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Abstract. In this paper, we consider a two-echelon inventory system with a central
warehouse and two identical retailers employing information sharing. Transportation times
to each retailer and the warehouse are constant. Retailers face independent Poisson demand
and apply continuous review policy, i.e., (R;Q)-policy. The warehouse initiates with m
batches (of given size Q) and places an order with an outside supplier when a retailer's
inventory position reaches R+ s; R+ s is the inventory position considered by the central
warehouse and s is a non-negative constant. So far, an approximate cost function as well as
exact analysis of system for only one retailer has been proposed. However, the derivation
of the exact value of the expected total cost of the system for more than one retailer is still
an open question. This paper attempts to meet this challenge and derive the exact cost
function for two retailers. To achieve this purpose, we resort to conditional probability to
split the problem into two simpler problems; then, we obtain the exact expected total cost
of the system.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

In an uncertain, complicated, and competitive market,
it is vital for a business to improve its exibility and
approachability. To satisfy these needs, companies
have concentrated on information technology at an
increasingly fast pace. On the other hand, distribution
of bene�ts among members creates a tendency to share
their information. If there is a fair distribution of
bene�ts among all members, or all decisions are made
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by one party, they will use a centralised decision-
making system. When members are independent and
operate as separate parties, these systems are regarded
as decentralised supply chain systems.

When there is no information sharing throughout
the supply chain, each level aims to optimise its costs.
As a result, customer demand variability tends to
increase for upstream level parties (vendors, manu-
facturers, etc.) In the literature, this phenomenon
is known as bullwhip e�ect. Forrester [1] reported
this situation for the �rst time and referred to it as
\Demand Ampli�cation." Afterwards, bullwhip e�ect
was shown in games; the most recognised of such
games was \Beer Distribution Game," also known as
\Beer Game," created by Forrester and others at MIT.
Thereafter, electronic versions and web-based versions
were proposed by Simchi-Levi et al. [2].
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Nowadays, we have at our disposal the results
of extensive empirical and theoretical studies about
the values of information sharing. Lee et al. [3]
considered a two-echelon supply chain including one
manufacturer and one retailer for periodic review in-
ventory system. Their analysis showed the impact
of information sharing on reducing the inventory and
cost levels. They also found out that demand process
and transportation time had an extensive inuence
on the advantages of information sharing. Raghu-
nathan and Yeh [4] studied the e�ect of Continuous
Replenishment Program (CRP) on the system pro-
posed by Lee et al.; the presented results showed
that for demands with wide variation and small mean,
information sharing was more valuable than CRP. Yao
and Dresner [5] developed the models proposed by
Lee et al. and Raghunathan and Yeh to examine the
value of information sharing under CRP and Vendor
Managed Inventory (VMI). They concluded that CRP
and VMI were more bene�cial to the retailer and
the manufacturer, respectively. Recently, Dong et
al. [6] studied collaborative supply chain management
employing an item-level dataset and indicated that
the downstream �rm gained signi�cant bene�ts as a
result of the decision-transfer inherited from VMI. Cui
et al. [7] investigated value of information in a two-
echelon supply chain where the decision maker had the
permission to change the policy dynamically. Using
this approach depicted the e�ciency of information
sharing as well as reconciliation of theoretical and
empirical �ndings.

In a study, Chen et al. [8] considered eight
scenarios with respect to three di�erent types of in-
formation, i.e. demand, inventory, and capacity in-
formation. These scenarios were designed based on
the used information. Their analysis showed that full
information sharing had the best performance among
other scenarios. Razmi et al. [9] compared traditional
information sharing and VMI information sharing sys-
tems. They proved that VMI was more advantageous
than the traditional approach. Li [10] proposed a
exible method of information sharing in a supply chain
where parties could share limited information to other
members of supply chain. They performed simulation
and quantitative analysis and it was concluded that
even limited information sharing would enhance supply
chain performance.

Moreover, in [11], a four-echelon supply chain
with partial information sharing was simulated. The
authors concluded that more information sharing en-
hanced the system performance; also, increase in col-
laborating members was an e�ective factor regardless
of their roles. Canella et al. [12] studied the variety
of information that could be shared by supply chain
parties, i.e. real-time point-of-sale, sales forecasts,
and inventory order policies and reports, to improve

their performance using a continuous time domain
simulation. In [13], Canella and Ciancimino addressed
make-to-stock supply chain managing by (S;R) and
proposed a novel order-up-to policy for the afore-
mentioned system when parties were coordinated by
sharing information. Cannella [14] investigated the
enhancement introduced into the supply chain by re-
placing conventional myopic periodic inventory review
with Automatic Pipeline Variable Inventory and Or-
der Based Production Control System (APVIOBPCS)
policy when demand was normal.

In more recent studies, Prajogo and Olhager [15]
investigated the inuence of information sharing in
a three-echelon supply chain. Extra demand was
backlogged and three levels of information sharing
were considered. They concluded that increase in
information sharing level resulted in expected cost
reduction. Ganesh et al. [16] analysed the value of
information sharing in a multi-level supply chain con-
sidering various products with multiple levels of sub-
stitutability. Their results indicated that if upstream
members ignored substitution or demand correlation,
they might overestimate the information sharing value.
Sabitha et al. [17] studied the value of information
sharing in a multi-stage supply chain with one item and
non-zero lead time. They found out that the vendor
managed inventory and supply-chain-wide information
sharing were the same and upstream companies ben-
e�ted more from this policy. Ali et al. [18] and
Babai et al. [19] addressed the value of information
sharing in forecasted demand. These two studies
indicated that demand process a�ected the value of
information sharing and this value highly diminished
in auto-correlated demand. Trapero et al. [20] studied
information sharing bene�t to forecast improvement.
They analysed weekly data of a manufacturer and
a major retailer in UK. This study emphasised that
information sharing enhanced forecasting accuracy. In
a more recent attempt, Cannella et al. [21] simulated
a serially linked supply chain consisting of k echelons
with decentralised coordination and showed that the
collaboration improved service levels of both customers
and upstream members of supply chain as well as
process e�ciency of members.

In the rest of the paper, we concentrate on two-
level inventory systems with stochastic demand and
centralised decision-making system. We also narrow
down literature review to systems which use continuous
review. Li and Wang [22] categorised the proposed
methods to handle these systems as follows:

I. Installation stock policies: In these policies, no
information about buyers is utilised by the sup-
plier. This property makes them easy to operate,
but excludes system performance optimisation.
Axs�ater [23] proposed a basic model and its
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optimisation for a two-echelon system controlled
by a base stock policy using inventory position.
Furthermore, Axs�ater [24] extended the former
model to a batch ordering system for two retailers
and suggested an approximation for more than
two retailers. Afterwards, Forsberg [25] presented
a model and its optimisation for systems which
used order up to-S policy with a compound
Poisson demand. He showed that demands could
be used instead of inventory positions in the
basic model proposed by Axs�ater. Forsberg [26]
also evaluated the exact cost function for a two-
echelon system with continuous review policy,
Poisson demand, and non-identical batch sizes.
Axs�ater [27] presented a more generalised model
for ordering up to-S policy when demand process
was compound Poisson with various ordering size.
Further review of stochastic multiproduct systems
and evaluating cost using queuing systems were
performed by Simchi-Levi and Zhao [28,29].

II. Echelon stock policies: In these systems, a party
has information about cumulative inventory po-
sition of all related downstream parties. Chen
and Zheng [30] evaluated (R; nQ) echelon stock
policies in serial inventory systems; they modi�ed
an approximation for these systems as well. Chen
and Zheng [31] extended this problem to a mul-
tistage inventory system with compound Poisson
demand and evaluated optimum boundaries, and
proposed an algorithm for a near optimal solution.
Axs�ater and Rosling [32] compared echelon stock
and installation stock policies in multi-echelon
inventory systems. They concluded that even for
the worst scenarios, echelon stock policy was as
e�ective as installation stock policy.

III. Information sharing: In these systems, based
on managers' policy, all or part of the informa-
tion about inventory position, Bill Of Materials
(BOM), etc. is shared among members. As it is
discussed by Simchi-Levi et al. [2], information
sharing can enhance cost savings due to a reduc-
tion in the forecast errors which the retailers deal
with. The objective of information sharing as a
part of information technology is to help supply
managers not only to secure transparency and
accessibility of information but also to make deci-
sions based on the total supply chain information.

Moinazadeh [33] studied a supply chain including
a product, a central warehouse, and some identical
retailers under a stationary random demand. In this
model, retailers used (R;Q) ordering policy. He recom-
mended an ordering policy for the central warehouse
using the real-time information about each retailer's
inventory position with the central warehouse placing
an order with an external supplier when a retailer's

inventory position reached R + s(0 � s � Q � 1). To
evaluate the system costs and derive the optimal policy,
an approximate model and a heuristic optimization
were proposed for this policy.

Haji and Sajadifar [34] derived the exact cost
function for the policy proposed by Moinzadeh (2002)
considering one retailer. They used Axs�ater (1990)
installation stock model for one-for-one policy, to
evaluate the cost function. Following this study,
Sajadifar and Haji [35] derived the optimal boundaries
for their proposed model such that their optimisation
procedure required less computational e�ort and was
directed towards the optimal solution. In a more
recent study, Axsater and Marklund [36] proposed an
information sharing policy for non-identical retailers in
which demand was a coe�cient of a standard batch
size and, as previously established, concluded that
information sharing lowered the system costs.

In this paper, we evaluate system costs for the
policy presented by Moinzadeh (2002) when there
are two identical retailers, which has been an open
question ever since. A brief schema of the problem
is illustrated in Figure 1. The proposed method by
Moinzadeh (2002) obtained neither the exact model
nor the optimal boundaries of the policy. Moreover,
he used a heuristic algorithm that could not guarantee
obtaining the optimal solution. To overcome the
aforementioned issues, we propose the exact model and
optimal boundaries. Therefore, we �rst propose an
illustrative example for this problem to attain better
understanding of system complexities, special cases,
and di�erent system states. Afterwards, we consider an
arbitrary batch (Q0) and divide the problem into some
easier sub-problems to derive the probability function
for demands needed to order this batch. Subsequently,
we propose upper bound and lower bound of optimum
solution and the cost function of the system under
study.

The rest of this paper is organised as follows.
The problem is de�ned in Section 2 by proposing its
assumptions and notations. In Section 3, an illustrative
example is presented for more clari�cation of complex-

Figure 1. A schema of a two-echelon system with two
retailers and a central warehouse.
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ities and di�culties of modelling. Section 4 derives
the probability distribution required for cost function
calculation. The boundaries of optimal solution are
proposed in Section 5. Section 6 represents the �nal
model and its optimisation method. Finally, Section 7
represents the conclusion and some future directions
for research.

2. Problem de�nition

In this section, employed notations and assumptions of
this paper are represented. We utilise similar notations
to those of Axs�ater (1990) and Moinzadeh (2002) for
ease of researchers familiar with these papers.

2.1. Notations
The adopted notations are as follows (similar to [33]):
L Carrying time from the central

warehouse to each retailer;
L0 Carrying time from the external

supplier to the central warehouse;
� Demand intensity at each retailer;
h Holding cost per unit per unit time at

each retailer;
h0 Holding cost per unit per unit time at

the central warehouse;
� Shortage cost per unit per unit time at

each retailer;
Q Given system's order quantity;
R Reorder point for each one of the

retailers;
m Number of initial batches allocated to

the central warehouse.
Also, we use the following notations based on [23]:
(S0) Average holding cost in the central

warehouse per unit when the inventory
position at warehouse is S0;

�S(S0) Average holding and shortage cost in
a retailer when inventory positions of
the central warehouse and retailer are
S0 and S, respectively.

The rest of the notations are as follows (for an example,
see Figure 2):
Q0 The arbitrary batch chosen for

investigation;
t0 Ordering time of Q0 by the central

warehouse;
t1 Ordering time of Q0 by one of the

retailers;
B The retailer which orders Q0;
t+ A moment after t;

Figure 2. An example of the system.

t� A moment before t;
k Customer demand from t0 until t+1 ;
j Arbitrary unit of Q0;
TC(m;R; s) Average system cost per unit time.

2.2. Assumptions
In this paper, the following assumptions and policy are
considered based on [33]:

1. Carrying times to both the central warehouse and
the retailers are constant;

2. Customer demand arrival process at each of the
retailers is a Poisson process with a constant and
known rate;

3. The shortage will be backlogged;
4. The central warehouse has online information about

the inventory position and demand of each one of
the retailers;

5. Two retailers have identical demand intensity, hold-
ing cost, shortage cost, and carrying time from the
central warehouse.

In this model, some of the considered assump-
tions may be questionable and need justi�cation and
discussion. In this part, we discuss the reason be-
hind these assumptions. First, it is worth men-
tioning that identical retailers is an assumption used
in several studies other than Moinzadeh [33]. For
instance, Svoronos and Zipkin [37], Deuermeyer and
Schwarz [38], Cachon and Fisher [39], G�urb�uz et
al. [40], Wang et al. [41], and Klastorin et al. [42]
addressed identical retailers to simplify mathematical
modelling, analysis, and model demonstration. On
the other hand, Poisson arrival rate and constant
delivery time have extensively been employed in the
literature. For instance, Axs�ater and Forsberg [23-
27,36] conducted studies that have considered both
constant delivery time and Poisson/compound Poisson
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arrival rates. Moreover, considering shortage backo-
rdered is an acceptable assumption. However, there are
instances that have considered negligible ordering cost
and lost sales. In a study, Haji and Haji [43] proposed
a novel policy to handle the aforementioned system.
The proposed policy, called (1; T ) or one-for-one period
ordering policy, aimed to handle such inventory models.
In the aforementioned policy, there is no need to share
information, since supplier deterministically orders one
unit every T units of time. Another assumption of
this study is a given batch size and negligible ordering
cost. This assumption is widely used in the literature
(e.g. [23-27,36-38,43]) and it is acceptable in practice.
Some of these instances are considering packaging or
shipping requirements as a result of economies of scale
in handling, shipping and so forth. Moreover, there
are cases that system faces negligible shipping costs or
electronic commerce.

Finally, sharing information about demand ac-
tivities and inventory status in the central warehouse
has already been employed in some industries. For
instance, Kurt Salmon Associates [44,45] reported
employing information technology in the form of
Quick Response (QR) and E�cient Customer Response
(ECR) in grocery industries. Moreover, Stalk et al. [46]
discussed that one of the main reasons for Wal-Mart
success was using information system infrastructure
that enabled them to exchange information about cus-
tomer's behaviour in detail. Based on these examples
and the former studies, in our research, we assume that
information about the on-hand inventory in branches
is available and shared with the central warehouse.
This assumption is explainable due to the availability
of high speed information exchange infrastructures
and automated stores. Thus, the following policy is
considered in our system.

The central warehouse starts with m initial
batches (m � 0) and adopts the following ordering
policy: When inventory position at a retailer reaches
R+s(0 � s � Q�1), it orders a batch from an external
supplier.

3. An illustrative example

Let us investigate the system to achieve the central
warehouse inventory position. As it can be seen in
Figure 3, when a retailer's inventory position reaches
R+ s, inventory position of central warehouse is either
(m + 1)Q or (m + 2)Q, considering inventory position
of retailers at t� (e.g. Figure 4(a) and (b)).

Considering m = 3, Q = 4, and s = 2, Figure 4
indicates independency of the retailer who initiates
ordering Q0 and the retailer who orders Q0. For
example, consider the situation that the inventory
position of Retailer 1 is R + 2 at t0 (Figure 4(a) and
(b)); in other words, Retailer 1 initiates ordering Q0.

Figure 3. The central warehouse inventory position.

In this situation, based on the customers' demands
with each retailer, Q0 can be shipped to Retailer 1
(Figure 4(a)) or Retailer 2 (Figure 4(b)). In the
rest, for this example, we will consider the case that
inventory position of Retailer 1 is equal to R+ s at t0.
Furthermore, Hadley and Whitin [47] showed that at
this moment, the inventory position of other retailers,
i.e. Retailer 2, is uniformly distributed between R + 1
and R +Q; thus, the inventory position of the central
warehouse is (m+1)Q when R+s+1 � I2(t�0 ) � R+Q
with the probability of (Q� s)=Q.

Let Retailer 1 order Q0; an illustration of this
system is available in Figure 5. On the other hand,
we know that between t0 and t�1 , three batches are
ordered and inventory position of Retailer 1 equalsR+1
at t�1 . Knowing that Retailer i can order bi batches,
so that b1 + b2 = 3, bi � 08i, we want to calculate
the probability of ordering these three batches by l
demands. Besides, we know that l = l1 + l2 and lr
demands cause the Retailer r to order br batches from
the central warehouse. Considering lr = brQ + ur, we
need to obtain the probability that Retailer r receives
lr demands from the total of l demands during t�1 � t0
and the probability that these lr demands initiate br
batches ordering, i.e. lr = brQ+ ur.

The probability of distributing l demands between
two retailers is l = l1 + l2 when the demand rates is

equal to
�
l
l1

�
( 1

2 )l. Moreover, the last demand should

occur at Retailer 1. Thus, we eliminate the last demand
from the combination. To do so, considering l0 = l+ 1,
l01 = l1 +1, and l0 = l01 + l2, the probability is as follows:

1
2

�
l
l1

��
1
2

�l
=

1
2

�
l0�1
l01�1

��
1
2

�l0�1

=
�
l0�1
l01�1

��
1
2

�l0
:
(1)

Let R + k0 show the inventory position of Retailer 2
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Figure 4. Di�erent possible combinations of retailers that cause the central warehouse to demand Q0 and the retailer
that demands Q0 from the central warehouse when Iw(t�0 ) = mQ.

at t0. For this example, we can calculate the upper
and the lower bounds of l0. To obtain the lower bound,
inventory position of Retailer 2 at t�1 equals R + Q;
therefore:

l0 � k0 + 4(b2 � 1) + 4b1 + 2: (2)

On the other hand, we know that k0 � 3 and b1 +
b2 = 3; thus, l0 � 13. It is worth mentioning that
in Figure 5(a)), the lower bound cannot be met, since
b1 = 3 and the lower bound is 4b1 + 2 = 14, i.e. l0 = 13
is not feasible.

To obtain the upper bound, Retailer 2 inventory
position should be equal to R + 1 at t�1 ; therefore, we
have:

l0 � k0 � 1 + 4b2 + 4b1 + 2: (3)

On the other hand, we know that k0 � 4 and b1+b2 = 3;
thus, l0 � 17.

Finally, we know that l0 = l01 + l2 does not
guarantee that all the conditions are held. For example,

consider l01 = 7 and l2 = 9; although 13 � l0 = 16 � 17,
the inventory position of Retailer 1 at t�1 is equal to
R+ 4. On the other hand, consider l01 = 14 and l2 = 3;
the inventory position of Retailer 1 at t�1 is equal to
R + 1. However, with the probability of 1=2; k0 = 4,
which leads to a feasible solution. As a result, we need
to multiply Eq. (1) by some other probability functions
to obtain the probability of demanding 3 batches by
these l0 demands. In other words, we should calculate
P (brQ + ur ! br), r = 1; 2, for this example. Two
illustrative computations for P (b2Q + u2 ! b2) are
presented in Figure 6.

4. Probability distribution of k

Based on Lemmas 1 and 2 proposed in [25], S0 and S
are replaced by k and R + j, respectively. Hence, the
�rst step for computing the probability distribution is
to �nd the inventory position of the central warehouse
and retailers at t�0 . Based on the warehouse policy,
inventory position of one of the retailers is R + s at
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Figure 5. Possible number of batches that Retailers 1 and 2 can order when Retailer 1 causes the central warehouse to
order Q0 and consume this batch.

Figure 6. Illustrative computations for P (b2Q+ u2 ! b2)
when b2 = 3 and u2 = �1 or u2 = 1.

this moment (without loss of generality, we name it
Retailer 1). Furthermore, we know that the inventory
position at the central warehouse is related to the last
activities in the system. In other words, inventory

position at the central warehouse at this moment is
a function of Q;m, and Retailer 2 inventory position.

4.1. The central warehouse inventory position
at t0

Inventory position for Retailer 2 is uniformly dis-
tributed between R+1 and R+Q. To derive probability
distribution of each system state, let I2(t�0 ) and Ic(t�0 )
be the inventory positions of Retailer 2 and central
warehouse at t�0 , respectively. As it is shown in
Figure 3, at A and B, Ic (t�0 ) is m and m + 1,
respectively:
P (i= 1; s) = P (Ic(t�0 ) = m)

= P
�
R+ s+ 1 � I2(t�0 ) � R+Q

�
=
Q� s
Q

;

P (i= 2; s) = P (Ic(t�0 ) = m+ 1)

= P
�
R+ 1 � I2(t�0 ) � R+ s

�
=

s
Q
: (4)

To calculate the probability of ordering b batches
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by Retailer r, let us introduce the following notations
(note that s is one of the system parameters):

�ir;l;B;s This random variable demonstrates
the number of system batches ordered
by Retailer r with l demands, when
there are m + i batches at the central
warehouse;

�i2;l;B;s This random variable demonstrates the
number of system batches ordered by
the retailers by l demands from these
retailers, when there are m+ i batches
at the central warehouse.

Note that, to compute �ir;l;B;s, the last customer
demand is disregarded to ensure that it is the last
one among all customer demands. This demand with
probability of 1

2 is assigned to Retailer B. Therefore,
for computing �i2;l;B;s, we have:

Pr(�i2;l;B;s = b) =
l�1X
k=0

b�1X
b0=0

�
l
k

��
1
2

�l
� Pr

�
�i1;l�k�1;B;s = b� b0 � 1

�
� Pr

�
�i2;k;B;s = b0

�
: (5)

Since inventory position of each retailer is renewed
for every Q customer demands, evaluating system
demands will be easier using bQ + u. Hence, we can
rewrite Pr(�ir;l;B;s = b), considering l = bQ + u, as
Pr(�ir;bQ+u;B;s = b). The value of this probability
depends on s, u, i, and r; i shows that there is m + i
system batches at the central warehouse and s is known
by system policy.

4.2. Investigating the system for s > 0
We calculate Pr(�ir;bQ+u;B;s = b) for r = 1 and r = 2,
separately.

4.2.1. Probability of ordering b batches by Retailer 1
To compute this probability, we �rst investigate which
retailer orders Q0. If B = 1, then at t�1 , the inventory
position of this retailer is R+ 1. Therefore, we have:

Pr
�
�i1;bQ+u;1;s>0 = b

�
= 1 if B = 1;

u = s� 1; b � 0; 8i: (6)

On the other hand, if B 6= 1, then for this retailer,
we know that Ir(t0) = R + s; we can conclude that
b0Q + s � D < b0Q + Q + s surely causes b0 + 1 batch
orderings. De�ning b = b0 + 1 and u = D � bQ, we
have:

Pr
�
�i1;bQ+u;1;s>0 = b

�
= 1

r=1; B=2; s>0; s�Q � u < 0; b � 1;

or:

r = 1; B = 2; s > 0; 0 � u; b � 0: (7)

4.2.2. Probability of ordering b batches by Retailer 2
Let us consider Retailer 2 when R+1 � I2(t�0 ) � R+s
and B = 2. Therefore, we know that I2(t�1 ) = R + 1.
Thus:

Pr
�
�2

2;bQ+u;2;s>0 = b
�

=
1
s
;

0 � u � s� 1; b � 0: (8)

Now, consider the situation that B = 1; we know that
R + 1 � I2(t�0 ) � R + s and R + 1 � I2(t�1 ) � R +Q.
Therefore, to order b batches by bQ + u demands, the
following equation should be held:

bQ+ u+ I2(t�0 ) = bQ+ I2(t�1 )) u

= I2(t�1 )� I2(t�0 )) 1�Q � u � s� 1: (9)

To calculate the probability, two states are considered:

(I) 0 � u � s� 1 or
(II) �Q+ 1 � u � �1.

In state (I), u should not exceed Ir(t0) � R;
this occurs if Ir(t0) > R + u. On the other hand,
Ir(t0) is uniformly distributed over fR+ 1; � � � ; R+ sg.
Therefore, the probability is as follows:

Pr
�
�2

2;bQ+u;1;s>0 = b
�

=
s� u
s

;

0 � u � s; b � 0: (10)

State (II) is categorised in two subdivisions:

(II-a) s�Q < u � �1: In this subdivision, customer
demands are equal to u + Q and the interval
can be modi�ed as s < u+Q � Q. These cus-
tomer demands surely trigger a retailer order,
because they exceed Ir(t0). Thus, the related
probability is:

Pr
�
�2

2;bQ+u;1;s>0 = b
�

= 1

s�Q < u < 0; b � 1: (11)

(II-b) �Q + 1 < u � s � Q: As 0 < u + Q � s, if
these customer demands are equal to or greater
than Ir(t0) � R, then the retailer orders a new
batch. Thus, probability of u+Q � Ir(t0) is as
follows:

Pr
�
�ir;bQ+u;B;s = b

�
=
Q+ u
s

;

�Q < u � s�Q; b > 0: (12)
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The following probabilities can be computed with the
same justi�cation:

Pr
�
�1

2;bQ+u;1;s>0 = b
�

=

8>>>>>><>>>>>>:
1 + u

Q�s s�Q < u � 0; b � 1

1 0 � u � s� 1; b � 0

Q�u
Q�s s < u � Q; b � 0

Pr
�
�1

2;bQ+u;2;s>0 =b
�

=
1

Q�s ;

s�u<Q; b�0: (13)

4.3. Investigating the system for s = 0
Here, Pr(�ir;bQ+u;B;s = b) is acceptable when B � 1
and the last demand must be considered in order to
avoid negative customer demand in the special case
of B = 1 and b = 0. It is also obvious that at t0,
one batch is ordered by Retailer 1 and the central
warehouse, simultaneously. Thus, Ic(t+0 ) = m + i and
I1(t+0 ) = Q.

Therefore, the probabilities of demanding b
batches by Retailer r are de�ned as follow:

Pr
�
�1

2;bQ+u;2;0 = b
�

=
1
Q
;

0 � u < Q; b � 0;

Pr
�
�1

2;bQ+u;2;0 = b
�

=

(
Q+u
Q �Q � u < 0; b � 1

Q�u
Q 0 � u < Q; b � 0

Pr
�
�1

2;bQ+u;2;0 = b
�

= 1;

B = 2; 0 � u < Q; b � 0

B = 1; u = Q� 1; b � 0: (14)

Furthermore, for m = 0, the B batch is ordered at t�0
by Retailer 1 and central warehouse, simultaneously.
Thus, surely there is no need for any demand other
than the mentioned one; therefore, k = 0.

5. Boundaries of customers' demand

Let us introduce the following notations:
lb(i; s;m) Lower bound of customer demand for

a known s, when system starts with m
initial batches and Ic(t+0 ) = m+ i;

ub(i; s;m) Upper bound of customer demand for
a known s, when system starts with m
initial batches and Ic(t+0 ) = m+ i.

5.1. Lower bounds
For s > 0, we know:8><>:min fI2(t0)g = R+ 1 Ic(t+0 ) = m+ 2

I1(t0) = R+ s
min fI2(t0)g = R+ s+ 1 Ic(t+0 ) = m+ 1

(15)

Consider Ic(t+0 ) = m + 2; after meeting R, every
retailer should have at least Q demands to order a new
batch. As a result, two batches can be ordered by
s + 1 demands from each retailer and the remaining
m batches are ordered by mQ demands. Furthermore,
we disregard the last customer demand; therefore, we
have:

lb(2; s > 0;m) = s+ 1 +mQ: (16)

Now, we investigate Ic(t+0 ) = 1 and m = 0. At least
s demands from Retailer 1 can cause ordering a new
batch. Thus:

lb(1; s > 0; 0) = s: (17)

On the other hand, for m > 0, with a justi�cation as
before, the lower bound will be:

lb(1; s > 0;m > 0) = 2s+ 1 + (m� 1)Q: (18)

We can summarise these bounds as:

lb(i; s > 0;m)

=

(
s m+ i = 1
(3� i)s+ 1 + (m+ i� 2)Q m+ i � 2

(19)

When s = 0, we know that Ic(t+0 ) = m and we have
the following inventory positions for retailers:(

I1(t+0 ) = R+Q
minfI2(t+0 )g = R+ 1

(20)

Hence, at most one batch can be ordered by
one customer demand and the remaining batches, if
any, are ordered by Q customer demands. Therefore,
generally, the lower bounds are:

lb(i; s;m)

=

8>>><>>>:
0 m = 0; s = 0
(m� 1)Q+ 1 m � 1; s = 0
s m+i=1; s>0
(3�i)s+(m+i�2)Q+1 Otherwise

(21)
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5.2. Upper bounds
When s > 0, we know that:

maxfIr(t0)g :8><>:maxfI2(t0)g = R+ s Ic(t+0 ) = m+ 2
I1(t0) = R+ s
maxfI2(t0)g = R+Q Ic(t+0 ) = m+ 1

(22)

Consider Ic(t+0 ) = m + i; the most possible demand
occurs when one of the retailers has bQ+maxfIr(t0)g�
R demands and the other one has b0Q+maxfIr0(t0)g�
(R + 1), where b0 + b = m + i � 1. Thus, for Ic(t+0 ) =
m+ 1, we have:

ub(1; s > 0;m) = s+Q� 1 +mQ)
= s� 1 + (m+ 1)Q: (23)

And for Ic(t+0 ) = m+ 2, we have:

ub(2; s > 0;m) = 2s� 1 + (m+ 1)Q: (24)

Consequently, for s > 0, we obtain Eq. (25):

ub(i; s > 0;m) = is� 1 + (m+ 1)Q: (25)

For s = 0 and m > 0, we know that:

max
�
Ir
�
t+0
�	

:

(
I1
�
t+0
�

= R+Q
max

�
I2
�
t+0
�	

= R+Q
(26)

Thus, Eq. (27) is calculated as follows:

ub(1; 0;m > 0) = (m+ 1)Q� 1: (27)

Finally, the only di�erence between s = 0 and s > 0 is
in the batch quantities. As mentioned before, for s = 0,
we consider m batches instead of m+ 1. Therefore, we
have:

ub(i; s;m)=

(
i�s�1+(m+1)Q s > 0
(m+ 1)Q� 1 s=0; m>0 (28)

6. The �nal model and its optimisation

In this study, an arbitrary unit of Q0 is considered,
which can be the jth unit ofQ0 with probability of 1=Q.
Furthermore, this unit should wait for R+ j additional
demands from t+1 . Thus, we have Eq. (29) as shown
in Box I. This method is an extension of the method
presented by Axs�ater (1990) [23] (see Appendix A).

Let us introduce the following notations based
on [23]:

Gs(t) Cumulative distribution function of
Erlang (N�; S), which is calculated as
follows:
1X
k=S

(�t)k

k!
e��t = 1�

S�1X
k=0

(�t)k

k!
e��t: (30)

�S(t) Conditional expected cost of �S(S0)
knowing that � = t, which is
independent of S0;

Ms The upper bound for the number of
initial batches in the central warehouse
(m) for a given s with respect to the
acceptable error;

ml
s The lower bound for m for a given s;

mu
s The upper bound for m for a given s.

For large values of S0, �S(S0) can be approx-
imated by �S(0); therefore, for an acceptable error
("), GM (L0) < ". On the other hand, for a given
s,lb(1; s;m) = minflb(i; s;m)g8i. Thus:

TC(m; s;R)

=

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

��
2X
i=1

p(i; s)
2X

B=1

ub(i;s;m)X
k=lb(i;s;m)

Pr
�
�i2;k;B;s = m+ i� 1

��0@(k) +
1
Q

QX
j=1

�R+j(k)

1A s > 0

�
2X

B=1

ub(i;0;m)X
k=lb(i;0;m)

Pr
�
�i2;k;B;0 = m� 1

��0@(k) +
1
Q

QX
j=1

�R+j(k)

1A s = 0; m > 0

�

 
(k) + 1

Q

QP
j=1

�R+j(k)

!
s = 0; m = 0

(29)

Box I
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Ms =

8>>>>>>>>>>>><>>>>>>>>>>>>:

0 M = 0; s = 0l
M�1
Q + 1

m
M > 0; s = 0l

M�s
s+1

m
M � 2s+ 1; s > 0l

M�2s�1
Q + 1

m
M > 2s+ 1; s > 0

(31)

where, dxe is ceiling, i.e. the smallest integer greater
than or equal to x. Furthermore, let the upper bound
and the lower bound of R be Rl and Ru. Due to the
convexity of �S(S0) with respect to S for a known
S0, Rl and Ru can be calculated by minimization of
1
Q
PQ
j=1 �

R+j(L0) and 1
Q
PQ
j=1 �

R+j(0), respectively.
Finally, the lower bounds for Rl and Ru are �Q and
Rl. Knowing Rl and Ru, for a given s, mu

s and ml
s can

be calculated as follows:8>>><>>>:
ml
s = min

0�m�Ms
fTC(m; s;Ru)g

mu
s = min

mls�m�Ms

fTC(m; s;Rl)g
(32)

The following lemma leads to less computational ef-
forts:

Lemma: To compute Ril(0) and Riu(0), it is enough
to compare �R+1(�) with �R+Q+1(�) using the convexity
attribute.

Proof: Optimal Ril(0) and Riu(0) are obtained by
comparing 1

Q
PQ
j=1 �

Ri+j
i (�) with 1

Q
PQ
j=1 �

Ri+1+j
i (�).

Consider A =
PQ
j=2 �

R+j(�); therefore:

1
Q

QX
j=1

�R+j(�) =
1
Q

(�R+1(�) +A)

and:

1
Q

QX
j=1

�R+1+j(�) =
1
Q

(�R+Q+1(�) +A):

Since A and 1
Q are common parameters, they can be

ignored.

7. Conclusions

In this paper, we modelled a two-level inventory system
with two identical retailers that bene�ted from an
information sharing policy. We proposed the exact
model and a procedure to �nd optimal solutions to

this problem. It is worth mentioning that both of them
have been open questions up to now. We �rst proposed
an illustrative example to identify system states and
provide better understanding of system behaviour in
di�erent situations. To resolve the complexity of the
proposed problem, we divided the main problem into
some easier sub-problems; then, we modelled the whole
system by merging the sub-problems. Furthermore, we
considered an arbitrary batch and derived probability
distribution for the number of required demands to
order this batch. Next, we proposed the boundaries of
optimum variables and the �nal model for the proposed
system.

By modelling and proposing optimisation proce-
dure for an easy to implement information sharing
policy, this study can be used as a baseline for a
deeper knowledge of how this policy works. It is worth
mentioning that the simplicity of this policy, i.e. using
limited parameters and information about inventory
status and demand, makes it easy to implement in
real-world scenarios in a way that managers have a
sense of the inventory management scheme and the
way it operates. Moreover, the shared information
in this system is an acceptable range of information
that is shared in distributer companies, i.e. inventory
status and demand. Furthermore, the policy under
study takes advantage of fast developing information
technology in forms of information transfer infras-
tructures, radio-frequency identi�cation (RFID), and
computational speed to propose an easy to implement
inventory control scheme without any need to share
crucial information or face data overload. The simplic-
ity of this policy may be claimed to be a double-edged
sword; however, considering the continuously growing
arguments about information sharing disadvantages,
the tendency to limit shared information in this model
can be its positive aspect.

As future subjects of study, the exact model for
more than two retailers for the proposed policy is still
an open question. In addition, extending this problem
to non-identical retailers and making the policy more
exible are attractive problems to study. Moreover,
considering di�erent policies with limited dynamicity
are other attractive subjects of study.
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Appendix A

In this part, a summary of [23] cost functions is
proposed.

�0 is demand intensity at the central warehouse
(
PN
i=1 �i). Note that in our paper, �0 is equal to N�.

The average holding cost in the central warehouse
(S0) is:

(S0)=e��0L0
h0

�0
�
S0�1X
k=0

(S0�k)
k!

(�0L0)k; S0>0:
(A.1)

Or equally:

(S0) =
h0S0

�0
:
�

1�GS0+1
0 (L0)

�
� h0L0

�
1�GS0

0 (L0)
�
; S0 > 0: (A.2)

For S0 � 0, we have:
(S0) = 0; S0 � 0: (A.3)

The unit cost at retailer i for a given delay equal to t
at the warehouse is:

�Sii (t) =e��i(Li+t)hi+�i
�i
�
Si�1X
k=0

(Si�k)
k!

�ki (Li+t)k

+ �i
�
Li + t� Si

�i

�
: (A.4)

For Si � 0, average holding and shortage cost in retailer
i, �Si

i (S0), is:

�Si
i (S0) =GS0

0 (L0)�iL0 �GS0+1
0 (L0)�i

S0

L0

+ �i
�
Li � Si

Li

�
; Si � 0; S0 > 0;

(A.5)

and:
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�Si
i (S0) = �i

�
Li + L0 � Si

Li
� S0

L0

�
;

Si � 0; S0 � 0: (A.6)

For Si > 0, it is possible to obtain the following
recursive equation:

�Si
i (S0 � 1) =

�i
�0

�Si�1
i (S0) +

�0 � �i
�0

�Si
i (S0)

+
�i
�0

�
1�GS0

0 (L0)
��

�Sii (0)� �Si�1
i (0)

�
;

S0 > 0: (A.7)

For S0 � 0, we have:

�Si
i (S0 � 1) =

�i
�0

�Si�1
i (S0) +

�0 � �i
�0

�Si
i (S0);

S0 � 0: (A.8)

�0
i (S0) can be obtained by Eqs. (A.5) and (A.6).

Finally, for su�ciently large values of S0, the
delay at warehouse is equal to 0; thus, we have:

�Si
i (S0) � �Sii (0): (A.9)

This approximation is asymptotically exact. To deter-
mine an initial large value of S0, let the probability that
the warehouse can deliver without a delay be smaller
than ":

G �S0
0 (L0) < "; (A.10)

where " is a small positive number.

Biographies

Amir Hosein Afshar Sedigh is currently a PhD can-
didatein Information Science at University of Otago,
Dunedin, New Zealand. He received a BSc degree
in Industrial Engineering from Qazvin Islamic Azad
University, Qazvin, Iran. Thereafter, he received
his MSc degree in Industrial Engineering from Sharif
University of Technology, Tehran, Iran. His research
interests include supply chain management, inventory
control, and queuing theory.

Rasoul Haji is currently a Professor of Industrial
Engineering at Sharif University of Technology in
Tehran, Iran. He received a BSc degree from Uni-
versity of Tehran in Chemical Engineering in 1964.
In 1967, he received his MSc degree and then, in
1970, his PhD degree both in Industrial Engineer-
ing from the University of California-Berkeley. He
is recognized as a co-founder of a fundamental and
important relation in queuing theory known as \Distri-
butional Little's Law". His research interests include
inventory control, stochastic processes, and queuing
theory.

Seyed Mehdi Sajadifar is currently an Assistant
Professor of Industrial Engineering at University of
Science and Culture in Tehran, Iran. He received a BSc
degree from Sharif University of Technology in Indus-
trial Engineering in 1995. In 1997, he received his MSc
degree and then, in 2008, after experiencing 5 years
of academic teaching, his PhD degree in Industrial
Engineering both from Sharif University of Technology.
His research interests include inventory management,
supply chain management, and operations research.




