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Abstract. To e�ciently solve the equations that arise from �nite element analysis,
the sti�ness matrix of a model should be structured. This can be achieved by reducing
the pro�le or wavefront of the corresponding graph matrix of a structure depending on
whether the skyline or frontal method is used. One of the e�cient methods for achieving
this goal is the method of King, extended by Sloan. In this paper, the coe�cients of
the priority function utilized in the generalized Sloan's method are optimized using the
recently developed metaheuristic algorithm, called vibrating particles system. The results
are compared with those of other metaheuristic algorithms consisting of the particle swarm
optimization, colliding bodies optimization, enhanced colliding bodies optimization, and
tug of war optimization. These metaheuristics are used for optimum nodal numbering
of the graph models of the �nite element meshes to reduce the pro�le and wavefront of
the corresponding sparse matrices. The comparison of the results of the metaheuristic
algorithms and those of the King and Sloan demonstrates the e�ciency of the new
metaheuristic algorithm utilized for pro�le and wavefront optimization.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

The solution to the sparse systems of simultaneous
equations comprises every main element of many prob-
lems in structural engineering. Such linear algebraic
equations appear in the form of Ax = b arising from
matrix structural analysis and �nite element methods.
These types of equations often involve a positive de�-
nite, symmetric, and sparse matrix coe�cient A. For
large structures, a great deal of computational time
and memory is usually dedicated to �nding a solution
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to these equations. Therefore, some suitable speci�c
patterns for the coe�cients of the corresponding equa-
tions have been provided such as banded form, pro�le
form, and blocked form. These patterns can often be
obtained by the nodal ordering of the corresponding
models.

In the Finite-Element Model (FEM) analysis,
when the nodes have one degree of freedom, performing
nodal ordering is equivalent to reordering the equa-
tions. In a more general problem, for each node with
m degree of freedom, there are m coupled equations
produced for each node. In such cases, re-sequencing
is usually performed on the nodal numbering of the
graph models to reduce the bandwidth, pro�le or
wavefront, because the size of these problems is m-
fold smaller than that with m degree of freedom
numbering. In this article, the mathematical model
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of the FEM is considered as an element clique graph,
and nodal ordering is carried out to reduce the pro�le
and wavefront of the corresponding matrices [1-3].

For nodal numbering in the solution of sparse sys-
tems, the following rule can be used: permuting rows
and columns of a matrix by the proper renumbering of
the nodes of the corresponding graph. Two important
parameters in nodal ordering are pro�le and wavefront
optimization. In fact, for sparse matrices, the size
of the problem can be measured by the pro�le or
wavefront of such matrices. These problems produced
considerable interest in the past because of its practical
relevance for a signi�cant range of global optimization
applications. Since the problem of nodal numbering is
NP-Complete [4], many approximate approaches and
heuristics have been proposed, examples of which can
be found in Gibbs et al. [5], Cuthill and McKee [6],
Kaveh [1], Bernardes and Oliveira [7], King [8], Kaveh
and Behzadi [9], Kaveh and Roosta [10], and Koohes-
tani and Poli [11].

Recently generated optimization methods consist
of metaheuristic algorithms that solve complex prob-
lems. These techniques explore a feasible region based
on both randomization and some speci�c rules through
a group of search agents. The rules are usually inspired
by the laws of natural phenomena [12].

As a recently developed type of metaheuristic
approach, Colliding Bodies Optimization (CBO) was
introduced and employed in structural problems by
Kaveh and Mahdavi [13]. CBO is a multi-agent method
and is inspired by a one-dimensional collision between
two agents. Each object is considered as a body with
a speci�c mass and a velocity. A collision occurs
between a pair of bodies, and the new positions of
the colliding bodies are updated based on the laws of
collision. The enhanced colliding bodies optimization
introduced by Kaveh and Ilchi Ghazaan [14] employs
memory in order to save the best-so-far position to
improve the performance of CBO without increasing
the computer execution time. This algorithm also
utilizes a mechanism to escape local optima. A multi-
agent metaheuristic algorithm, called tug of war opti-
mization, was introduced by Kaveh and Zolghadr [15].
This technique models each candidate solution as a
team engaged in a series of tug of war competitions.
The weight of the teams is determined based on the
quality of the corresponding solutions, and the value
of pulling force that a team can exert on the rope
is assumed to be proportional to its weight. VPS is
a population-based optimization algorithm, which is
inspired by a free vibration of a single degree of freedom
systems with viscous damping, as was introduced by
Kaveh and Ilchi Ghazaan [16]. In this method, the
solution candidates are considered as agents that grad-
ually approach their equilibrium positions. In order
to ensure a proper balance between exploration and

exploitation, equilibrium positions are attained from
the current population and the best historical position.

The rest of this paper is organized as follows: in
Section 2, some de�nitions of graph theory, pro�le, and
wavefront are presented. CBO, ECBO, TWO, and VPS
algorithms are brie
y stated in Section 3. In order
to show the performance of these methods in reducing
the pro�le and wavefront of the sti�ness matrix, eight
examples are presented in Section 4. The last section
concludes the present study.

2. Problem de�nition

2.1. De�nitions from the theory of graphs
Let G(N;M) be a graph with a set of members
M(jM j = m) and a set of nodes N(jN j = n) together
with a relation of incidence. The degree of a node is the
number of members, which are incidental to that node;
1-weighted degree of a node is de�ned as the sum of the
degrees of its adjacent nodes. A spanning tree is a tree
containing all the nodes of S. The Shortest Route Tree
(SRTn0) rooted in a considered node (starting node),
n0, is a spanning tree where the distance between every
node nj of S and n0 is minimum and where the distance
between the two nodes is taken to be the number of
members in the shortest path between these nodes. A
contour Cn0

k contains all the nodes with equal distance
k from node n0. The number of contours of an SRTn0

is known as its depth, denoted by d(SRTn0), and the
highest number of nodes in a contour shows the width
of SRTn0 . A label As of G assigns a set of integers
f1; 2; 3; � � � ; ng to the nodes of graph G. As(i) is the
label or the integer assigned to node i, and each node
has a di�erent label [2].

The pro�le of an N �N matrix related to graph
G, for the assignment process by As(i), is de�ned as
follows:

PAs =
NX
i=1

bi; (1)

where the row bandwidth, bi, for row i is de�ned as
the number of inclusive entries from the �rst nonzero
element in the row to the (i + 1)th entry for this
assignment. The e�ciency of the given ordering for
the pro�le solution scheme corresponds to the number
of active equations during each step of the factorization
process. Formally, row j is de�ned to be active during
elimination of column i if j � i, and there exists aik = 0
with k � i. Hence, in the ith stage of the factorization,
the number of active equations is the number of rows
of pro�le that intersect in column i, where the already
eliminated rows are ignored. Let fi denote the number
of equations that are active during the elimination of
variable xi. It follows from the symmetric structures
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of the matrix that:

PAs =
NX
i=1

fi =
NX
i=1

bi; (2)

where fi is the frontwidth or wavefront. Assuming that
N and the average value of fi are considerably large,
it can be shown that a complete pro�le or front fac-
torization needs approximately O(NF 2

rms) operations,
where Frms is the root-mean square frontwidth, which
is de�ned as follows:

Frms =

"
1
N

NX
i=1

f2
i

#0:5

: (3)

For the purpose of obtaining an optimal nodal ordering
in the pro�le and frontwidth reduction problems, the
set of integers f1; 2; 3; � � � ; ng should be assigned to the
nodes ofG using a priority function, and the coe�cients
of the priority functions are obtained using PSO, CBO,
ECBO, TWO, and VPS algorithms.

2.2. An algorithm based on priority queue for
pro�le and wavefront reduction

The nodal numbering in a priority queue is carried
out through the assignment of status based on the
numbering approach of King [8]. King's method was
generalized by Sloan [17] by introducing a priority
queue that controls the order to be followed in the
numbering of the nodes. This algorithm comprises two
phases:

Phase 1: Selecting a pair of pseudo-peripheral
(pseudo-diameter) nodes;

Phase 2: Nodal numbering.

In Phase 1, a pair of nodes is selected as starting
and ending nodes according to the following steps:

Step 1: Choose an arbitrary node s of minimum
degree;

Step 2: Generate the shortest route tree SRTs =
fCs1 ; Cs2 ; � � � ; Csdg rooted in s. Let S be the list of the
nodes of Csd, which is stored in the order of increasing
degree;

Step 3: Decompose S into subsets Sj of cardinality
jSj j, j = 1; 2; � � � ;�, where � is the maximum
degree of any node of S such that all nodes of Sj are
characterized by degree j. Generate an SRT from
each node y of S for the �rst 1 � mj � �. If
d(SRTy) > d(SRTs), then set s = y and go to Step 2;

Step 4: Let e be the root of the longest SRT that has
the smallest width. When the algorithm terminates,
s and e are the end points of a pseudo-diameter.

Figure 1. Di�erent statuses of nodes.

In Phase 2 the nodes of an element clique graph
are reordered, and it is ensured that the position of
a node in this reordering phase follows a priority rule
according to the following steps:

Step 1: Find the status of all nodes. A node can be
found in one status of the following cases, as shown in
Figure 1. A node that has been assigned a new label
is considered as post-active. Nodes that are adjacent
to a post-active node, yet do not have a post-active
status, are called active. Each node which is adjacent
to an active node, but is not post-active or active, is
said to be pre-active. The nodes which are not post-
active, active, or pre-active are considered as inactive;

Step 2: Prepare a list of the candidate nodes,
consisting of active and pre-active nodes, for labeling
in the next step;

Step 3: Calculate the priority number of all the
candidate nodes. For node i, the number is obtained
from the following relationship:

Pi = W1 � �i �W2 �Di; (4)

where W1 and W2 are integer weights (suggested
as W1 = 1 and W2 = 2 in the original Sloan's
algorithm), �i is the distance between each node i
and the end node, and Di is the incremental degree
of node i, which is de�ned as follows:

Di = di � ci + ki; (5)

where di is the degree of node i, ci is the number of
active and post-active nodes adjacent to node i, and
ki is zero if node i is active or post-active, and unity
otherwise;

Step 4: Select the node with the highest priority
among the candidate nodes and label it;

Step 5: Repeat Steps 1-4 until all the nodes of the
graph are labeled.

In Eq. (4) if W1 = 0 and W2 = 1, the node labeling
algorithm becomes identical to the one proposed by
King [8].
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2.3. The priority function with new integer
weights

According to Eq. (4), a linear priority function of two
graph parameters is employed in Sloan's algorithm,
and the weights determine the rank of each parameter.
Sloan has recommended the pair W1 = 1 and W2 = 2
for the weights. However, some research results show
that, for some problems, using other values leads to
better results.

The priority was generalized by Kaveh and
Rahimi Bondarabdy [18] to a linear function of vectors
of graph parameters as follows:

Fi =
LX
i=1

Wi �Gi; (6)

where Gi (i = 1; 2; � � � ; L) are the normalized Ritz
vectors representing the graph parameters, Wi (i =
1; 2; � � � ; L) are the weights of the Ritz vectors (Ritz
coordinates), which are unknown. That is, one can
utilize L characteristics of a graph to de�ne the priority
function and �nd the weights that can guide the
algorithm to choose an optimal pro�le or wavefront.

L = 2 characteristics of the graph model are
employed in Sloan's algorithm. Here, we �nd the best
sets of weights for the priority function with L = 2 and
5. These sets of integer weights are found by utilizing
PSO, CBO, ECBO, TWO, and VPS algorithms.

The method of L = 2 is presented as the �rst
case. The vectors of graph properties are taken similar
to those of Sloan's strategy. In the second case, the
method of L = 5, which uses �ve vectors Gi (i =
1; 2; � � � ; 5), is presented as follows:

- G1: Degrees of the nodes;
- G2: The node distance from the end node;
- G3: The node distance from the starting node;
- G4: The 1-weighted degree;
- G5: The width of an SRT rooted in the starting

node.

Once the vectors of graph parameters are formed, their
weights can be obtained using PSO, CBO, ECBO,
TWO, and VPS algorithms.

3. The utilized metaheuristic algorithms

Metaheuristic algorithms have been previously utilized
to optimize the coe�cients of the generalized Sloan
function. Genetic algorithm [19], ant colony [20],
charged system search [21], CBO, ECBO, and tug of
war [22] are some of these applications. In this paper,
VPS is added to the 3 algorithms used in the latter
reference, and a more extensive comparison is made.

In this section, a brief description and pseudo
codes of the colliding bodies optimization algorithm,
its enhanced version, and then two new algorithms,
called tug of War Optimization algorithm and vibrating
particles system algorithm, are presented and employed
to calculate the optimum values of the coe�cients.

3.1. Colliding bodies optimization
The collision between two objects is a natural phe-
nomenon. The colliding bodies optimization technique
was developed based on this occurrence by Kaveh and
Mahdavi [13]. In this technique, one object collides
with another and, thus, they move towards a minimum
energy level. CBO utilizes a simple formulation, does
not employ memory for saving the best-so-far solutions,
and requires no internal parameter. For further details,
reader mays refer to [13]. The pseudo code of CBO is
provided in Figure 2.

3.2. Enhanced colliding bodies optimization
Enhanced colliding bodies optimization is a modi�ed
version of CBO, which improves CBO to achieve highly
reliable solutions, as was introduced by Kaveh and
Ilchi Ghazaan [14]. The introduction of memory
increases the convergence speed of ECBO more than
that of CBO. Furthermore, changing some components
of CBO helps ECBO escape local optima. For further

Figure 2. Pseudo code of the colliding bodies optimization algorithm.
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Figure 3. Pseudo code of the enhanced colliding bodies optimization algorithm.

Figure 4. Pseudo code of the tug of war optimization algorithm.

details, readers may refer to [14]. The pseudo code of
ECBO is provided in Figure 3.

3.3. Tug of War Optimization (TWO)
algorithm

TWO is a population-based metaheuristic algorithm,
which was introduced by Kaveh and Zolghadr [15].
This approach models each candidate solution Xi =
fxi;jg as a team engaged in a series of tug of war
competitions. The weight of the teams is determined
based on the quality of the corresponding solutions,
and the value of pulling force which a team can exert
on the rope is assumed to be proportional to its weight.
Naturally, the opposite team will have to maintain at
least the same value of force in order to sustain its
grip of the rope. The lighter team accelerates toward
the heavier team, and this forms the convergence

operator of TWO method. The method improves the
quality of the solutions iteratively by keeping a proper
exploration/exploitation balance and employing the
described convergence operator. The pseudo code of
TWO is provided in Figure 4.

3.4. Vibrating particles system algorithm
The vibrating particles system is a metaheuristic
method and is inspired by the damped free vibration
of single degree of freedom systems, as was introduced
by Kaveh and Ilchi Ghazaan [16]. This approach
involves a number of candidate solutions, representing
the particles system. The particles are initialized
randomly in an n-dimensional search space and grad-
ually approach their equilibrium positions. To keep
the balance between the exploration and exploitation,
these equilibrium positions are achieved through the
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Figure 5. Pseudo code of the vibrating particles system algorithm.

current population and the historically best position.
The pseudo code of VPS is provided in Figure 5.

4. Numerical examples

In this section, eight Finite Element Meshes (FEMs)
are considered. Element clique graph is a type of graph
model that is employed for transferring topological
properties of �nite element models into connectivity
properties of graphs [3]. The nodes of this graph
model are the same as those of the corresponding �nite
element model with the nodes of each element being
cliqued, and the multiple members in the entire graph
are replaced by single members. Ten problems are
presented to show the performance and e�ciency of
some new optimization algorithms. Four test problems
are presented by Everstine [23]. The well-known
standard PSO algorithm, two new algorithms, namely
the colliding bodies optimization and enhanced collid-
ing bodies optimization, and two recently developed
methods called tug of war optimization and vibrating
particles system are applied to reduce the pro�le and
wavefront. The results of the reduction of pro�le and
wavefront with L = 2 and 5 methods are compared
with those of the Sloan and King's algorithms in
Tables 1 to 16, respectively.

Example 1. A tower with 87 nodes and 227 elements
is considered. The �nite element mesh of this model
is shown in Figure 6. The e�ciency of the above-
mentioned algorithms is tested by this model for pro�le
and wavefront reduction problems. The obtained
results are given in Tables 1 and 2, respectively. The
quality of the results is provided in these tables.

Example 2. The schematic of a �nite element model
of power supply housing is presented in Figure 7. This

Figure 6. Schematic of the FEM of a tower.

Figure 7. Schematic of the FEM of power supply
housing.

model has 307 nodes and 1108 elements. The results of
pro�le and wavefront reduction problems by employing
optimization algorithms are given in Tables 3 and 4,
respectively.



2038 A. Kaveh and Sh. Bijari/Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 2032{2046

Table 1. Comparison of the results of pro�le reduction for the tower problem.

Algorithm No. of vectors W1 W2 W3 W4 W5 Pro�le

E
xa

m
p
le

1,
N

=
87

Sloan 1 2 778
King 0 1 795
PSO L = 2 0.1036 0.3706 767

L = 5 {0.0144 {0.6110 0.7313 {0.0006 0.2632 571
CBO L = 2 0.2719 0.0641 692

L = 5 {0.0589 {0.8641 0.9263 {0.0009 0.8139 571
ECBO L = 2 0.2830 0.8495 767

L = 5 0.0217 {0.8665 0.9936 {0.0001 {0.0597 571
TWO L = 2 0.2707 0.9853 767

L = 5 0.0011 {0.4868 0.5443 {0.0015 {0.9865 571
VPS L = 2 0.0640 0.2222 767

L = 5 {0.0175 {0.7657 0.8836 {0.0001 0.8663 571

Table 2. Comparison of the results of wavefront reduction for the tower problem.

Algorithm No. of vectors W1 W2 W3 W4 W5 Frms

E
xa

m
p
le

1,
N

=
87

Sloan 1 2 8.7382
King 0 1 9.2189
PSO L = 2 0.2007 0.6255 9.6900

L = 5 0.0009 {0.5316 0.5742 {0.0009 0.5547 6.9124
CBO L = 2 0.2875 0.8730 9.6900

L = 5 0.0004 0.9800 {0.9047 {0.0008 0.3827 6.9124
ECBO L = 2 0.2428 0.8169 9.6900

L = 5 0.0005 {0.8408 0.9966 {0.0027 0.1399 6.9124
TWO L = 2 0.2727 0.9664 9.6900

L = 5 {0.1069 {0.6872 0.6581 {0.0040 0.8902 7.3085
VPS L = 2 0.0694 0.2674 9.6900

L = 5 0.0000 {0.7642 0.9004 {0.0022 0.0390 6.9124

Figure 8. Schematic of the hull w/re�nement model.

Example 3. A hull w/re�nement model containing
310 nodes and 1069 elements is considered in Figure 8.
Tables 5 and 6 provide the values of the pro�le and
wavefront reduction, respectively, and the results can
be compared with those of these tables.

Figure 9. FEM of a barge.

Example 4. The FEM of a barge with 419 nodes
and 1579 elements is considered, as shown in Figure 9.
Tables 7 and 8 provide the comparison results of pro�le
and wavefront reduction problems by utilizing PSO,
CBO, ECBO, TWO, and VPS algorithms for this
example.

Example 5. A Z-shaped �nite element model of a
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Table 3. Comparison of the results of pro�le reduction for the power supply housing problem.

Algorithm No. of vectors W1 W2 W3 W4 W5 Pro�le

E
xa

m
p
le

2,
N

=
30

7

Sloan 1 2 8730

King 0 1 9095

PSO L = 2 0.0042 0.2228 8205

L = 5 {0.0742 0.6049 {0.0674 0.0103 {0.5000 8421

CBO L = 2 0.0850 0.8204 8148

L = 5 0.0174 {0.2591 0.9308 {0.0035 0.1450 8262

ECBO L = 2 0.0546 0.9436 8205

L = 5 {0.0035 {0.0601 0.3642 {0.0010 {0.9357 8262

TWO L = 2 0.0248 0.3105 8189

L = 5 {0.5751 {0.8167 {0.1357 {0.5099 0.6424 8004

VPS L = 2 0.0168 0.2476 8205

L = 5 0.0009 {0.1628 0.9542 {0.0002 0.7594 8213

Table 4. Comparison of the results of wavefront reduction for the power supply housing problem.

Algorithm No. of vectors W1 W2 W3 W4 W5 Frms

E
xa

m
p
le

2,
N

=
30

7

Sloan 1 2 31.2292

King 0 1 32.0931

PSO L = 2 0.1578 0.9402 27.5724

L = 5 0.0105 0.1509 {0.9033 {0.0056 {0.6496 30.5202

CBO L = 2 0.1641 0.7762 30.6501

L = 5 {0.0375 {0.1102 0.9901 0.0056 {0.0212 28.426

ECBO L = 2 0.0777 0.9292 27.6011

L = 5 {0.0416 {0.0428 0.9934 0.0080 {0.0424 28.4111

TWO L = 2 0.0069 0.0459 27.2907

L = 5 {0.3605 {0.9187 {0.0700 {0.7603 {0.7260 27.2771

VPS L = 2 0.0368 0.7499 27.2907

L = 5 0.0042 {0.0490 0.8914 {0.0011 {0.3126 27.7194

Table 5. Comparison of the results of pro�le reduction for the hull w/re�nement model.

Algorithm No. of vectors W1 W2 W3 W4 W5 Pro�le

E
xa

m
p
le

3,
N

=
31

0

Sloan 1 2 3211
King 0 1 3222
PSO L = 2 0.4576 0.1340 3171

L = 5 {0.0317 0.5209 {0.3798 {0.0137 0.9275 3170
CBO L = 2 0.9282 0.2813 3171

L = 5 0.0290 0.3456 0.9489 {0.0134 0.3580 3125
ECBO L = 2 0.9380 0.2136 3179

L = 5 {0.0108 {0.1277 0.8426 {0.0031 0.1786 3125
TWO L = 2 0.9556 0.3112 3179

L = 5 0.4208 {0.9040 {0.8360 {0.9611 0.6841 2979
VPS L = 2 0.1361 0.0405 3171

L = 5 {0.0368 {0.1685 0.9088 {0.0012 {0.8294 3125
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Table 6. Comparison of the results of wavefront reduction for the re�ned �nite element model.

Algorithm No. of vectors W1 W2 W3 W4 W5 Frms

E
xa

m
p
le

3,
N

=
31

0

Sloan 1 2 10.5232

King 0 1 10.5841

PSO L = 2 0.4899 0.1379 10.4361

L = 5 0.0326 {0.1466 0.7705 {0.0080 0.2158 10.2531

CBO L = 2 0.8400 0.2420 10.4108

L = 5 0.0115 {0.0681 0.4104 {0.0024 0.0422 10.2716

ECBO L = 2 0.8420 0.8420 10.4108

L = 5 {0.0502 {0.1924 0.8743 {0.0003 0.4107 10.2716

TWO L = 2 0.9624 0.2722 10.4108

L = 5 {0.7532 {0.6871 {0.6053 {0.9134 {0.0993 9.7714

VPS L = 2 0.5418 0.1575 10.4361

L = 5 {0.0307 {0.1404 0.8417 {0.0008 0.2558 10.2716

Table 7. Comparison of the results of pro�le reduction for the barge problem.

Algorithm No. of vectors W1 W2 W3 W4 W5 Pro�le

E
xa

m
p
le

4,
N

=
41

9

Sloan 1 2 9113
King 0 1 9301
PSO L = 2 0.5179 0.0881 8808

L = 5 {0.0932 {0.2695 0.7979 0.0075 0.4298 8651
CBO L = 2 0.7913 0.1417 8808

L = 5 {0.1436 {0.2777 0.9433 0.0140 0.2705 8646
ECBO L = 2 0.8527 0.1544 8802

L = 5 {0.9124 0.4662 {0.7636 {0.0054 {0.0497 8640
TWO L = 2 0.9766 0.1637 8804

L = 5 0.0331 0.9569 {0.1261 {0.0064 0.9825 8643
VPS L = 2 0.3376 0.0664 8804

L = 5 0.0287 {0.2435 0.9158 {0.0092 {0.1923 8630

Table 8. Comparison of the results of wavefront reduction for the barge problem.

Algorithm No. of vectors W1 W2 W3 W4 W5 Frms

E
xa

m
p
le

4,
N

=
41

9

Sloan 1 2 22.5524
King 0 1 23.0926
PSO L = 2 0.7145 0.1413 21.6733

L = 5 0.1294 0.7287 {0.2671 {0.0203 {0.2336 21.3466
CBO L = 2 0.9711 0.1722 21.6906

L = 5 {0.0756 0.8504 {0.2259 0.0063 {0.6770 21.2456
ECBO L = 2 0.2526 0.0449 21.6583

L = 5 {0.0531 {0.2415 0.9790 0.0044 {0.0757 21.2783
TWO L = 2 0.4787 0.0870 21.6733

L = 5 {0.0402 0.9657 {0.3727 0.0033 0.8098 21.2683
VPS L = 2 0.3065 0.0611 21.6593

L = 5 {0.1294 0.9687 {0.3533 0.0105 {0.7296 21.2456
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Figure 10. FEM of a shear wall.

Figure 11. The element clique graph of a rectangular
FEM with four openings.

shear wall with 550 nodes is considered. The element
clique graph of this model is shown in Figure 10. The
performance of the algorithms is tested by this model
for pro�le and wavefront reduction problems. The
results are given in Tables 9 and 10, respectively.

Example 6. The element clique graph of a rectan-
gular FEM with four openings, as shown in Figure 11,
contains 760 nodes. The performances of PSO, CBO,
ECBO, TWO, and VPS algorithms are tested by this
model for pro�le and wavefront reduction problems.
The results for these problems are represented in
Tables 11 and 12, respectively.

Example 7. The grid model of a fan with 1 D
beam elements containing 1575 nodes is considered, as
shown in Figure 12. Similar to the previous examples,
the obtained values by the algorithms for pro�le and
wavefront reduction problems are given in Tables 13
and 14, respectively, where the results can easily be
compared.

Figure 12. The graph model of a fan.

Figure 13. Finite element grid model of a shear wall.

Example 8. The graph model of an H-shaped shear
wall with 4949 nodes is considered, as shown in
Figure 13. The performance of the above-mentioned
algorithms is veri�ed by this model, and the results
of these algorithms for pro�le and wavefront reduction
problems are provided in Tables 15 and 16, respectively.

5. Concluding remarks

The main aim of this study is to use VPS algorithm for
pro�le and wavefront reduction of �nite element mesh
matrices for the �rst time and to present the pseudo
codes for CBO, ECBO, TWO, and VPS algorithms.
The results of these algorithms, when applied to 8
real-life �nite element models, were then compared.
According to Tables 1 to 16, it can be observed
that the achieved results of these algorithms were
quite satisfactory, compared to the well-known graph
theoretical method of the King and Sloan.
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Table 9. Comparison of the results of pro�le reduction for the shear wall problem.

Algorithm No. of vectors W1 W2 W3 W4 W5 Pro�le

E
xa

m
p
le

5,
N

=
55

0

Sloan 10530

King 10974

PSO L = 2 0.0007 0.4852 10501

L = 5 {0.0863 0.4638 {0.3677 0.0034 0.9191 9280

CBO L = 2 0.0043 0.4001 10501

L = 5 0.2191 0.9551 {0.6962 {0.0390 {0.3207 9242

ECBO L = 2 0.0001 0.9881 10501

L = 5 {0.0255 0.8883 {0.6256 {0.0110 {0.9183 9237

TWO L = 2 0.0129 0.7645 10501

L = 5 {0.0404 0.8801 {0.5940 {0.0063 0.7426 9237

VPS L = 2 0.0024 0.4913 10501

L = 5 {0.0917 0.9658 {0.6458 {0.0017 0.2137 9237

Table 10. Comparison of the results of wavefront reduction for the shear wall problem.

Algorithm No. of vectors W1 W2 W3 W4 W5 Frms

E
xa

m
p
le

5,
N

=
55

0

Sloan 20.1739

King 21.0798

PSO L = 2 0.3069 0.2202 20.1401

L = 5 {0.3188 0.9852 {0.7009 0.0489 0.118 17.2693

CBO L = 2 0.8701 0.6144 20.1401

L = 5 {0.1888 0.9093 {0.8122 0.0210 0.8648 17.1544

ECBO L = 2 0.8858 0.6517 20.1401

L = 5 {0.1891 {0.8720 0.9777 0.0199 {0.4653 17.2239

TWO L = 2 0.8711 0.6352 20.1401

L = 5 0.0101 0.9086 {0.8164 {0.0034 {0.1742 17.1492

VPS L = 2 0.2634 0.1834 20.1401

L = 5 {0.2682 {0.8807 0.8722 {0.0001 0.5653 17.2057

Table 11. Comparison of the results of pro�le reduction for the rectangular FEM with a four-opening problem.

Algorithm No. of vectors W1 W2 W3 W4 W5 Pro�le

E
xa

m
p
le

6,
N

=
76

0

Sloan 18719
King 18839
PSO L = 2 0.6645 0.9066 18690

L = 5 0.1056 0.8858 {0.4835 {0.0152 0.0524 17136
CBO L = 2 0.1899 0.2566 18689

L = 5 {0.3332 {0.7097 0.9412 0.0507 0.9747 17122
ECBO L = 2 0.6665 0.9228 18581

L = 5 {0.0458 0.7835 {0.6332 0.0060 {0.2254 17039
TWO L = 2 0.7136 0.9633 18581

L = 5 {0.0178 {0.4092 0.9291 0.0024 {0.5575 17039
VPS L = 2 0.1785 0.2491 18581

L = 5 {0.0513 0.796 {0.3421 0.007 0.0739 17039
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Table 12. Comparison of the results of wavefront reduction for the rectangular with a four-opening problem.

Algorithm No. of vectors W1 W2 W3 W4 W5 Frms

E
xa

m
p
le

6,
N

=
76

0

Sloan 25.9092

King 26.6508

PSO L = 2 0.2053 0.3469 25.8411

L = 5 {0.0879 {0.3811 0.8933 0.012 {0.1249 23.5891

CBO L = 2 0.3181 0.5433 25.8438

L = 5 {0.0713 {0.6558 0.9556 0.0095 {0.6861 23.4955

ECBO L = 2 0.1855 0.3155 25.8411

L = 5 {0.1056 0.8982 {0.7698 0.0121 {0.7255 23.4743

TWO L = 2 0.5752 0.9624 25.8438

L = 5 {0.0919 0.9571 {0.6803 0.0130 {0.0568 23.5090

VPS L = 2 0.0287 0.05 25.8438

L = 5 {0.0622 {0.4264 0.9926 0.0086 {0.2518 23.4599

Table 13. Comparison of the results of pro�le reduction for the fan model.

Algorithm No. of vectors W1 W2 W3 W4 W5 Pro�le

E
xa

m
p
le

7,
N

=
15

75

Sloan 28703

King 28853

PSO L = 2 0.2588 0.6068 28629

L = 5 {0.2965 0.5407 {0.6326 {0.0214 {0.1835 29674

CBO L = 2 0.2129 0.4426 28608

L = 5 {0.5700 0.8618 {0.5831 0.0777 0.3363 27992

ECBO L = 2 0.1765 0.9272 28587

L = 5 {0.4186 0.9776 {0.7792 0.1007 {0.0557 27982

TWO L = 2 0.1613 0.8465 28579

L = 5 {0.3306 0.8144 {0.5654 0.0668 0.6810 27977

VPS L = 2 0.0274 0.1543 28568

L = 5 {0.6613 0.8839 {0.637 0.149 {0.2288 27982

Table 14. Comparison of the results of wavefront reduction for the fan model.

Algorithm No. of vectors W1 W2 W3 W4 W5 Frms

E
xa

m
p
le

7,
N

=
15

75

Sloan 18.3958
King 18.4698
PSO L = 2 0.0605 0.3289 18.3126

L = 5 {0.0709 0.6589 {0.9003 {0.0677 {0.4860 18.9964
CBO L = 2 0.1382 0.8659 18.3235

L = 5 {0.2174 {0.4203 0.4590 0.0462 {0.2162 19.2531
ECBO L = 2 0.1688 0.8892 18.3232

L = 5 0.1883 0.7370 {0.5928 {0.0607 {0.0945 18.6574
TWO L = 2 0.0357 0.1982 18.3240

L = 5 0.0441 0.9101 {0.7696 0.0139 {0.6153 18.0211
VPS L = 2 0.0597 0.3524 18.3168

L = 5 {0.2561 {0.3969 0.5031 0.0699 {0.7877 18.2694
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Table 15. Comparison of the results of pro�le reduction for the H-shape problem.

Algorithm No. of vectors W1 W2 W3 W4 W5 Pro�le

E
xa

m
p
le

8,
N

=
49

49

Sloan 157457
King 157103
PSO L = 2 0.0449 0.6963 157095

L = 5 0.1106 0.9323 {0.0624 {0.0284 {0.3706 160705
CBO L = 2 0.0229 0.9146 157095

L = 5 {0.9709 {0.9856 0.1853 0.2102 {0.3565 159681
ECBO L = 2 0.0620 0.9365 157095

L = 5 {0.5805 {0.7778 0.2437 0.1277 {0.1065 159676
TWO L = 2 0.0721 0.9800 157095

L = 5 {0.8206 -0.8691 0.5953 0.4801 0.2781 159675
VPS L = 2 0.0081 0.8161 157095

L = 5 {0.8685 {0.9894 0.0888 0.1738 {0.1293 159638

Table 16. Comparison of the results of wavefront reduction for the H-shape problem.

Algorithm No. of vectors W1 W2 W3 W4 W5 Frms

E
xa

m
p
le

8,
N

=
49

49

Sloan 32.3665
King 32.2875
PSO L = 2 0.0445 0.6963 32.2869

L = 5 0.2036 {0.9340 0.0601 0.0151 {0.5008 32.9486
CBO L = 2 0.0361 0.8204 32.2869

L = 5 {0.0469 {0.9805 0.0890 0.0109 {0.0406 32.7939
ECBO L = 2 0.0145 0.6215 32.2869

L = 5 {0.0665 {0.9779 0.2937 0.0204 0.0726 32.8298
TWO L = 2 0.0772 0.9898 32.2869

L = 5 {0.3335 {0.6943 0.6808 0.1610 {0.0604 32.8845
VPS L = 2 0.0025 0.3597 32.2869

L = 5 {0.6995 {0.8788 0.0746 0.1439 0.8584 32.7883

In pro�le and wavefront reduction problems with
L = 2 and 5 methods, an attempt was made to display
the applicability of using di�erent priority functions
by utilizing CBO, ECBO, TWO, and VPS algorithms.
Optimal weights for these functions were achieved in
the optimization processes for reducing the pro�le
and wavefront of the sti�ness matrices of the �nite
element models. According to Tables 1 to 16, it can
be observed that Sloan and King's approaches can
improve in most cases using some new parameters and
weights. The weights obtained for di�erent examples
show that, compared to Sloan and King's algorithms,
more suitable pro�le and wavefront values can be
achieved by using the two-parameter method (L = 2).
Compared to the two-parameter method and Sloan
and King's algorithms, smaller pro�le and wavefront
values can be attained in the �ve-parameter scheme
(L = 5). However, for Example 8, the values of pro�le
and wavefront of the Sloan and King's methods are
smaller than those of the �ve-parameter algorithm.

It should be noted that, in L = 5 approach, the
active degrees are not updated as in Sloan's technique.
Therefore, one should not always expect a better result
when �ve adjusted parameters are employed instead
of two free parameters. Since the graph properties
employed in L = 5 method are more than those in
L = 2 approach, the amount of reduction in pro�le and
wavefront is higher than that in the Sloan and King's
algorithms. The comparison results of the pro�le and
wavefront reduction problem for Example 4 are shown
in Figures 14 and 15, respectively.

The new recently developed metaheuristic algo-
rithm, namely the vibrating particles system, has been
employed in this study for the �rst time. Tables 1
to 16 demonstrate that this algorithm �nds superior
optimal values for pro�le and wavefront of most of
the investigated problems. Moreover, the optimized
results obtained by TWO and VPS can compete in
performance with those obtained by the other three
optimization methods of PSO, CBO, and ECBO and
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Figure 14. Comparison of pro�le results for Example 4.

Figure 15. Comparison of the wavefront results for
Example 4.

Figure 16. Convergence curves obtained for Example 4.

attain better results in some cases. Figures 16-17 and
Figures 18-19 show the convergence rate comparisons
of these algorithms for pro�le and wavefront reduction
in the case of Examples 4 and 6, respectively.

It should be mentioned that the optimization
proposed in this paper was performed to improve the
coe�cients of Sloan's algorithm and was not necessarily
limited to the pro�le reduction of sparse matrices. A
direct optimization may or may not result in better
values for the pro�le of the models.

Although the methods of this paper are used for
nodal ordering in the sti�ness method, their application

Figure 17. Convergence curves obtained for Example 4.

Figure 18. Convergence curves obtained for Example 6.

Figure 19. Convergence curves obtained for Example 6.
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can easily be extended to ordering the self-equilibrating
systems in the force method.
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