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Abstract. Randomized response is an e�ective survey method to collect subtle
information. It facilitates responding to over-sensitive issues and defensive questions (such
as criminal behavior, gambling habits, drug addictions, abortions, etc.) while maintaining
con�dentiality. In this paper, we conducted a Bayesian analysis of a general class of
randomized response models by using di�erent prior distributions, such as Beta, Uniform,
Je�reys, and Haldane, under squared error loss, and precautionary and DeGroot loss
functions. We have also expanded our proposal to the case of mixture of Beta priors
under squared error loss function. The performance of the Bayes and maximum likelihood
estimators has been evaluated in terms of mean squared errors. Moreover, an application
with real dataset has been also provided to explain the proposal for practical considerations.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Sample surveys on human population have come to
a realization that innocent and ino�ensive questions
usually receive good responses, whereas questions
about delicate and sensitive matters involving defensive
contentions and controversial assertions, stigmatizing
and/or incriminating matters (such as induced abor-
tion, tax evasion, cheating at the exams, drug usage,
illicit behaviors, etc.), which people like to conceal from
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others, elicit reluctance. Attempting to ask questions
such matters often results in either negation to respond,
or deception in answering. This introduces non-
response error that makes the estimation of relevant
parameters, e.g., population proportion belonging to a
sensitive group, unreliable.

To abolish this problematic issue of unresponsive-
ness or non-response, Warner introduced an ingenious
interviewing procedure, known as the Randomized Re-
sponse Technique (RRT), for stimulating information
about subtle and sensitive characteristics [1]. The main
aim of Warner [1] RRT was to reduce the frequency of
distorted (misleading) answers, increase respondents'
cooperation, and obtain truthful responses by asking
respondents two questions, one of which is sensitive and
the other is non-sensitive. By means of a randomization
device (such as drawing a card from deck, rolling a die,
spinning a roulette wheel, etc.), the respondents choose
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one of the two questions. It makes the interviewees less
likely to give an imprecise answer. Several researches,
such as Greenberg et al. [2], Moors [3], Kim et al. [4],
Christo�des [5], Hussain and Shabbir [6], Kim and
Heo [7], Lee et al. [8], Abdelfatah and Mazloum [9],
Tanveer and Singh [10], Blair et al. [11], and Singh and
Gorey [12], contributed to further development of the
RRT model. The interested readers may also refer to
Chaudhuri and Mukerjee [13], Tracy and Mangat [14],
Chaudhuri [15], Chaudhuri and Chirsto�des [16], and
the references listed therein.

Estimation of the unknown parameter (s) is car-
ried out after collecting the data through RRT. For
the estimation of unknown parameter(s), two familiar
methods are mainly used: the classical method and
the Bayesian method. The Bayesian method can be
useful in a situation when the prior knowledge about
the perceptive qualitative variable is generally available
in a social survey and can be used besides sample
information for estimating the unknown population pa-
rameters. In addition, the Bayesian technique provides
a normal way to study and deduce situations such as
randomized response sampling where only limited in-
formation is available. Although the Bayesian analysis
of RRTs has been studied, only a few attempts have
been made in this area, e.g., Winkler and Franklin [17],
Migon and Tachibana [18], Pitz [19], O'Hagan [20],
Spurrier and Padgett [21], Oh [22], Unnikrishnan and
Kunte [23], Barabesi and Marcheselli [24,25], Hussain
and Shabbir [26-28], Hussain et al. [29], and Bar-Lev
et al. [30].

Winkler and Franklin [17] �rst suggested the
RRT in the framework of Bayesian structure by using
Beta distribution as the prior distribution. Bar-Lev
et al. [30] performed the Bayesian analysis of the
RRT, considering the truncated Beta prior distribu-
tions. O'Hagan [20] derived Bayes linear estimators by
utilizing the nonparametric approach. Oh [22] and Un-
nikrishnan and Kunte [23] utilized Markov chain and
Monte Carlo approaches, respectively. Adepetun and
Adewara [31] conducted Bayesian estimation of Kim
and Warde RRT based on alternative priors. Hussain
et al. [32] performed a Bayesian analysis of a general
class of RRTs using a simple Beta prior in a common
prior structure to obtain the Bayesian estimation of
the proportion of stigmatized/sensitive attributes in
the population of interest and also extended their
proposal to strati�ed random sampling. Son and
Kim [33] performed the Bayesian analysis of two-stage
and strati�ed RRTs. Song and Kim [34] proposed the
Bayes estimator of a rare attribute using RRT, and
showed that their Bayes estimator was robust to priors.

Now, by considering the Winkler and
Franklin's [17] idea of identifying prior information
and analyzing the posterior distribution (as done by
Hussain et al. [32]), we proposed to study a general

class of RRTs yielding and eliciting the probability of
a yes response given as follows:

P (yes) = � = c�A + g; (1)

where c and g are RRT-dependent real numbers,
�A is the true, yet known, population proportion of
individuals with sensitive traits.

The probability of a yes response through
Warner's [1] randomized response model can be written
as follows:
P (yes) = � = (2p� 1)�A + (1� p): (2)

Therefore, by comparing Eq. (1) with Eq. (2) values of
c and g are obtained as follows:

c = (2p� 1); g = (1� p):
Therefore, we can see that the general class of RRT
can be reduced to Warner [1] model, if we consider
c = (2p� 1) and g = (1� p).

On the same lines, the general class of RRT can
be converted to other randomized response techniques.

Now, from Eq. (1), we have:

�A =
� � g
c

; 0 < �A < 1:

The Maximum Likelihood Estimator (MLE) of �A is
speci�ed as follows:

�̂A(ML) =
�̂ � g
c

; (3)

where �̂ = n1
n is the sample proportion of yes responses

in a sample of size n.
In this study, we plan to perform the Bayesian

estimation of a general class of RRT by using several
prior distributions (such as Beta, Uniform, Je�reys
and Haldane) under di�erent loss functions (such as
squared error, precautionary and DeGroot). The main
purpose of this study is to identify which prior distribu-
tions perform better under which loss function, because
a situation may arise when di�erent researchers have
di�erent prior beliefs. The Bayesian estimation of
general class of RRT by using mixture prior is also
performed in this study.

The rest of the paper is structured as follows. Sec-
tion 2 presents the details of loss functions. Bayesian
estimation of a general class of RRT in case of di�erent
priors under di�erent loss functions is presented in
Section 3. Section 4 contains the e�ciency compar-
isons. Illustration of the procedure using real dataset
is evaluated in Section 5. Final remarks and conclusion
are provided in Section 6.

2. Loss functions

A loss function shows losses incurred when estimating
parameter � by �̂. Many loss functions have been-
proposed to perform Bayesian estimation. This study
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considers the three loss functions, described below.

2.1. Squared error loss function
Legendre [35] and Guass [36] used the Squared Error
Loss Function (SELF) to develop least square theory.
Afterwards, it was used in estimation problems when
unbiased estimators of parameter were evaluated in
terms of the risk function, which was simply the
variance of the estimators. The SELF can be expressed
as follows:

LSELF(�̂; �) = (� � �̂)2:

The Bayes estimator under SELF can be obtained as
follows: �̂Bayes = E(�=x)(�):

2.2. Precautionary loss function
Norstrom [37] proposed an alternative asymmetric
Precautionary Loss Function (PLF), and showed that
his proposed PLF was a special form of a general class
of precautionary loss functions. The PLF is de�ned as
follows:

LPLF(�̂; �) =
(� � �̂)2

�̂
:

The Bayes estimator under PLF can be written as
follows: �̂Bayes =

p
E(�=x)(�2).

2.3. DeGroot loss function
DeGroot [38] introduced di�erent types of loss func-
tions and found Bayes estimates by using these loss
functions. If �̂ is an estimate of �; then, by using
the data Xn = (X1; X2; :::; Xn), the DeGroot Loss
Function (DLF) is given as follows:

LDLF(�̂; �) =
(� � �̂)2

�̂2
:

The Bayes estimator under DLF can be derived by
using the following formula:

�̂Bayes =
E(�=x)(�2)
E(�=x)(�)

:

3. Bayesian estimation of �A using general
randomized response model

To obtain Bayesian estimator of �A, di�erent prior
distributions (such as Beta, Uniform, Je�reys and Hal-
dane) under di�erent loss functions (such as squared
error, precautionary and DeGroot) are used. These
priors are selected according to the range of the
parameter, i.e., 0 < �A < 1. Using these prior
distributions and loss functions, the Bayes estimators
of �A are obtained as follows.

3.1. Posterior distribution and Bayes
estimators of �A using beta prior

The �rst prior distribution considered in this study is

the Beta prior. There are two main reasons for using
the Beta prior. The �rst one is that Beta prior is a
conjugate prior distribution for the Bernoulli, binomial,
negative binomial and geometric distributions. The
second is that the Beta prior is a suitable prior for the
random behavior of percentages and proportions. Of
note, with Beta prior, we have a closed-form expression
of the Bayes estimator.

Let prior distribution of �A be given by:

f(�A) =
1

�(a; b)
�a�1
A (1� �A)b�1;

0 < �A < 1 and a; b > 0;

where a and b are the hyper parameters.

Let T =
nP
i=1

xi be the total number of yes re-

sponses in a sample of size n drawn from the population
using simple random sampling with replacement (SR-
SWOR). Herein, xi = 1 and xi = 0 with probabilities
of � and (1� �), respectively.

Therefore, the conditional distribution of T
known as �A is written as follows:

f(T=�A) =
n!

t!(n� t)!�t(1� �)n�t: (4)

Putting Eq. (1) into Eq. (4), we have:

f(T=�A) =
n!cn

t!(n� t)! (�A + d)t(1� �A + h)n�t;

where t = 0; 1; 2; :::; n, d = g
c and h = 1�c�g

c .
After some algebraic work, we get:

f(T=�A) =
n!cn

t!(n� t)!
tX
i=0

n�tX
j=0

(n� t)!
j!(n� t� j)!

t!
i!(t� i)!dt�ihn�t�j�iA(1� �A)j :

The joint distribution of T and �A is written as follows:

f(T; �A) =
n!cn

t!(n� t)!�(a; b)

tX
i=0

n�tX
j=0

(n� t)!
j!(n� t� j)!

t!
i!(t� i)!dt�ihn�t�j�

a+i�1
A

(1� �A)b+j�1:

The marginal distribution of T is obtained by in-
tegrating the joint distribution of f(T; �A) into �A.
Therefore, the marginal distribution of T is:

f(T ) =
n!cn

t!(n� t)!�(a; b)

tX
i=0

n�tX
j=0

(n� t)!
j!(n� t� j)!

t!
i!(t� i)!dt�ihn�t�j�(a+ i; b+ j):
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f(�A=T ) =
f(T; �A)
f(T )

; f(�A=T ) =

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�a+i�1
A (1� �A)b+j�1

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(a+ i; b+ j)
(0 < �A < 1):

(5)

Box I

�̂A(Bayes)Beta =

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(a+ i+ 1; b+ j)

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(a+ i; b+ j)
: (6)

Box II

Posterior distribution of �A given T is de�ned by
Eq. (5) as shown in Box I. The Bayes estimators
using the Beta prior under the di�erent loss functions,
such as SELF, PLF, and DLF, are given as follows:

� Bayes estimator of �A using Beta prior under SELF
is obtained by Eq. (6) as shown in Box II, similarly:

� Bayes estimator of �A using Beta prior under PLF
is obtained by Eq. (7) as shown in Box III.

� Bayes estimator of �A using Beta prior under DLF
is obtained by Eq. (8) as shown in Box IV.

3.2. Posterior distribution and Bayes
estimators of �A using Uniform prior

When the prior distribution has no population basis, it
can be di�cult to construct, and there has long been a

desire for a prior distribution that can be guaranteed
to play a minimal role in the posterior distribution.
Such distributions are sometimes called as \reference
prior distributions", and the prior density is described
as vague, at, defuse or non-informative prior. The
rationale or using non-informative prior distributions
is said to be: \let the data speak for themselves";
therefore, the inferences are una�ected by information
external to the current data. There are di�erent
non-informative priors, yet we have used the non-
informative Uniform prior in this study given as follows.

f(�A) / 1; 0 < �A < 1:

The posterior distribution using Uniform prior is
written as follows:

�̂A(Bayes)Beta =

vuuuuuut
tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(a+ i+ 2; b+ j)

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(a+ i; b+ j)
: (7)

Box III

�̂A(Bayes)Beta =

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(a+ i+ 2; b+ j)

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(a+ i+ 1; b+ j)
: (8)

Box IV
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f(�A=T )

=

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�iA(1��A)j

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+1; j+1)
;

0 < �A < 1: (9)

The Bayes estimators of �A under di�erent loss
functions by using the non-informative Uniform prior
can be obtained as follows.

� Bayes estimator of �A using Uniform prior under
SELF is obtained as followes:

�̂A(Bayes)Uniform

=

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+ 2; j + 1)

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+ 1; j + 1)
:

� Bayes estimator of �A using Uniform prior under
PLF is obtained as followes:

�̂A(Bayes)Uniform =

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+ 3; j + 1)

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+ 1; j + 1)
:

� Bayes estimator of �A using Uniform prior under
DLF is obtained as followes:

�̂A(Bayes)Uniform =

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+ 3; j + 1)

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+ 2; j + 1)
:

3.3. Posterior distribution and Bayes
estimators of �A using Je�reys' prior

Another non-informative prior used to �nd Bayes

estimator of �A is Je�reys' prior. Je�reys' prior is
widely used in Bayesian analysis. Je�reys' priors can
work well in the case of a single parameter model,
but not for models with multidimensional parameter
vector. It is de�ned as follows:

f(�A) / ��1=2
A (1� �A)�1=2; 0 < �A < 1:

The posterior distribution of �A using Je�reys'
prior is given as follows:

f(�A=T ) =

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�i�0:5
A (1� �A)j�0:5

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+ 0:5; j + 0:5)
;

0 < �A < 1: (10)

Now, the Bayes estimators of �A using Je�reys' prior
under di�erent loss functions are given as follows:

� Bayes estimator of �A using Je�reys' prior under
SELF

�̂A(Bayes)Je�reys =

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+1:5; j+0:5)

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+0:5; j+0:5)
:

� Bayes estimator of �A using Je�reys' prior under
PLF is obtained as shown in Box V.

� Bayes estimator of �A using Je�reys' prior under
DLF is obtained as shown in Box VI.

3.4. Posterior distribution and Bayes
estimators of �A using Haldane prior

The last prior considered in this study is the Haldane
prior. The Haldane prior can be written as follows:

f(�A) / 1
�A(1� �A)

; 0 < �A < 1:

Of note, the Haldane prior is an improper prior,
because its integration (from 0 to 1) fails to converge
to 1.

�̂A(Bayes)Je�reys =

vuuuuuut
tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+ 2:5; j + 0:5)

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+ 0:5; j + 0:5)
:

Box V
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�̂A(Bayes)Je�reys ==

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+2:5;+j+0:5)

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+1:5; j+0:5)
:

Box VI

The posterior distribution of �A given T using the
Haldane prior is given as follows:

f(�A=T ) =

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�i�1
A (1� �A)j�1

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i; j)
;

0 < �A < 1: (11)

The Bayes estimators of �A using Haldane prior under
di�erent loss functions are given as follows:

� Bayes estimator of �A using Haldane prior under
SELF is obtained as followes:
�̂A(Bayes)Haldane

=

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+ 1; j)

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i; j)
:

� Bayes estimator of �A using Haldane prior under
PLF is obtained as shown in Box V.
�̂A(Bayes)Haldane =vuuuuuut

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+ 2; j)

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i; j)
:

� Bayes estimator of �A using Haldane prior under
DLF
�̂A(Bayes)Haldane

=

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+ 2; j)

tP
i=0

n�tP
j=0

(n�t)!
j!(n�t�j)! t!

i!(t�i)!dt�ihn�t�j�(i+ 1; j)
:

3.5. Posterior distribution and Bayes
estimators of �A using mixture prior

The use of mixtures as prior distributions allows for

greater exibility in the shape of the prior density.
The mixture prior is helpful in situations when di�erent
researchers have their di�erent views about the shape
of the distribution of the parameter of interest.

Let us assume that there will be participa-
tion of K researchers by their speci�c views about
the prior distribution, and these are indicated by
f1 (�A) ; f2 (�A) ; :::; fK (�A). A mixture of prior dis-
tributions can be de�ned as follows:

f (�A) =
KX
k=1

wkfk (�A);

where w1; w2; w3; :::::; wk are the weights, such that
KP
k=1

wk = 1. Thus, the belief of the kth researcher in

the form of Beta density as a prior distribution can be
written as follows:

fk(�A=ak; bk) =
1

�(ak; bk)
�ak�1
A (1� �A)bk�1;

0 � �A � 1: (12)

Therefore, the mixture of priors is given as follows:

f(�A=a0s; b0s) =
KX
k=1

wk
1

�(ak; bk)
�ak�1
A (1� �A)bk�1;

0 � �A � 1; (13)

where a1; a2; a3; :::; aK and b1; b2; b3; :::; bK are the pa-
rameters of component Beta distribution.

By using Eq. (13), the conditional distribution of
T given �A is speci�ed as follows:

f(T=�A) =
n!cn

t!(n� t)!
KX
k=1

�
wk

�(ak; bk)

tX
i=0

n�tX
j=0

t!
i!(t� i)!

(n�t)!
j!(n�t�j)!dt�ihn�t�j�(ak+i; bk+j)

�
; (14)

where t = 0; 1; 2; :::; n, d = g
c and h = 1�c�g

c .
Hence, the posterior distribution is calculated

by Eq. (15) as shown in Box VII. Now, the Bayes
estimators using mixture prior under SELF in the
closed form are given by Eq. (16) as shown in Box
VIII.
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f(�A=T ) =

KP
k=1

�
wk

�(ak;bk)

tP
i=0

n�tP
j=0

t!
i!(t�i)!

(n�t)!
j!(n�t�j)!dt�ihn�t�j�Aak+i�1(1� �A)bk+j�1

�
KP
k=1

�
wk

�(ak;bk)

tP
i=0

n�tP
j=0

t!
i!(t�i)!

(n�t)!
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� (15)

Box VII

�̂A(Bayes)mixture =

KP
k=1

�
wk

�(ak;bk)

(
tP
i=0

n�tP
j=0

t!
i!(t�i)!

(n�t)!
j!(n�t�j)!dt�ihn�t�j�(ak + i+ 1; bk + j)

)�
KP
k=1

�
wk

�(ak;bk)

(
tP
i=0

n�tP
j=0

t!
i!(t�i)!

(n�t)!
j!(n�t�j)!dt�ihn�t�j� (ak + i; bk + j)

)� (16)

Box VIII

4. E�ciency comparisons and discussion

According to Eqs. (6), (7), and (8), the Bayesian
estimator involves a large computation, especially when
the sample size and/or the number of yes responses is
large. To deal with this computational issue, we have
written a program in R and Mathematica software.

Of note, the study of the posterior distribution
can provide a picture of the inuence of sample infor-
mation on the prior estimate. Therefore, the posterior
means and variances using the posterior distributions
de�ned in Eqs. (5), (9), (10), and (11) for all the
selected priors are given in Tables 1-3 under all the
loss functions considered in this study.

Once a Bayes estimator is calculated, the next
task is to compare Bayes estimator with its com-

peting estimators (e.g., the MLEs). It is obvious
that the description of posterior distribution does not
support the comparison of the Bayes estimator with
the classical estimator. These two estimators may
be compared in terms of either variance and/or the
Mean Squared Error (MSE). Therefore, to compare the
Bayes estimator with the classical estimator in terms
of MSE, we adopt the approach suggested by Chaubey
and Li [39].

4.1. Bayes estimators of simple prior versus
MLE

Now, the MSEs of di�erent estimators in Bayesian and
classical settings, with simple priors (such as Beta,
Uniform, Je�reys and Haldane) and mixture priors

Table 1. Description of posterior distribution for di�erent loss functions for n = 10, and t = 4.

Loss function c g
Beta (5, 10) Beta (12, 16) Uniform Je�reys Haldane

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

Squared error
loss function

0.1
0.1 0.365 0.014 0.446 0.008 0.649 0.065 0.715 0.085 0.887 0.099

0.3 0.382 0.013 0.452 0.008 0.666 0.053 0.739 0.064 0.957 0.040

0.5 0.374 0.012 0.444 0.007 0.581 0.050 0.625 0.069 0.909 0.082

Precautionary
loss function

0.1
0.1 0.489 0.014 0.512 0.007 0.871 0.013 0.927 0.009 0.999 0.000

0.3 0.519 0.010 0.526 0.006 0.827 0.016 0.887 0.01 1.000 0.000

0.5 0.462 0.008 0.485 0.005 0.606 0.017 0.621 0.020 0.999 0.000

DeGroot
loss function

0.1
0.1 0.405 0.098 0.465 0.041 0.751 0.135 0.834 0.143 1.000 0.112

0.3 0.419 0.086 0.470 0.038 0.746 0.107 0.826 0.105 1.000 0.043

0.5 0.408 0.083 0.462 0.038 0.668 0.131 0.736 0.150 1.000 0.091
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Table 2. Relative e�ciencies of Bayes estimators relevant to MLE when n = 10, t = 4, and �A = 0:1.

Loss function c g Beta (5, 10) Beta (12, 16) Uniform Je�reys Haldane

Squared error loss function
0.1 0.1 119.327 70.17 27.879 22.217 13.559

0.3 14.374 7.406 4.629 4.437 3.891

0.5 0.1 3.326 2.109 1.081 0.905 0.381
0.3 0.216 0.103 0.19 0.384 1.864

Precautionary loss function
0.1 0.1 103.595 66.52 23.501 18.591 11.859

0.3 12.218 6.991 3.346 2.849 1.942

0.5 0.1 2.953 2.007 0.913 0.747 0.343
0.3 0.184 0.097 0.117 0.159 2.478

DeGroot loss function
0.1 0.1 90.167 63.078 19.852 15.588 10.382

0.3 10.423 6.601 2.439 1.859 1.000

0.5 0.1 2.631 1.913 0.773 0.618 0.308
0.3 0.157 0.092 0.074 0.073 0.012

Table 3. Relative e�ciencies of Bayes estimators relevant to MLE when n = 10, t = 4, �A = 0:8.

Loss function c g Beta (5, 10) Beta (12, 16) Uniform Je�reys Haldane

Squared error loss function
0.1 0.1 25.634 38.665 212.931 673.934 631.542

0.3 0.187 0.293 0.504 0.539 0.673

0.5 0.1 0.221 0.316 0.832 1.314 3.367
0.3 1.530 2.371 1.623 1.240 0.602

Precautionary loss function
0.1 0.1 28.092 40.798 467.035 6438.339 239.711

0.3 0.204 0.309 0.925 1.438 13.616

0.5 0.1 0.239 0.332 1.278 2.709 1.700
0.3 1.651 2.487 2.165 1.780 0.889

DeGroot loss function
0.1 0.1 31.084 43.163 2004.194 4065.666 121.000

0.3 0.225 0.327 2.610 24.936 1.000

0.5 0.1 0.261 0.350 2.315 9.747 1.000
0.3 1.796 2.615 3.257 3.301 9.000

under SRSWOR, are de�ned as follows:
MSE(�̂A(ML)) = E(�̂A(ML) � �A)2;

MSE(�̂A(ML))

=
nX
t=0

(�̂A(ML)��A)2 n!
t!(n�t)!�t(1��)n�t: (17)

MSE(�̂A(Bayes)Beta)

=
nX
t=0

(�̂A(Bayes)Beta��A)2 n!
t!(n�t)!�t(1��)n�t:(18)

MSE(�̂A(Bayes)Uniform)

=
nX
t=0

(�̂A(Bayes)Uniform��A)2 n!
t!(n�t)!�t(1��)n�t:(19)

MSE(�̂A(Bayes)Je�reys)

=
nX
t=0

(�̂A(Bayes)Je�reys��A)2 n!
t!(n�t)!�t(1��)n�t:(20)

MSE(�̂A(Bayes)Haldane)

=
nX
t=0

(�̂A(Bayes)Haldane��A)2 n!
t!(n�t)!�t(1��)n�t:(21)

MSE(�̂A(Bayes)Mixture)
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=
nX
t=0

(�̂A(Bayes)Mixture��A)2 n!
t!(n�t)!�t(1��)n�t:(22)

In order to compare the Bayes estimator with
the classical estimator, the Relative E�ciency (RE) of
Bayes estimators relevant to the classical estimator has
been calculated as follows:

RE(�̂A(Bayes); �̂A(ML)) =
MSE(�̂A(ML))
MSE(�̂A(Bayes))

: (23)

The REs of Bayes estimators for two informative Beta
prior distributions are calculated through the values of
a = 5; b = 10, and a = 12; b = 16 and by three
non-informative prior distributions (such as Uniform,
Je�reys, and Haldane) with respect to the classical
estimator by using Eq. (23) for all the selected loss
functions. The main purpose of including the non-
informative priors is to compare their performances
with the informative priors as well as the MLE. The
results of REs are given in Tables 2-4. The e�ciency
of each Bayes estimator relevant to MLE is checked by
using di�erent values of design constants g and c.

From Tables 1-4, several interesting observations
can be made:

i. It is noted that the Bayes estimator performs
better than the MLE for small-to moderate-sized
samples with all possible values of c and g (cf.
Tables 2-4);

ii. The informative Beta prior performs better than
the non-informative priors do, when the value of
�A = 0:1 for small to moderate values of c and g
under all the loss functions (cf. Table 1);

iii. The performance of non-informative priors (such
as Uniform, Je�reys, and Haldane) is quite better

than that of the Beta prior when �A > 0:7 for
small- to moderate-sized samples (cf. Table 3);

iv. It is observed that the Je�reys prior is more
e�cient than the other selected priors when the
value of n is small and �A is large for all values of
c and g under all the selected loss functions (cf.
Table 3);

v. As the values of n and �A increase, the per-
formance of Uniform prior under all the loss
functions becomes relatively better than that of
other priors (cf. Table 4);

vi. It can be seen that all the selected priors perform
more e�ciently under the squared error loss
function when the values of n and �A are small
for all values of c and g (cf. Tables 2 and 4);

vii. When the value of n is moderate and the value
of �A is large, then the Uniform and Je�ryes
priors perform better under the precautionary
and DeGroot loss functions than other priors do
(cf. Table 3);

viii. E�ciency of the Bayes estimator is slightly af-
fected by the sample size and the choice of priors;
however, it is a�ected by the values of c and g (cf.
Tables 2-4).

To provide an insight into the proposal, we have also
constructed the graph for the comparison of Bayes
estimator with the classical estimator for various com-
binations c, g, n, and t over the whole range of �A (i.e.,
0 � �A � 1). The solid line in these graphs indicates
the behavior of MSE of the MLE, and other lines show
the behavior of the Bayes estimators (with di�erent
priors under di�erent loss functions). It is observed
from the analysis of Figure 1(a)-(f) that the Bayesian

Table 4. Relative e�ciencies of Bayes estimators relevant to MLE when n = 50, t = 20, and �A = 0:1.

Loss function c g Beta (5, 10) Beta (12, 16) Uniform Je�reys Haldane

Squared error loss function
0.1 0.1 55.325 49.383 14.130 12.290 10.383

0.3 12.602 7.045 3.451 2.933 1.884

0.5 0.1 1.903 1.679 0.974 0.918 0.309
0.3 0.327 0.147 0.651 1.552 1.000

Precautionary loss function
0.1 0.1 51.509 47.585 13.846 12.144 10.383

0.3 10.863 6.669 2.738 2.218 1.369

0.5 0.1 1.813 1.629 0.920 0.863 0.309
0.3 0.283 0.139 0.418 0.684 1.003

DeGroot loss function
0.1 0.1 47.981 45.858 13.568 12.001 10.383

0.3 9.392 6.314 2.181 1.687 1.000

0.5 0.1 1.727 1.580 0.870 0.811 0.309
0.3 0.246 0.131 0.278 0.343 0.012
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Figure 1. MSE behavior of Bayes estimator and MLE under (a) SELF when c = 0:1; g = 0:3; n = 25; t = 10, (b) PLF
when c = 0:1; g = 0:3; n = 25; t = 10, (c) DLF when c = 0:1, g = 0:3, n = 25, t = 10, (d) SELF when c = 0:1, g = 0:3,
n = 100, t = 40, (e) PLF when c = 0:1; g = 0:3; n = 100; t = 40, and (f) DLF when c = 0:1, g = 0:3, n = 100, t = 40.

estimators perform better than MLE over the whole
range of parameter �A. It is found that the Bayes
estimators with Beta priors perform better than the
MLE when the value of �A � 0:4 under all the loss
functions (cf. Figure 1(a)-(c)). The Bayes estimator
with non-informative priors (such as Uniform, Je�reys,
and Haldane) shows better performance than MLE

and the Bayes estimators with informative prior do,
when 0:4 < �A � 0:8 under all loss functions. We
have also presented the MSEs comparison between the
Bayes estimators and MLE for a large-sized sample,
i.e., n = 100 (cf. Figure 1(d)-(f)). We observed that
there is an increase in the performance of MSEs of
the Bayes estimators for all the selected priors since
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the value of n is large (cf. Figure 1(a)-(c) versus
Figure 1(d)-(f)); however, even then, Bayes estimators
outperform the MLE over a range of �A starting from
0 to 0.8 for the selected choice of c, g, n, and t.

4.2. Bayes estimators of mixture prior versus
MLE

In order to compare the performances of Bayes estima-
tors, we have selected four di�erent mixtures of prior
distributions. Hussain et al. [29] also used these four
sets of prior. The four cases of prior distributions are
given as follows:

Case I:

(a1; a2; a3; a4) = (1; 2; 3; 4)

(b1; b2; b3; b4) = (2; 4; 6; 8);

(w1; w2; w3; w4) = (0:3; 0:3; 0:2; 0:2):

Case II:

(a1; a2; a3; a4) = (2; 3; 4; 5)

(b1; b2; b3; b4) = (4; 6; 8; 10);

(w1; w2; w3; w4) = (0:2; 0:3; 0:4; 0:1):

Case III:

(a1; a2; a3; a4) = (3; 4; 5; 6;

(b1; b2; b3; b4) = (6; 8; 10; 12);

(w1; w2; w3; w4) = (0:3; 0:2; 0:1; 0:4):

Case IV:

(a1; a2; a3; a4) = (4; 5; 6; 7);

(b1; b2; b3; b4) = (8; 10; 12; 14);

(w1; w2; w3; w4) = (0:1; 0:3; 0:3; 0:3):

By using Eqs. (17) and (22), we have constructed the
graph of the MSEs of the MLE and Bayes estimators
for all of the above-mentioned di�erent sets of prior
distributions. It can be seen that Bayes estimator
utilizing the mixture prior performs better than the
usual MLE over a wide range of parameter �A (cf.,
Figure 2(a)-(d)). It is found that the relative e�ciency
of Bayes estimators is decreased as we make changes
in the values of c and g (cf. Figure 2(a) and (b)). We
have also noted that as n increases, the e�ciency of the
Bayes estimators decreases; however, still, the Bayes
estimator outperforms the MLE in terms of the MSE

(cf. Figure 2(c) and (d)). It is noted that if c = 0:4,
g = 0:3, n = 25 and 100, then we have results similar
to those of Hussain et al. [29], in which they performed
the Bayesian estimation of a Warner [1] model using
the mixed prior. Hence, we strongly recommend using
a mixed prior in the case of disagreement between
researchers about the shape of the distribution of the
parameter of the interest.

Therefore, in general, we may conclude that the
Bayes estimators perform more e�ciently than the
usual MLE in the case of informative, non-informative,
and mixed priors.

5. An application with real data set

In order to give a detailed description of the suggested
Bayesian method from a practical point of view, we
consider the data collected by Liu and Chow [40] in
which they estimated the incidence of induced abortion
in Taiwan. Liu and Chow [40] carried out Warner [1]
procedure with probability of sensitive question being
equal to 0.7 for n = 150 married women in order to
determine the proportion of women, who had experi-
enced induced abortion. The number of yes responses
in the sample is recorded as 60, yielding the sample
proportion of yes responses (�̂) as 0.4. Liu and Chow
[40] obtained the maximum likelihood estimate as 0.25.
Later on, Winkler and Franklin [17] and Bar-Lev et
al. [30] analyzed the same data through the Bayesian
analysis using complete and conjugate prior distribu-
tions, respectively. The Barabesi and Marcheselli [24]
also used the same data for the Bayesian estimation of
the two-stage randomized response procedure.

The posterior mean and standard deviation using
all the selected prior distributions (such as Beta,
Uniform, Je�reys, and Haldane) under all loss functions
(such as squared error, precautionary and DeGroot) are
given in Table 5.

It is noted that the Haldane prior performs more
e�ciently than the other priors under the squared error
and precautionary loss functions (cf. Table 5). Based
on Table 5, we have observed that the performance of
Beta prior is relatively good under the DeGroot loss
function. Therefore, we recommend using the Haldane
and Beta priors under the squared error, precautionary
and DeGroot loss functions, respectively, by using Liu
and Chow [40] data for practical consideration.

6. Summary and conclusions

In this study, a Bayesian estimation of a general
class of a randomized response model was developed
based on simple and mixture priors under di�erent
loss functions. The comparison between the Bayes
estimators and MLE was made based on MSE. The
analysis reveals that the performance of the Bayesian
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Figure 2. MSE behavior of Bayes estimator and MLE when (a) c = 0:2, g = 0:4, n = 25, t = 10, (b) c = 0:4, g = 0:3,
n = 25, t = 10, (c) c = 0:2, g = 0:4, n = 100, t = 40, and (d) c = 0:4, g = 0:3, n = 100, t = 40.

Table 5. Analysis of Liu and Chow [40] data by assuming c = 0:4, g = 0:3, n = 150, and t = 60.

Priors

Square error
loss function

Precautionary
loss function

DeGroot
loss function

Mean SD Mean SD Mean SD

Beta (5,10) 0.280263 0.074778 0.290068 0.140032 0.300215 0.257796

Beta (12,16) 0.348379 0.065655 0.354512 0.110749 0.360752 0.185199

Uniform 0.254464 0.097577 0.272532 0.190091 0.291882 0.358041

Je�reys 0.234750 0.104300 0.256877 0.210369 0.281091 0.406031

Haldane 0.000000 0.000010 0.000006 0.003465 0.328994 1.000000

estimators was quite good for all possible choices of
design parameters c and g over the wide range of
population proportion �A. It was observed that the
superiority of the Bayes estimators was obvious as the
sample size decreased. The Bayes estimators with
informative prior (such as Beta) and non-informative
priors (such as Uniform, Je�reys, Haldane) performed

more e�ciently than MLE when �A � 0:4 and 0:4 <
�A � 0:8, respectively, for all values of c and g under
all loss functions. Moreover, the Bayes estimators
also showed better performance in the case of mixed
prior for small- and moderate-sized samples. Hence,
it may be concluded that whenever prior information
about the likely values of the parameter of interest is
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available, we should opt for Bayesian approach in order
to �nd precise and better estimates.
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