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Abstract. The charged system search algorithm is a relatively new optimization
algorithm developed based on some principles from physics and mechanics. This paper
presents an approach in which Pareto dominance is incorporated into the charged system
search in order to allow this algorithm to handle problems with some multi-objective
functions; the proposed algorithm will be called Multi-Objective Charged System Search
(MOCSS). Well-known mathematical and engineering benchmarks were used to evaluate
the proposed algorithm, and the results were compared with those of other new approaches.
The results of implementing an algorithm on some test problems show that the proposed
algorithm outperforms other algorithms in terms of generational distance, maximum
spread, spacing, coverage of two sets, and hypervolume indicator. Results of well-
known mathematical examples indicate that an approach is highly competitive and can
be considered as a viable alternative to solving multi-objective optimization problems.
These results encourage the application of the proposed method to more complex and real-
world multi-objective optimization problems. The proposed method can deal with highly
nonlinear problems with complex constraints and diverse Pareto optimal sets.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Many realistic problems contain simultaneous opti-
mization of several objectives that may con
ict with
each other and with other nonlinear constraints, if
available [1-7]. These types of problems are known
as Multi-Objective Problems (MOPs). Multi-objective
optimization (also known as vector optimization, multi-
criteria/attribute optimization, multi-objective pro-
gramming, or Pareto optimization) is de�ned as the
process of �nding a decision vector to optimize a
set of objective functions that satis�es some certain

*. Corresponding author.
E-mail address: talatahari@tabrizu.ac.ir (S. Talatahari)

doi: 10.24200/sci.2018.20184

constraints [8,9], while the aim of single-objective
optimization is to optimize just one objective func-
tion. In contrast with a single-objective optimization,
multi-objective problems are more di�cult and com-
plex [10,11]. Some reasons for this are as follows:

1. In single-objective optimization, the �tness of so-
lutions is reachable easily due to the existence
of just one objective function, while no single
unique solution can be determined as the best for
multi-objective optimization; instead, a set of non-
dominated solutions should be found in order to
obtain a good approximation of the true Pareto
fronts [3,12-14], leading to a trade-o� among the
objectives [15,16];

2. Algorithms that work well for single-objective prob-
lems usually cannot directly be used for multi-
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objective ones, and it is necessary to consider some
special conditions. As a simple way, one can
combine multiple objectives into a single objective
using some weighted sum method [17];

3. Even if a multi-objective algorithm can �nd so-
lutions on a Pareto front, there is no guarantee
that distribution of multiple Pareto points becomes
uniform, and this may reduce the applicability of
the results [3,14,17].

Therefore, developing an e�cient multi-objective
algorithm for solving multi-objective optimization
problems seems inevitable.

Nowadays, Multi-Objective Evolutionary Algo-
rithms (MOEAs) have shown an acceptable perfor-
mance in many benchmarks and real-world problems
with their origins in engineering, scienti�c, and in-
dustrial areas [1]. The main reason for the pop-
ularity of evolutionary algorithms for solving multi-
objective optimization is their population-based nature
and ability to �nd multiple optima simultaneously. In
1985, Scha�er was probably the �rst to use Vector
Evaluated Genetic Algorithms (VEGA) to solve multi-
objective optimization without using any composite
aggregation and by combining all objectives into a
single objective [18]. After that, a wide variety of
MOEAs have been suggested such as Micro-Genetic
Algorithm (Micro-GA) [19], Non-dominated Sorting
Genetic Algorithm (NSGA) [20], new variant of NSGA
or NSGA-II [21], Strength Pareto Evolutionary Al-
gorithm (SPEA) [22], SPEA2 [23], Pareto Archive
Evolution Strategy (PAES) [24], Pareto Di�erential
Evolution Approach (PDEA) [25], MOEA/D: A Multi-
Objective Evolutionary Algorithm based on Decom-
position [26], NSGAII based on Di�erential Evolution
(NSGAII-DE [27]), a hybrid multi-objective particle
swarm optimization and decision-making procedure for
optimal design of truss structures [28], the third version
of Generalized Di�erential Evolution (GDE3) [29],
Multi-Objective Di�erential Evolution-the Ranking-
based Mutation Operator (MODE-RMO) [30], Multi-
Objective Particle Swarm Optimization (MOPSO) [31],
Di�erential Evolution for Multi-objective Optimization
(DEMO) [32], a novel hybrid charged system search
and particle swarm optimization method for multi-
objective optimization [33], Multi-Objective Di�eren-
tial Evolution (MODE)[34], multi-objective bees al-
gorithms (Bees) [35], and Non-dominated Rank Ge-
netic Algorithm (NRGA) [36]. In recent years, some
other types of algorithms have also been developed
such as Multi-Objective Cuckoo Search (MOCS) [37],
Multi-Objective Fire
y Algorithm (MOFA) [38], a new
multi-swarm multi-objective optimization method for
structural design [39], a swarm-based memetic evolu-
tionary algorithm for multi-objective optimization of
large structures [40], Multi-Objective Flower Pollina-

tion Algorithms (MOFPA) [17], and multi-objective
optimization method based on sensitivity analysis [14].

Regardless of the number of these methods and
their di�erences, they share some defections as follows:

I. The �nal distribution of Pareto points is not often
well-spread; therefore, maximum information on
the Pareto cannot often be obtained [13,41];

II. The �nding results often require heavy computa-
tion and are time consuming.

Therefore, the development of a new multi-
objective optimization method to resolve some of these
drawbacks seems necessary.

Kaveh and Laknejadi (2011) [33] used a hy-
brid charged system search and particle swarm multi-
objective optimization, where the answers space was
divided based to some spaces in order to �nd a uni-
form Pareto point. A multi-objective charged system
search was developed by Kaveh and Massoudi [42].
These algorithms are extended to the single-objective
Charged System Search (CSS), as introduced by Kaveh
and Talatahari [43,44].

In the present paper, another variant of Multi-
Objective Charged System Search (MOCSS) is pre-
sented, where the idea of the non-dominated method
is used.

The rest of the paper is organized as follows.
Section 2 describes the basic characteristics of the
standard CSS. In Section 3, the multi-objective CSS
algorithm will be presented in detail. The fundamental
concept of the utilized constraint-handling method for
MOCSS in detail is described in Section 4. The bench-
mark function, multi-objective performance metrics,
and computational results are presented in Section 5.
Validation of the MOCSS by some engineering design
problems will be presented in Section 6. Finally,
some relevant issues, future works, and conclusions are
drawn in Section 7.

2. A brief review on standard charged system
search

In physics, the electric �eld around an electric charge
is the space surrounding it and applies a force to other
electrically charged objects. The Coulomb law deter-
mines the electric �eld surrounding a point charge. Its
value is proportional with the product of two charged
particles and inversely square of the separation distance
between the particles directed along the line. Based
on Gauss's law, the magnitude of the electric �eld
at a point inside a charged sphere can be determined
(proportional with the separation distance between the
particles). By using these principles, the standard
Charged System Search (CSS) de�nes a number of
solution candidates or Charged Particles (CPs) that
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act as a charged sphere and can apply electrical forces
to the other CPs. The resultant force acts on each
CP creating acceleration, according to Newton's second
law. Finally, by utilizing the Newtonian mechanics, the
position of each CP is determined at any time based
on its previous position, velocity, and acceleration in
the search space [43]. The main formula of electrical
physics for calculating the electrical force between two
CPs is as follows:

Fj = qj
X
i;i6=j

(
qi
a3 rij :i1 +

qi
rij2 :i2)pij(Xi �Xj);8<: j = 1; 2; :::; n

i1 = 1; i2 = 0, rij < a
i1 = 0; i2 = 1, rij � a

(1)

where:
a The radius of the charged sphere;
n The total number of CPs;
Fj The resultant force acting on the jth

CP;
qi The magnitude of the charge;
rij The separation distance between two

charged particles;
pij The probability of two charged

particles;
Xi and Xj The positions of the ith and jth CPs.

The initial position of CPs is obtained through
Eq. (2) in the search space:

xi;j = xi;min + rand� (xi;max � xi;min);

i = 1; 2; :::; n; (2)

where xi;j determines the initial value of the ith vari-
able for the jth CP; xi;min and xi;max are the minimum
and the maximum allowable values for the ith variable;
rand is a random number at the interval [0,1]; and n is
the number of variables. The magnitude of the charge
is calculated by the quality of solutions as follows:

qi =
fit(i)� fit(worst)

fit(best)� fit(worst) ; i = 1; 2; :::; n; (3)

where fit(best) and fit(worst) are the best and the
worst �tness of all particles so far; fit(i) represents
the objective function value or the �tness of agent i;
n is the total number of CPs. In Eq. (4), a force is
attractive as long as all good CPs can attract bad CPs
and only some of bad agents attract good agents due
to appropriate exploitation and exploration abilities as
follows:

pij =

(
1 fit(i)�fit(best)

fit(j)�fit(i) > rand or fit(j) > fit(i)
0 else (4)

The separation distance, rij , between two charged
particles is also de�ned as follows:

rij =
kXi �Xjk


 (Xi+Xj)

2 �Xbest




+ "
; (5)

where Xi and Xj are the positions of the ith and jth
CPs, Xbest is the position of the best current CP, and
" is a small positive number to avoid singularities. The
radius of the charged sphere (a) is considered as follows:

a = 0:1�max(fxi;max � xi;minji = 1; 2; :::; ng): (6)

Further, the main formula of the CSS uses New-
ton's laws (with some modi�cations) for calculating the
new position and velocity of each CP as follows:

Xj;new = 0:5randj1:(1 +
iter

itermax
)

:
X
i;i6=j

(
qi
a3 rij :i1 +

qi
rij2 :i2)pij(Xi �Xj)

+ 0:5randj2:(1� iter
itermax

):Vj;old + Xj;old;
(7)

Vj;new = Xj;new �Xj;old; (8)

where iter is the actual number of iterations, and
itermax is the maximum number of iterations.

3. Multi-objective charged system search

The proposal optimization algorithm, so-called Multi-
Objective Charged System Search (MOCSS), is used
for solving multi-objective problems by combining CSS
algorithm with Non-dominated Sorting (NS) for good
convergence and high diversity of Pareto front [45],
respectively. NS sorts the solutions on the basis of
non-domination and, then, forms the levels of Pareto
fronts. For selecting the numbers of the best solution,
the solutions with the highest Pareto front rank are
chosen; if required, the other solutions are selected
for the next Pareto front. This process is repeated
until the Crowding Distance (CD) condition is satis�ed
(according to Figure 1). This article utilized the
mutation function from GA in order to prevent early
convergence. The following pseudo-codes summarized
the MOCSS algorithm:

Level 1: Initialization

Step 1: Initialize speci�cation of the optimization
problem and algorithm parameters;
Step 2: Initialize the �rst positions of charged
particles and their associated velocities;
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Figure 1. Flow diagram that shows the way in which the NS works. P (t) is the population at generation t; F1 is the best
solution; and F2 is the second best solutions, and so on (Coello et al., p. 94, 2007) [4].

Step 3: Evaluate all CPs;

Step 4: Determine the non-dominated solutions for
the initial CPs.

Level 2: Search

Step 1: Determine the probability of moving and
calculate the attracting force vector for each CP;

Step 2: Select the leader;

Step 3: Move each CP to the new position and �nd
their velocities;

Step 4: Mutate some CPs;

Step 5: Rank CPs according to the NS approach.

Level 3: Terminating criterion controlling

Repeat search level steps until a terminating criterion
is satis�ed

The 
owchart of the MOCSS algorithm is illus-
trated in Figure 2.

4. Constraint-handling method for the
MOCSS

Consider the general form of a constrained multi-
objective optimization problem [46,47] as follows:

Find x that minimizes

F (x) = (f1(x); :::; fk(x)); (9)

subject to:

G(x) = (g1(x); :::; gh(x)) � 0; (10)

where x = (x1; :::; xnV ar) is the vector of solution that
minimizes objective function(s) F (x) while satisfying
constraint(s) G(x) � 0. The number of design
parameter(s), objective function(s), and constraint(s)
are denoted by nV ar, k, and h, respectively.

Multi-Objective Evolutionary Algorithms
(MOEAs) are robust and e�cient multi-objective
optimization algorithms; however, EAs do not have
any explicit mechanism to handle constraints, while
most real-world design multi-objective optimization
problems have multiple constraints [48]. The penalty
function method is a traditional approach to handling
the constraints of single-objective optimization
problems. However, this method requires careful
tuning of the penalty function coe�cients to obtain a
satisfactory design. Moreover, the application of this
method to a multi-objective optimization problem
raises another problem: How to combine multiple
constraints with multiple objectives [11,48].

Many previous constraint-handling methods need
to tune some parameters to make a balance between
the objective(s) and constraint(s). This study uses
a constraint-handling method proposed by Oyama
(2007) [48], which does not need any parameters to be
tuned for constraint handling and it can always be used
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Figure 2. The 
ow-chart of MOCSS algorithm.

even when all individuals in the initial population are
infeasible, or the amount of violation of each constraint
is signi�cantly di�erent. The method is described in
the following.

De�nition 1 (constrained Pareto dominance):

Solution i is said to constrained-dominate solution j if
any of the following conditions are true:

1. Solutions i and j are both feasible, and solution
i dominates solution j in the objective function
space. It should be noted that solution xi is said
to dominate solution xj if fk(xi) is no worse than
fx(xj) for all objectives, and it is better for at least
one of them [21,49]:

fk(xi) � fk(xj); 8i = 1; 2; :::; k

fk(xi) < fk(xj); 9i 2 f1; 2; :::; kg: (11)

Thus, a set of solutions is said to be a Pareto
front or Pareto solution if no element of this set
dominates any other solutions [50]. For more details
on Pareto optimal solutions, one can be referred
to [31,51].

2. Solution i is feasible and solution j is not.

3. Solutions i and j are both infeasible; yet, solution
i dominates solution j in the constraint space.

De�nition 2 (constraint space dominance):

Solution i is said to dominate solution j in the con-
strained space if both of the following conditions are
true:

1. Solutions i is not worse than solution j in all
constraints, i.e.:

8Gn(xi) � Gn(xj): (12)
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2. Solution i is strictly better than solution j for at
least one constraint, i.e.:

8Gn(xi) < Gn(xj); (13)

where:

Gn(x) = max(0; gn(x)); n = 1; 2; :::; k: (14)

By means of Oyama's constraint-handling ap-
proach, niching based on the number of constraint
violations was applied to infeasible solutions. Here, a
standard �tness sharing [52] was applied to infeasible
designs based on their constraint violations as follows:

rank0(xi) = rank(xi)� Penalty(xi);

Penalty(xi) = 1 +
npopX

j=1;j 6=i
shij ;

shij =

(
1� � dij

�share

��
dij<�share

0 dij � �share

�share =
hX
n=1

(gmaxn � gmin
n

)=npop;

dij =

vuut hX
n=1

(gn(xi)� gn(xj))
2;

gmaxn = max(fgn(x1); :::; gn(xnpop)g);
gminn = min(fgn(x1); :::; gn(xnpop)g); (15)

where npop is population size and � is set to 0.4.

5. Numerical investigation

5.1. Benchmark problems
There are many di�erent multi-objective benchmark
functions for evaluating the performance of algo-
rithms [22,37,53]. In this paper, for validating the
MOCSS, ten of these functions have been selected
containing convex (ZDT1 [8] and MOP1 [18]), non-
convex (ZDT2 and MOP2 [8,13,54]), and discontinuous
Pareto fronts with more complex Pareto set problems
(ZDT3 [8], DTLZ1, DTLZ2, DTLZ3, DTLZ4, and
DTLZ5 test functions [55]). Table 1 presents the details
of these examples.

5.2. Multi-objective performance metrics
To evaluate the performance of multi-objective op-
timization algorithms, a general approach is utilized
to compare quantitative results [13,56] or the amount
of relative distribution on the Pareto front for test
functions [37]. In order to determine a quantitative

assessment of the performance of a multi-objective
optimization algorithm, three issues are normally taken
into consideration [57]:

I) The distance of the Pareto front produced by an
algorithm with respect to the real Pareto front;

II) The spread of solutions found;

III) The number of elements of the Pareto optimal set
found.

For the �rst two, small values are better than the
larger one, while the number of elements of the Pareto
optimal set should be maximized for the last one.

In order to compare the results of di�erent MOP
problems, di�erent performance metrics are usually
utilized in the literature [31]; the following subsections
describe these metrics.

I. Generational Distance (GD). The concept
of generational distance was introduced by Van
Veldhuizen and Lamont [13,54,58] for estimating
how far the elements are in the set of generated
Pareto fronts so far from those in the Pareto front
true, and it is de�ned as follows:

GD =

s
nP
i=1

d2
i

n
; (16)

where n is the number of so far solutions in
PFknown, and di is the Euclidean distance of the
objective space between each of solutions and the
nearest member of the true Pareto front. It should
be noted that a value of GD = 0 indicates that
all the generated elements are in the true Pareto
front, i.e., PFtrue = PFknown. Therefore, any
other value indicates how \far" we are from the
global Pareto front of our problem. This metric
needs to know PFtrue;

II. Maximum Spread (MS). The metric of Maxi-
mum Spread (MS) measures how \well" PFtrue is
covered by PFknown through hyper-boxes formed
by the extreme function values observed in PFtrue
and PFknown. It is de�ned as shown in Box I:
where m is the number of objectives, fmax

i , fmin
i ,

Fmax
i , and Fmin

i are the maximum and minimum
of the ith objective in PFknown and PFtrue,
respectively. A larger value of MS implies better
spread of solutions. In this study, Fmax

i and Fmin
i

are considered as the maximum and minimum of
the ith objective in all the Pareto fronts obtained
by various algorithms [49]. This metric needs to
know PFtrue;

III. Spacing (S). The Spacing (S) metric numer-
ically describes the spread of the vectors in
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Table 1. Benchmark for multi-objective optimization.

Name of benchmark Mathematical models Description
MOP1

Scha�er's Min-Min
(SCH)

F = (f1(x); f2(x)); �103 � xi � 103,
f1(x) = x2,
f2(x) = (x� 2)2:

Ptrue connected, PFtrue
convex benchmark function

with convex Pareto front

MOP2

F = (f1(x); f2(x)); i = 1; 2; 3; �4 � xi � 4,

f1(x) = 1� exp(� nP
i=1

(xi � 1p
n )2),

f2(x) = 1� exp(� nP
i+1

(xi + 1p
n )2):

Ptrue connected, PFtrue
concave number of decision

variables scalable

ZDT1

F = (f1(x); f2(x)); 0 � xi � 1; n = 30,
f1(x) = x1,
f2(x; g) = g(x)� �1�q f1

g(x)

�
,

g(x) = 1 + 9
n�1

nP
i=2

xi:

Has a convex Pareto-optimal front

ZDT2

F = (f1(x); f2(x)); 0 � xi � 1; n = 30,
f1(x) = x1,
f2(x; g) = g(x)� (1� f1

g(x) )2,

g(x) = 1 + 9
n�1

nP
i=2

xi:

Has a non-convex Pareto-optimal front

ZDT3

F = (f1(x); f2(x)); 0 � xi � 1; n = 30,
f1(x) = x1,
f2(x; g) = g(x)� �1�q f1

g(x) � f1
g(x) � sin(10�f1)

�
,

g(x) = 1 + 9
n�1

nP
i=2

xi:

Has a Pareto-optimal front
disconnected, consisting of several

noncontiguous convex parts

DTLZ1

F = (f1(x); f2(x); f3(x)); 0 � xi � 1; n = 10,
f1(x) = x1x2(1 + g(x)),
f2(x) = x1(1� x2)(1 + g(x)),
f3(x) = (1� x1)(1 + g(x)),
where:

g(x) = 100(n� 2) + 100
nP
i=3

�
(xi � 0:5)2 � cos[20�(xi � 0:5)]

	
3P
i=1

fi = 1 with fi > 0

Its PF is linear
Pareto-optimal front,

separable, multimodal.

DTLZ2

F = (f1(x); f2(x); f3(x)); 0 � xi � 1,
f1(x) = cos(x1�

2 ) cos(x2�
2 )(1 + g(x)),

f2(x) = cos(x1�
2 ) sin(x2�

2 )(1 + g(x)),
f3(x) = sin(x1�

2 )(1 + g(x)),
where:

g(x) =
nP
i=3

(xi � 0:5)2,
3P
i=1

f2
i = 1 with fi > 0

Its PF is non-convex.

DTLZ3

F = (f1(x); f2(x); f3(x)); 0 � xi � 1,
f1(x) = cos(x1�

2 ) cos(x2�
2 )(1 + g(x)),

f2(x) = cos(x1�
2 ) sin(x2�

2 )(1 + g(x)),
f3(x) = sin(x1�

2 )(1 + g(x)),
where:

g(x) = 100(n� 2) + 100
nP
i=3

�
(xi � 0:5)2 � cos [20�(xi � 0:5]

	
and x = (x1; x2; :::; xn)T 2 [0 1]T

PFtrue concave, scalable, multimodal
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Table 1. Benchmark for multi-objective optimization (continued).

Name of benchmark Mathematical models Description

DTLZ4

F = (f1(x); f2(x); f3(x)); 0 � xi � 1,
f1(x) = cos(x1

��
2 ) cos(x2

��
2 )(1 + g(x)),

f2(x) = cos(x1
��
2 ) sin(x2

��
2 )(1 + g(x)),

f3(x) = sin(x1
��
2 )(1 + g(x)),

where:

g(x) =
nP
i=3

(xi � 0:5)2; �= 100

and x = (x1; x2; :::; xn)T 2 [0 1]T

PFtrue concave, separable, unimodal.

DTLZ5

F = (f1(x); f2(x); f3(x)); 0 � xi � 1,
f1(x) = cos( �1�2 ) cos( �2�2 )(1 + g(x)),
f2(x) = cos( �1�2 ) sin( �2�2 )(1 + g(x)),
f3(x) = sin( �1�2 )(1 + g(x)),
where:

g(x) =
nP
i=3

(xi � 0:5)2

�1 = x1; �2 = (1+2x2;g(x))
2(1+g(x)) and x = (x1; x2; :::; xn)T 2 [0 1]T

PFtrue unimodal
The function

value of a Pareto optimal
solution satis�es

3P
i=1

f2
i = 1

MS =

"
1
m

mX
i=1

�
min(fmax

i ; Fmax
i )�max(fmin

i ; Fmin
i )

Fmax
i � Fmin

i

�2# 1
2

: (17)

Box I

PFknown [33,59]. This Pareto front metric mea-
sures the distance variance of neighboring vectors
in PFknown. Eqs. (18) and (19) de�ne this metric:

S =

"
1

n� 1

nX
i=1

(di � d)2
# 1

2

where d =

nP
i=1

di

n
;

(18)

di=min
j

����f i1(�!x )�f j1 (�!x )
���+���f i2(�!x )�f j2 (�!x )

���� ;
i; j = 1; 2; :::; n; i 6= j; (19)

where n is the number of vectors in PFknown.
When S = 0, all members are spaced evenly
apart. Note that this becomes important in the
deception problems where all Pareto front vectors
are equally spaced. This metric does not require
the user to know PFtrue;

IV. Coverage of two set (CS). In order to compare
the dominant relationship between two popula-
tions resulting from two di�erent MOEAs, Zitzler
et al. [2003] proposed the CS [56] that is measured
to show how the �nal population of one algorithm
dominates the �nal population of another algo-
rithm. Eq. (20) de�nes this metric:

CS(X 0; X 00) =
jfa00 2 X 00;9a0 2 X 0 : a0 � a00gj

jX 00j ;
(20)

where X 0 and X 00 are two sets of solutions re-
sulting from di�erent algorithms, where a0 � a00
means that a0 dominates a00 if and only if a0 < a00
or a0 = a00. Function CS is de�ned as the mapping
of the order pair (X 0; X 00) to the interval [0,1].
In general, if all solutions in X 0 dominate all
solutions in X 00, then CS(X 0; X 00) = 1. In
addition, CS(X 0; X 00) = 0 implies that none of
the solutions in X 00 is dominated. Note that
both CS(X 0; X 00) and CS(X 00; X 0) need to be
considered independently since they have distinct
meanings and CS(X 0; X 00) is not necessarily equal
to 1�CS(X 00; X 0). The advantage of this Pareto
compliant metric is that it is easy to calculate and
provide a relative comparison based on dominant
numbers between two MOEAs [57];

V. Hypervolume indicator of set S. Let the ref-
erence point be denoted by Ref = (r1; r2; :::; rk).
The hypervolume indicator of S (denoted as
Hv(S)) is de�ned as the volume of the hypercube
restricted by all points in S and Ref .
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Hv(S) = Leb( [
~x2S jf1(~x1); r1j �

����f2(~x2);

r2

����� :::� jfk(~xk); rkj)); (21)

where k is the number of dimensions, Leb(S) indi-
cates the Lebesgue measure of S, and jf1(~x1); r1j�jf2(~x2); r2j � ::: � jfk(~xk); rkj represents the hy-
percube formed by points, dominated by ~x as
Ref. [60].

5.3. Numerical results
For the MOP 1 example, Figure 3 shows the
exponential-like decrease of GD as the iterations pro-
ceed. Clearly, it can be seen that the MOCSS algorithm
indeed converges almost exponentially. The estimated
Pareto fronts and true Pareto fronts of other functions

Figure 3. Convergence of the proposed MOCSS. The
least-square distance (vertical axis) from the estimated
front to the true front of MOP1 for the �rst 70 iterations
(horizontal axis).

are shown in Figure 4. In all of these �gures, the
horizontal axis is the �rst objective function, and the
vertical axis is the second one. The �gure shows that
the MOCSS algorithm is able to �nd proper solutions
for the benchmark examples. Further, the solutions
are scattered among the Pareto fronts identically.
Therefore, this algorithm is able to correctly obtain
the Pareto front.

A careful scrutiny of Figure 4 indicates that the
proposed MOCSS algorithm for �nding solutions has
outperformed all benchmarks. The answers that are
close to the true Pareto front, uniformly dispersed on
it, should be found. The performances of the proposed
multi-objective approach are evaluated based on the
multi-objective metrics in terms of GD, S, and MS.
The results are summarized in Tables 2(a) to 2(c),
(including Mean, standard deviation, Best, and Worst
with 30 independent runs). In all benchmark functions,
the values of GD and S are close to zero, and the value
of MS is close to one. This means that the result of
MS metric shows that the MOCSS approach has better
covered PFknown, and the result of S metric shows that
MOCSS approach has better spread of the answer.

In order to evaluate and compare the perfor-
mances of the MOCSS with those of the other
multi-objective optimization algorithms, the results
of NSGA-II, VEGA, MODE, SPEA, Bees, DEMO,
PDEA, MOEA/D. SPEA2, GDE3, NSGAII-DE,
MODE-RMO, and MOFA are presented in Table 3. All
results have been averaged over 30 independent runs.

Table 2(a). Results of the GD for the benchmarks (with 30 independent runs).

GD metric MOP1 ZDT1 ZDT2 ZDT3

Mean 0.00136 0.000178 0.000148 0.0007938
Standard deviation 0.00013 0.000037 0.000012 0.0001043

Best 0.00110 0.000110 0.000123 0.000640
Worst 0.00170 0.000274 0.000164 0.000977

Table 2(b). Results of the MS for the benchmarks (with 30 independent runs).

MS metric MOP1 ZDT1 ZDT2 ZDT3

Mean 0. 9934 1 0.9993 0.9591
Standard deviation 0.0109 1 0.0032 0.0783

Best 1 1 1 1
Worst 0.9596 1 0.9859 0.7924

Table 2(c). Results of the S for the benchmarks (with 30 independent runs).

S metric MOP1 ZDT1 ZDT2 ZDT3

Mean 0.0463 0.0126 0.0138 0.0268
Standard deviation 0.0143 0.0026 0.0025 0.0102

Best 0.0272 0.0087 0.0108 0.0104
Worst 0.0969 0.229 0.0217 0.0533
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Figure 4. Pareto front of test functions: (a) MOP2, (b) MOP1, (c) ZDT1, (d) ZDT2, (e) ZDT3, (f) DTLZ1, and (g)
DTLZ2.

In this table, results with Boldface indicate a better
value. It can be seen that the MOCSS is one of the top
best algorithms in �nding optimum results.

5.4. Comparison study
In this section, the performance of the proposed
MOCSS is compared with those of other established
multi-objective algorithms, including Vector Evaluated
Genetic Algorithm (VEGA), Non-dominated Sorting
Genetic Algorithm II (NSGA-II), Multi-Objective Dif-
ferential Evolution (MODE), Di�erential Evolution

for Multi-Objective Optimization (DEMO), multi-
objective Bees algorithms (Bees), Strength Pareto Evo-
lutionary Algorithm (SPEA) and Multi-objective Fire-

y Algorithm (MOFA), Strength Pareto Evolutionary
Algorithm (SPEA2), Multi-Objective Evolution Algo-
rithms with the Tchebyche� approach (MOEA/D),
Pareto Di�erential Evolution Approach (PDEA), NS-
GAII based on Di�erential Evolution (NSGAII-DE),
the third version of Generalized Di�erential Evolution
(GDE3), and Multi-Objective Di�erential Evolution-
the Ranking-based Mutation Operator (MODE-RMO).
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Table 3. Comparison of GD for n = 50 (charges particle)
and iteration = 500, as presented in Refs. [30,37,25]. All
results have been averaged over 30 independent runs. A
result with Boldface indicates better value obtained.

Methods Test function

ZDT1 ZDT2 ZDT3

Bees 2.40E-02 1.69E-02 1.91E-01

VEGA 3.79E-02 2.37E-03 3.29E-01

SPEA 1.78E-03 1.34E-03 4.75E-02

NSGA-II 3.33E-02 7.24E-02 1.14E-01

MODE 5.80E-03 5.50E-03 2.15E-02

DEMO 1.08E-03 7.55E-04 1.18E-03

MOFA 1.90E-04 1.52E-04 1.97E-04

PDEA 6.15E-04 6.52E-04 5.63E-04

SPEA2 3.40E-03 9.10E-03 1.80E-03

MOEA/D 9.59E-04 5.81E-04 1.73E-03

MODE-RMO 3.85E-03 6.97E-03 4.76E-03

GDE3 2.40E-03 8.20E-03 2.76E-03

NSGAII-DE 5.83E-03 7.75E-03 5.31E-03

MOCSS 1.78 E-04 1.48 E-04 7.94E-04

The performances of the proposed multi-objective
approach are evaluated and compared using the multi-
objective metric in terms of GD (how far the known
Pareto front is from the true Pareto front) with
the above-mentioned MO approach given in Table 3.
Overall, the MOCSS has better performance than the
other thirteen cases, and it has the best convergence in
ZDT1, ZDT2, and ZDT3 (except MOFA and PDEA)
benchmark functions.

To check if the �nal results obtained with the best
performing algorithm di�er from the �nal results of
the rest of the competing algorithms in a statistically
signi�cant manner, the Wilcoxon's Ranksum test for
independent samples [61] is used at a signi�cance level
of 5%, as presented in Table 4. The numerical values
of �1, 0, 1 correspond to whether the other methods
are inferior to, equal to, and superior to our proposed
algorithm, as indicated in Table 4.

The MOCSS is implemented and compared with
NSGA-II and MOEA/D using DTLZ1 and DTLZ2 test
functions in the coverage of two set metrics. Table 5
shows the coverage of two set metric values of the
three approaches, averaged on 30 independent runs. A
careful inspection of Tables 5 reveals that, in terms of
coverage of two set metrics, the �nal solutions obtained
by the MOCSS are better than those obtained by

Table 4. Comparison between MOCSS and other
algorithms on the basis of Wilcoxon's Ranksum test.

Methods Test function

ZDT1 ZDT2 ZDT3

Bees �1� �1 �1

VEGA �1 �1 �1

SPEA �1 �1 �1

NSGA-II �1 �1 �1

MODE �1 �1 �1

DEMO �1 �1 �1

MOFA �1 �1 +1��

PDEA �1 �1 0���

SPEA2 �1 �1 �1

MOEA/D �1 �1 �1

MODE-RMO �1 �1 �1

GDE3 �1 �1 �1

NSGAII-DE �1 �1 �1

� � 1: worse; ��+1: better; and ���0: equal.

NSGA-II and MOEA/D for DTLZ1 and DTLZ2 test
instances.

The Hypervolume indicator is employed to guide
the diversity preservation in our approach. The ref-
erence points used for assessments are r = 1:1d and
r = 1:1d for DTLZ1 and DTLZ2, respectively. Table 6
presents average and standard deviation relative hyper-
volume for MOCSS, NSGA-II, and SPEA2 approaches.
A larger hypervolume value is preferable when com-
paring the performances of di�erent solution sets.
Therefore, the MOCSS approach performs signi�cantly
better than the other two approaches. The results
of GD obtained by GDE3, MODE-RMO, NSGAII-
DE, and MOCSS, besides Wilcoxon's Ranksum test,
are presented in Table 7. According to Table 7, the
MOCSS outperforms NSGAII-DE in 4 problems and
performs evenly in 1 problem. In addition, it outper-
forms GDE3 in 3 problems and loses in 2 problems. It
also outperforms MODE-RMO in 2 problems, loses in
2 problems, and performs evenly in 1 problems. Brie
y,
for the tri-objective test functions, the MOCSS has
better GD value in DTLZ1, DTLZ2, and DTLZ3 than
another approach.

Finally, times were also evaluated (using the same
hardware platform and the exact same environment for
each of the two algorithms) in order to establish if our
MOCSS algorithm was really faster than the NSGA-II
or not. Table 8 shows that NSGA-II covers the entire
Pareto front and is faster in computational time by �5
to 13 percent (on average 4 percent) than the MOCSS
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Table 5. Average coverage of two set metrics between MOCSS, NSGA-II, and MOPSO (pop. = 50 and independent runs
= 30).

Approach MOCSS MOEA/D NSGA-II

NSGA-II MOEA/D MOCSS NSGA-II MOCSS MOEA/D

DTLZ1 0.091 0.051 0.018 0.078 0.011 0.005

DTLZ2 0.072 0.048 0.028 0.099 0.016 0.001

in this test function. However, the implementation
of the MOCSS method produces excellent results, as
shown in Table 3.

6. Engineering design problem

6.1. Welded beam design
The design of a welded beam is a classical benchmark
that has been solved by many researchers. The
welded beam design is a real-life application problem
[11,62], whose aim is to minimize the cost and the
endpoint's de
ection subject to constraints on shear
stress, bending stress, and buckling load (Figure 5).
The detailed formulation can be found in [11,45,62,63].

Table 6. Average and standard deviation relative
hypervolume among MOCSS, NSGA-II, and SPEA2
(independent runs = 30) [46].

Method DTLZ1, r = 0:7d DTLZ2, r = 1:1d

NSGA-II 0.94333 (0.11423) 0.86913(0.00803)
SPEA2 0.98010(0.00152) 0.90760(0.00350)
MOCSS 0.96201(0.01067) 0.92056(0.01538)

Figure 5. The welded beam design problem.

It is desired to �nd four design parameters (thickness
b, width t, length of weld L, and weld thickness h) for
which the cost function of the beam and the de
ection
function at the open end are objective functions [45]:

min f1(x) = 1:1047h2L+ 0:0481tb(14 + t);

min f2(x) = �(x) =
2:1952
t3b

; (22)

subject to:

Table 7. Comparison between MOCSS and other algorithms on average GD metrics and the basis of Wilcoxon's
Ranksum test [30] (independent runs = 20 and pop. = 100).

Example MOCSS GDE3 MODE-RMO NSGAII-DE

DTLZ1 2.72E-04 7.08E-02 �1� 2.58E-04 0��� 4.80E-03 �1
DTLZ2 4.59E-04 7.25E-04 �1 7.28E-04 �1 1.96E-03 �1
DTLZ3 6.59E-04 3.27E+00 �1 7.88E-03 �1 1.82E-01 �1
DTLZ4 5.24E-04 7.12E-04 +1�� 7.26E-04 +1 1.46E-03 �1
DTLZ5 1.93E-04 1.09E-05 +1 9.12E-06 +1 1.87E-04 0

� � 1: worse; ��+1: better; and ���0: equal.

Table 8. Average and Standard deviation computational time between MOCSS and NSGA-II (independent runs = 30).

Test function
MOCSS NSGA-II

Pop.= 50 and
Iter.=50

Pop.=100 and
Iter.=100

Pop.=50 and
Iter.=50

Pop.=100 and
Iter.=100

MOP1 31:05� 0:31 218:75� 1:53 30:11� 0:56 217:19� 1:31
ZDT1 28:46� 0:28 192:46� 2:34 24:85� 1:13 187:67� 2:03
ZDT2 28:72� 0:27 192:23� 2:34 25:28� 0:99 186:16� 3:36
ZDT3 28:36� 0:34 191:35� 0:96 27:36� 1:01 202:53� 1:21
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g1(x) = �(x)� 13600 � 0;

g2(x) = �(x)� 30000 � 0;

g3(x) = h� b � 0;

g4(x) = 6000� P (x) � 0;

where:

�(x) =
504000
t2b

;

P (x) = 64764:022(1� 0:0282346t)tb3;

D =
q

0:25(L2 + (h+ t)2);

Q = 6000(14 + 0:5L);

� 0(x) =
6000p
2hL

;

� 00(x) =
QD

2[0:707hL(L2

12 +D2)]
;

�(x) =
r

(� 0(x))2 + (� 00(x))2 +
L� 0(x)� 00(x)

D
;

where the simple limits for variables are 0:1 � L, t � 10
and 0:125 � h, b � 5.

In the welded beam design problem, the non-
linear constraints can cause di�culties in �nding the
Pareto front. This design problem has been solved by
the MOCSS. The Pareto front of 50 solution points
after 1000 iterations is obtained by the MOCSS, as
shown in Figure 6. The obtained results include
distribution, spread, and smoothening, which are the
same with or better than the results obtained in other
researches [11,45,62].

Figure 6. Pareto front for the bi-objective beam design
where the horizontal axis corresponds to cost and the
vertical axis corresponds to de
ection.

6.2. Design of a disc brake
The multi-disc brake design problem is another bench-
mark for constrained, mixed, and multi-objective opti-
mizations, studied by Osyczka and Kundu (1995) [64],
Ray and Liew (2002) [62], and Gong et al. (2009) [11].
The objectives of the design include minimizing the
overall mass of the brake and the braking time. The
design variables include the inner radius of the discs,
outer radius of the discs, the engaging force, and the
number of friction surfaces, which are represented by
r, R, F , and s, respectively. The constraints for the
design include the minimum distance between the radii,
maximum length of the brake, pressure, temperature,
and torque limitations [62]:

min f1(x) = 4:9� 10�5(R2 � r2)(s� 1);

min f2(x) =
9:82� 106(R2 � r2)

Fs(R3 � r3)
; (23)

subject to:

g1(x) = 20� (R� r) � 0;

g2(x) = 2:5(s+ 1)� 30 � 0;

g3(x) =
F

3:14(R2 � r2)
� 0:4 � 0;

g4(x) =
0:00222F (R3 � r3)

(R2 � r2)2 � 1 � 0;

g5(x) = 900� 0:0266Fs(R3 � r3)
(R2 � r2)

� 0;

where the simple limits for variables are 55 � r � 80,
75 � R � 110, 1000 � F � 3000, and 2 � s � 20.

In the disc break design problem, the non-linear
constraints can cause di�culties in �nding the Pareto
front. This design problem has been solved using the
MOCSS. The Pareto front of 50 solution points after
1000 iterations obtained by the MOCSS is shown in
Figure 7.

7. Conclusions

In this paper, a new algorithm was formulated success-
fully for multi-objective optimization, namely multi-
objective charged system search, based on the recently
developed single-objective charged system search opti-
mization algorithm. To obtain a good convergence to
the Pareto front for an algorithm, a Non-dominated
Sorting (NS) mechanism was used; to prevent early
convergence, a mutation function was utilized, too.
The proposed MOCSS was tested against a set of
well-chosen test functions. The comparison of the
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Figure 7. Final optimum result of the disc brake
designing example.

GD metric results can be used as a yardstick to
conclude that the MOCSS has better performance than
others and has the best convergence in ZDT1, ZDT2,
and ZDT3 (expect MOFA and PDEA) benchmark
functions. The simulations for the benchmark and
test functions suggest that the MOCCS is a very
e�cient algorithm for multi-objective optimization.
To check if the �nal results obtained by the best-
performing algorithm di�er from the �nal results of
the rest of the competing algorithms in a statistically
signi�cant manner, the Wilcoxon's Ranksum test for
independent samples was used at a signi�cance level of
5%. It outperformed all the contestant algorithms in a
statistically signi�cant manner.

In the disc break design problem and the welded
beam design problem, both the non-linear constraints
can cause di�culties in �nding the Pareto front. These
design problems were solved by the MOCSS. The
obtained results included distribution, spread, and
smoothening, which are the same with or better than
the results obtained in other researches. The MOCSS
can deal with highly nonlinear problems with complex
constraints and diverse Pareto optimal sets.

As for future works, the formulation of a discrete
MOCSS will be an important topic. In addition, hy-
bridization with other algorithms may also be fruitful.
Further, the possibility of extending this algorithm for
dynamic functions may be considered.
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