In (ﬁ—p) i :

k-1

T = =a; = p.og. (5)

Similarly, the upper bound is:

E_1 =XTR = H-QR, (6)

TR =M
where p is mode value of distribution and oy, a g are the
left and right coefficients of the fuzzy number. In this
study, mode would be used as a center value of fuzzy
set and computed from the performance function.

2.2. Analysis of membership function
parameters

In order to make the proposed model more realistic,
parameters of the distribution function should be ana-
lyzed. At first, skewness of FPLTT as one of criteria
of its shape is examined. Figure 3 presents the shape
of the difference between right and left spreads versus
k when P is set to 95%. The curve’s equation is as
follows:

3.69 /0025 \*F

=arp+a — 2. (7)
As can be seen in the Figure 3, FPLTT is a right
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Figure 3. Relation between difference of right and left
spreads and shape parameter k.

skewed fuzzy set as it has a wider right spread than
left spread when the value of k is between 1 and 3.41.
This assumption is valid in the roads with prevailing
recurrent traffic congestion in which travelers expect
to face a longer time (compared to actual commuter
experience) [7]. When % equals 3.41, it has the same
right and left spreads and it is applicable to links with
few opportunities of congestion occurrence. When the
value of k is more than 3.41, it is a left skewed set
and it is appropriate for road segments where traffic
congestion hardly appears [7].

After determination and analysis of skewness,
coefficients ap and a; are examined. Figure 4 presents
the behavior of ap and «; under different values of
k, respectively. It can be seen that as k& approaches
infinity, o; and apr approach one. This presents the
decrease in the left and right spread of FPLTT. In
other words, less uncertainty is presented in the users’
perceived travel time. Clearly, a; and agr should take
values less and more than one, respectively. In this
study, it is supposed that ag is less than two. This
indicates that the right bound of FPLTT is less than
two times of the mode of travel time distribution.
Results can be summarized as follows:

0<ar<1l — k>1.03
a= (8)
l1<agp<2 — k>26

Combining conditions in Eq. (8), value greater than
2.6 should be selected for k. Finally, Criteria (1) is
suggested by taking advantage of % as a criterion for
traffic congestion in links. For modeling the FPLTT in
the absence of data:

(For links with 2>1
— 26 <k<341

For links with 0.5 < ¥ <1

Criteria (1) : — 341 <k <6.92

(9)

For links with ¥ < 0.5
— 69<k<10

\

In the formulated fuzzy travel perception time in



2016

1.0

0.8

0.6

ag

0.4

0.2

0.0

12 16 20

k

M. Miralinaghi et al./Scientia Iranica, Transactions A: Civil Engineering 22 (2015) 2012-2023

5.0
4.5
4.0
3.5

2.5

2.0
1.5

1.0

12 16 20

k

Figure 4. Behavior of left and right coefficients under different values of k.

Eq. (9), the second rule is proposed because the curve
has a steeper gradient between 3.41 and 6.92 in the
Figure 3. This gives the idea to break the interval of
[3.41,00) to two intervals. Using the observed volume
from different networks, we can calibrate parameter &
for different links. In the next section, a method is
proposed to compare the fuzzy numbers.

3. Ranking fuzzy numbers

Ranking of fuzzy numbers is one of the most important
steps in the fuzzy traffic assignment. Dubois and
Prade [19] introduced four indexes to describe the
location of fuzzy numbers as below:

I, (M) = Poss(M < N),
I, (M) = Poss(M < N),
I5(M) = Nec(M < N),

I, (M) = Nec(M < N). (10)
In Eq. (10), Poss and Nec denote possibility and
necessity indexes. Each of these indexes has its own
advantages and drawbacks. Figure 5 illustrates the
positions of these indexes. Remarking the drawback
of these indexes, Ramezani et al. [18] proposed the
using of I for risk-seeking users and I3 for risk-averse
ones. The results are established under the assumption
that users are pessimistic since they choose the route
with less uncertainty in travel time. However, some of

»

Elements of universal discourse

Membership degree

the users are optimistic in their route choice decision
making. In other words, they seek more risk than
others in the route choice process. Obviously, the
combination of possibility and necessity indexes leads
to a more comprehensive index.

Let us assume that m = (m!,m,m®f) and 7 =
(n!,n,nf) are two fuzzy numbers. Figure 5 illustrates
that I3 (m,7) is the cross-point of |72, +o00) and the
right side of the . The membership degree of
7, +00) and the right side of the 7 are determined
as follows [18]:

nf—m
I3(m,n) = . 11
3(771,77/) (mR+nR)—(m+n) ( )
Similarly, I (m,7) is derived by:
il
L (7, 7) = ———— (12)

(m+n)— (m! +nb)’

Combination of I and I3 in Eqs. (11) and (12) can be
expressed as:

I(f, 1) = a.Lo(im, ) + B.13(m, 1), (13)

where, a and 3 are the percent of proportional weights
of optimistic and pessimistic users. The summation of
«a and (8 equals 1. The difficulty caused by this com-
bination is the equation’s complexity. However, this
complexity can be simplified under some assumptions,
as it is explained in the next section. For comparison
of the two fuzzy numbers(m, 71), the combination index
can be extended as:

>
'

Elements of universal discourse

Figure 5. Schematic definition of Dubois and Prade indexes.
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n—ml

(m+mn)— (m!+nt)

I(m,n) =a.

nR—m

(mF 0Py — (m+n)’

+ 6. (14)
Simply, it can be proven that according to this index,
the two fuzzy numbers /m and 7 are equal if and only
if:

I(m,n) = I(n,m)=0.5. (15)
And m is greater than @, if and only if:

I(m,n) < 0.5 < I(n,m). (16)

If we assume that the membership functions of path
travel times are symmetric, by substituting Eq. (14) in
Eq. (16), it can be concluded that 7 is greater than 7
if and only if:

I(,1) — 0.5 > 0 — DN (i)
= (oc.ml +m+ ﬁ.mR) > DN(#i)

= (oe.nl +n+ ﬁ.nR) . (17)

DN () stands for the defuzzification number of fuzzy
number M. This assumption is redundant if a or 3 are
equal to one; in other words, it is not required if all
users are optimistic or pessimistic.

4. Fuzzy user equilibrium model

In this section, the rule of route choice by each motorist
is specified for determination of its formulation. In the
crisp UE, equilibrium condition is reached only when
no traveler can improve his travel time by unilaterally
changing routes. This is the characterization of crisp
user equilibrium condition [21]. However, the drawback
in this definition is the assumption that each motorist
has the perfect information about the routes and, hence
they can exactly predict their travel times. Therefore,
travel time should be replaced by fuzzy set. Because
of the fuzziness of user’s perception of routes travel
times, possibility and necessity theory can be used for
estimation of FPRTT’s utility.

By assuming that FPLTTs are symmetric, the
fuzzy equilibrium assignment program can be written
as:

Z frrr;s = drs, (19)

=0, (20)

Ta = ZZZ](;{S'(SZ;” (21>

where t (w), t,(w), and t2(w) are the left, center, and
right bounds of fuzzy travel time-value function #,(w);
« is the percent of optimistic users; 3 is the percent of
pessimistic users; and DN ((f,)(w)) is the defuzzified
number of travel time of link ‘a’.

Proposition 1. Fuzzy and conventional traffic as-
signments are identical if and only if fuzzy travel time
is singleton.

Proof. To compare the crisp with fuzzy equilibrium
conditions (18), let us assume that fuzzy travel time
is singleton. In other words, the values of left, center
and right bounds of fuzzy travel time are assumed to
be equal. Then, the objective function (18) is reduced

to:
> /0 (@t (w) + ta(w) + B.tE(w)) duw

=2} /0 (ta(w)) duw. (22)

Therefore, the proposed fuzzy equilibrium assignment
program and crisp user equilibrium condition are iden-
tical, if and only if fuzzy travel time is singleton.

Using the Lagrangian of the minimization prob-
lem, it is simple to show that the first order conditions
for the model are identical to the below equilibrium
condition, such that:

I (ath e + tors + Bt ) = (ul,)) =0, (23)
(ath s + s + Bt ) = (ul) >0, (24)
SR = s (25)
fmt 20 (26)
If ul,, u,.s, and uf are chosen such that “u’.” La-

grangian multiplier satisfies the below condition:

! l R

Upg = A Upg + Urs + 5'“7‘57 (27>
u).; can be considered as defuzzificated number of fuzzy
set s = (ul,,us,ul). Based on the assumption in
Section 3, these formulations can be expressed as:

[0 (0.5 = I (Tyrsyiips)) =0 Vi, r,s (28)
0.5 — I"* (Fpyre, Gips) >0 Vrys (29)
Z Irs = grs Y, r, $ (30)

s >0 Vm,r, s (31)
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where

Ups - Fuzzy set with the most utility;

Eors - Fuzzy perceived travel time of each
route between ‘r’ and ‘s’;

Qrs Travel demand between ‘r’ and ‘s’;

I75(E s, diys ) < Utility (or comparison’s index) of
with respect to t,s.

Eq. (28) implies that travelers choose the route
m if and only if it has combination index value of
0.5. Based on Eq. (29), @, is less than or equal to
any fuzzy perceived travel time of any path between
origin “r” and destination “s”. In other words, if
tmrs = dips according to index I™*, flow on path ‘m’
can be positive. Thus, 4,5 equals the minimum fuzzy
path travel time between origin “r” and destination “s”
according to index I™°. In the special cases, @ and [
should be replaced by one for totally pessimistic and
optimistic users, respectively.

The Frank-Wolfe algorithm is modified to solve
the model. To do so, it is required to replace the
function of t,(w) with DN ((t,)(w)) in the traditional
Frank-Wolfe algorithm. The Bureau of Public Roads
(BPR) equation for road travel time is used in this
study. Since it is monotonically increasing convex
function and depends only on the flows of links, there is
unique global solution for the proposed model. Fuzzy
equilibrium assighment program can be solved by using
any convex combination methods such as the Frank-
Wolfe algorithm. Two different approaches for solving
fuzzy shortest path by using the Frank-Wolfe algorithm
are developed in this study. The most important step
in Frank-Wolfe algorithm is finding the shortest path
between origins and destinations for finding improving
direction in each iteration. This step will extensively
be explained in the next section.

5. Fuzzy shortest path algorithm

Finding a path with minimum fuzzy travel time is an
important issue in solution algorithm of any type of
traffic assignment model. Up to now, most of the
methods fall into two categories of approaches toward
this problem. In the first approach, fuzzy shortest
path is defuzzified into crisp ones like Blue et al. [22]
and in second approach, it is solved by using fuzzy
index in spite of crisp comparison like Ramezani et
al. [18]. In this study, both approaches are employed.
Furthermore, level of risk-acceptance is used to gain
the set of fuzzy paths. Here, these two methods are
briefly explained.

5.1. Fuzzy Dijkestra shortest path algorithm

Ramezani et al. [18] proposed a fuzzy Dijkestra shortest
path algorithm to find the best path based on fuzzy
comparison of travel times. They used the index I3

to find a fuzzy shortest path, assuming all users are
pessimistic. With assumption of equal left and right
coefficients for fuzzy travel time of different paths,
Dijkestra fuzzy algorithm can be used with employing
the index I to compare different paths if and only if it
holds the transitive property. In other words, if fuzzy
travel time m is smaller than 72 and fuzzy travel time 72
is smaller than @, then fuzzy travel time m is smaller
than o.

Proposition 2. Index I is transitive over triangular
fuzzy numbers with equal left and right coefficients.

Proof. To prove that I is transitive, let’s assume that
fuzzy travel time m is smaller than fuzzy travel time 7.
From the definition:

I(,it) < I(ii,m). (32)
Using Eq. (14), it follows:

mR—i—m
(mf +nft) — (m+n)

m—i—ml
«
(m+n) = (m! +nl)

+ 8.

n—f—nl

=t n) — (ml =)

nf 4+ n
(mE4+nR)—(m+n)’

+ 5. (33)
Left and right bounds of fuzzy numbers are derived
using Eqgs. (5) and (6) with assuming the same left
coefficient, ¢y, and right coefficient, apr, for fuzzy
numbers 7 and 7. Combining Eqs. (5), (6) and (33),
we have:

N m(l + ay) m(l+ ag) o n(l+ o)
(l-a) T (1-ag) (1-a)
n(1+ar)
+ﬁ%1—aM’ (34)

Similarly, fuzzy travel time 7 is smaller than @, if and
only if:

N n(l+ ;) n(l+ agr) N w(l+ ay)
.(1—04[) .(].—OéR) ' (].—Oél)
w(l + ag)
+ﬁ.m. (35)
Consequently:
N m(l+ ;) m(l+ ag) N w(l+ay)
S (l-a) " (1-ag) C(1-a)
w(l + ag)
+6’7(1—a3) . (36)

So, fuzzy travel time m is smaller than @ and index
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I holds the transitive property. Index I provides the
chance to find a set of shortest paths based on different
levels of risk-acceptance.

5.2. Defuzzification method

Applying a convex combination algorithm to solve the
model requires a solution of a linear program and, it can
be shown that this is achieved by assigning all motorists
to the path connecting origin to their destinations with
the shortest travel-defuzzified time. For this purpose,
fuzzy travel times of network link, m = (m;, m, mpg), is
defuzzified into a crisp number such as:

DN(m) = a.m; +m + S.mg. (37)

These crisp numbers, in Eq. (37), are assigned to
each link based on their FPLTTs. A conventional
shortest path algorithm, such as regular Dijkestra, can
be employed to find a shortest path based on these crisp
values. Defuzzification method is simpler than fuzzy
Dijkestra shortest path to be implemented because it
does not need the path enumeration

6. Numerical examples

Three different sized networks are represented to show
how the fuzzy network assignment works. In Sec-
tion 6.1, fuzzy network assignment is applied to a
small network to show the implementation of the model
and to prove that results of fuzzy model obtained
in Section 4 can be the estimations of fuzzy user
equilibrium. Fuzzy shortest path algorithm is applied
to Sioux-Falls city test network in Section 6.2, to show
the performance of this important part of assignment
procedure. Finally, as a case study, link flows of a large
network are calculated by using this model in order to
show the performance of the model by comparing the
result of the model with real data.

6.1. Example 1: Synthetic network
To investigate whether the solution of fuzzy traffic
assignment model satisfies the fuzzy user equilibrium
condition, the proposed model is tested on the small
network in Figure 6. This network consists of four
nodes and six links.

BPR function is used for travel time function as
follows:

#Hx) = to (1 + 0.15(%)4) , (38)

2

3

Figure 6. Synthetic network of Example 1.

Table 1. Characteristics of links.

i G toisg) c(i) V(i) Ve
1 2 4 200 312.66 1.56
1 3 5 150 233.89 1.56
1 4 17 300 153.51 0.51
2 3 7 250 0 0
2 4 7 250 312.6 1.25
3 4 7 250 233.89 0.94

where:

to : Free flow travel time, and

c: Practical capacity of each link.

These two are the link parameters and “V” is the
traffic volume on it. Table 1 shows the values of link
parameters, “to” and “c”, of the network as well as link
flows under the crisp user equilibrium circumstance and
% ratios. The travel times of links which are obtained
based on conventional user equilibrium condition are
used as center of fuzzy travel time of each link. The
user equilibrium flows, presented in Table 1, are used
for determination of the condition of links, % Based

on this index, it can be shown that:

1. In the path (1-2-4), recurrent traffic congestion
prevails and according to Criteria (1), k = 3 is used
for this path;

2. In the path (1-3-4), traffic congestion hardly ap-
pears but, still, it occurs more in comparison with
path (1-4). So, k = 6 and k = 15 are used for paths
(1-3-4) and (1-4), respectively.

We check the sensitivity of the link flows ac-
cording to the different levels of risk-acceptance by
using model (18)-(21) for five combinations of risk-
acceptance scenario of users. The results are reported
in Table 2. Figure 7 shows the flows on the three
specified paths according to the different levels of risk-
acceptance. As can be seen, more users choose the path
(1-2-4) by increasing the level of risk-acceptance. This
means that this path is more attractive for optimistic

Flow

0 25 50 75 100

Percentage of risk-acceptance

Figure 7. Link flow values according to different levels of
risk-acceptance.
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Table 2. Variation of link flows according to different levels of risk-acceptance.
Percentage of risk-acceptance
Origin Destination
0% 25% 50% 75% 100%
llOde nOde . . . . . . . . . . . . . . . . . . . .
tGrg) fird)  t(ird) F(ird)  t(ind) F(ind)  t(ing) FGind)  trd) f(ird)
1 2 5.56  253.86 6.02  271.07 7.41  308.72 8.47  330.49 10.75  366.29
1 3 8.98  227.73 9.68  237.03 9.47  234.37 10.32  244.77 11.71 2594
1 4 18.49 21841 17.89  191.89 174 156.91 17.16  124.74 17.02 74.31
2 3 7 0 7 0 7 0 7 0 7 0
2 4 8.12  253.86 8.45  271.07 9.44  308.72 10.21  330.49 11.84 366.29
3 4 772 227.73 7.85  237.03 7.81  234.37 7.96  244.77 8.22 259.4

Table 3. Fuzzy index values of different paths in 75% of risk-acceptance.

Path (1-2-4) Path (1-3-4) Path (1-4)

Path (1-2-3-4)

Lower bound of fuzzy travel time

Center value of fuzzy travel time

Upper bound of fuzzy travel time

Value of fuzzy indexes in comparison to path (1-2-4)

6.27 10.21 13.49 12.80
18.68 18.28 17.15 23.43
33.04 23.42 18.63 32.86

- 0.500 0.506 0.292

users. This can be related to the lower free flow travel
time of link (1-2) in comparison to links (1-3) and (1-4)
where optimistic traveler can experience a lower travel
time in absence of congestion.

Table 3 represents the fuzzy travel time of four
possible paths under the fuzzy equilibrium condition
for 75% risk-acceptance scenario. It is clear that fuzzy
travel time of used paths is equal to each other and less
than used paths according to index I'. Values of fuzzy
indexes in comparison to path (1-2-4) denote that we
can derive an approximate solution using model (18)-
(21) instead of model (28)-(31) without relaxing index
r.

6.2. Example 2: Sioux-Falls network

The second test network used in this study is the
Sioux-Falls city network, which is the most extensively
used test network for the traffic assignment in the
literature. The Sioux-Falls network, as shown in
Figure 8, has 24 nodes, 76 links, and 528 nonzero
O/D pairs. This network is used to show the different
paths chosen according to the risk-acceptance of users.
First, conventional user equilibrium traffic assignment
model is solved in order to determine % due to lack
of observed link volumes and, consequently, “k” is
calculated similar to the previous example. Results are
presented in Table 4. Then fuzzy shortest path with
indexes Iy and I3 is conducted.

Results prove that chosen paths between 40 non-
zero O/D pairs are sensitive to risk-acceptance of
users. For example, pessimistic users choose the path
6 -2 —1— 3 — 4 — 5, while optimistic users
prefer the link 6 — 5 to reach their destination. In
detail, pessimistic users prefer fuzzy perceived travel

4667
o
73| |76 6965 NN
vl 66 69
a 64

13 ) {24 120
39 75

Figure 8. Network of Example 2: Sioux-Falls network.

time of first path ’(0.24,0.36,0.43)" to second one
/(0.12,0.35, 0.62)".

6.3. Case study: Mashhad city network

The objective of the case study is to demonstrate
the efficiency as well as accuracy of the fuzzy traffic
assignment model in estimating the better flows in
real large networks. The network of Mashhad city in
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Table 4. Example of different chosen paths according to different levels of risk-acceptance.

Type of users .
Link sets of path between O-D

Type of users .
Link sets of path between O-D

O-D O-D
Pessimistic ) Optimistic )
22 —-15—-10—11—4—3—1 22 —-23—-24—-13—-12—3—1
22-1 22-1
Pessimistic ) Optimistic
2 22 —-15—-10—11—-4—-=3—-=1—2 22—-23—-24—-13—-12—3—-1—2
22-2 22-2
Pessimistic ) ) Optimistic
3 22 —-15—-10—11—4—3 22 —-23—-24—-13—=12—3
22-3 22-3
Pessimistic ) ) Optimistic ) )
4 21 20— 18 = 7—8 —9 — 5 tod 2124 - 13 —-12—-3—4
21-4 21-4
Pessimistic Optimistic ) )
5 22 —15—=10—11—14 22 —-23—-24—-13—-12—-3—4
22-4 22-4
Pessimistic . Optimistic
6 6—-2—-1—3—-4—5 6 —5
6-5 6-5
Pessimistic ) Optimistic )
7 13—-12—-3—-4—-5—-9—-8—=7—18— 20 13 — 24 — 21 — 20
13-20 13-20

s Z “a
. o~ -~ |~ TN R |
vy e N !
] yd :'\' 7 ,\ § ‘ -.,\ . \
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/ ‘Q NS \
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Figure 9. Mashhad city network and observed links.

Khorasan state, Iran, is considered as the case study.
This network contains 935 nodes, 2538 links, and 7157
non-zero O/D pairs. The city is divided into 141 traffic
zones. A one-day origin-destination survey with house
interviewing was conducted. Data were collected from
4% of the households and validated by observation from
several screen lines in the study area. Traffic volumes
of 112 links were simultaneously counted with data
collected in the same day. Figure 9 shows Mashhad
city network and observed links, which are highlighted
in the black.

Using the fuzzy traffic assignment, the graph,
depicted in Figure 10, compares the estimated volumes
with observed volumes on the 112 links with observed

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

Assigned volume

5000 6000

4000

Observed volume

0 1000 2000 3000
Figure 10. Relationship between observed and assigned
volumes.

volumes. The z-axis of the graph corresponds to
the observed volumes, whereas the y-axis corresponds
to the estimated volumes. A linear trend-line, y =
x, passes through the points and the R? value is
included in Figure 10. The graph shows the high
correlation between assigned and observed volume.
The analysis shows that the users of the Mashhad
network are mostly optimistic rather than pessimistic
in their route choice behavior. If Mashhad users
are assumed to be optimistic, 41% improvement can
be achieved in relative error of assigned volume to
observed ones in comparison to the conventional traffic
assighment.

All numerical examples are performed on a com-
puter Intel core i5 CPU processor with 4 GB of RAM.
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In Mashhad Network, computation of traffic volumes in
fuzzy traffic assignment takes about 1 minute, while it
takes approximately 0.9 minutes for conventional user
equilibrium model. With consideration of calibration
ability of fuzzy user equilibrium model, it is clear
that there is no significant difference between these
two models in terms of computational efficiency. In
terms of accuracy, the result of fuzzy assignment
shows 41% improvement comparing to traditional user
equilibrium.

7. Conclusion remarks

The paper has developed and demonstrated a fuzzy
traffic assignment model and its solution for modeling
of fuzzy equilibrium condition. In the first step,
a new method based on stochastic distribution for
construction of boundaries of fuzzy sets is presented.
Then, a new index is formulated based on the possi-
bility and necessity theory of Dubois and Prade [19].
Different levels of risk-acceptance of users are involved
in choosing paths according to index “I, since it is
an important factor in the fuzzy comparison. Two
approaches are proposed in this study. The first one
is based on the fuzzy comparison by index I which is
adopted into the fuzzy Dijkestra shortest path. The
second approach is defuzzification of the first approach
with assuming the equality of left and right spreads of
fuzzy perceived travel time.

The validity and robustness of the proposed model
is tested with a hypothetical small network. Using
this example, the effect of user’s risk-acceptance level
on link’s flow pattern in the network is demonstrated.
Next, a medium sized network, Sioux Falls, is tested
under different scenarios using fuzzy equilibrium. Re-
sults show that level of risk-acceptance is an important
factor in determination O/D shortest path. Finally,
a case study is considered to achieve the objective of
developing a fuzzy traffic assignment model. Accord-
ingly, the fuzzy network assignment of Mashhad city,
Iran, is solved. This network contains 935 nodes and
2538 links. The results of fuzzy network assignment are
compared with observed ones. The significant correla-
tion of observed and assigned volumes and reduction
of relative error of assigned volume in comparison to
conventional traffic assignment encourages one to use
this fuzzy model.

This model has some potential future works.
First, link-based assignment algorithm is applied with
assumption of equality of left and right spreads, in this
study, to solve the fuzzy user equilibrium condition.
For relaxation of this assumption, a path based assign-
ment algorithm should be adopted to obtain a solution
for fuzzy traffic assignment model. Different complex
membership functions can be customized for modeling
sets of fuzzy travel time and, finally, this problem can

be modeled as multiclass user equilibrium in future
studies since there are both optimistic and pessimistic
users in traffic network.
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