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Abstract. Nonlinear behaviour of various problems can be described by the Du�ng
model interpreted as a forced oscillator with a spring, which has a restoring force. In
this paper, a new numerical approximation technique based on the di�erential transform
method is introduced for the nonlinear cubic Du�ng equation with and without damping
e�ect. Since exact solutions to the corresponding equation for all initial guesses do not
exist in the literature, an exact solution is produced �rst for speci�c parameters using the
Kudryashov method to measure the accuracy of the suggested method. The innovative
approach is compared with the semi-analytic di�erential transform and the fourth-order
Runge-Kutta methods. Although the semi-analytic di�erential transform method is valid
only at small-time intervals, it is proved that the innovative approach has the ability to
capture nonlinear behaviour of the process even at long-time intervals. The computations
indicate that the present technique produces more accurate and computationally more
economic results than the rival methods do.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Nonlinear oscillation problems are of immense impor-
tance in a broad range of science �elds. Du�ng oscil-
lators represent one of the most important nonlinear
oscillation problems and are described by nonlinear
di�erential equations. The Du�ng oscillators have var-
ious applied areas, such as modelling of free vibrations
of a restrained uniform beam with intermediate lumped
mass [1,2], magneto-elastic mechanical systems [3],
uid ow-induced vibration [4], nonlinear dynamics of
slender elasticity [5], etc.

Due to the existence of these nonlinearities, the
investigation of accurate solutions of the Du�ng os-
cillators is of high importance. Various versions of
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the approximate solution techniques have been used to
�nd solutions to the nonlinear and conservative Du�ng
equation [6-13]. The homotopy analysis method [6],
harmonic balance method [7], the homotopy Pad�e
technique [8], energy balance method [9], coupled
homotopy variational approach [10], the Newton har-
monic balance method [11], parameter-expanding and
max-min approach [12,13], coupling of energy and
harmonic balance method [14], Jacobi elliptic func-
tions [15], and parameter-based perturbation tech-
nique [16] have all been used to solve a nonlinear
Du�ng equation without damping e�ect. If the
Du�ng oscillator involves the damping e�ect, the
amplitude of the oscillation decreases with time; then,
a non-conservative system can be obtained. Most
analytical methods do not have the ability to handle
the non-conservative Du�ng equation. Nevertheless,
the Laplace decomposition method [17], homotopy
perturbation method [18], Modi�ed Di�erential Trans-
formation Method (MDTM) [19], and Renormalization
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Group Method (RGM) [20] are capable of solving non-
conservative systems.

The DTM was �rst presented by Zhou [21], and
the method was then used to solve di�erential equa-
tions occurred in electric circuit analysis. The DTM
has been extensively studied by various researchers
for obtaining approximate solutions to various prob-
lems of science. This method has been studied
to solve system of di�erential equations [22], uid
ow problems [23,24], magnetohydrodynamics (MHD)
boundary-layer equations [25], nonlinear partial dif-
ferential equations [26,27], and the Du�ng oscillator
equation with damping e�ects [19]. In [19,22-28],
among a large family of papers, the DTM has become
of great help to �nd an approximate solution in a
�nite series form about initial time. Generally, the
application of this semi-analytic approach leads to
accurate and acceptable solutions only about the initial
position due to the natural structure of the Taylor
series. In [19,25-27], the MDTM has been developed
to do away with this disadvantage of the DTM. In
the concept of the MDTM, Laplace transformation
and Pad�e approximation are applied, via di�erential
transform method in a global sense, to produce the
solution. Even though the MDTM has the ability to
decrease numerical error of the approximate solution,
one requires more symbolic calculations and more com-
putational cost than the DTM. The DTM can be also
used in a local sense to obtain discrete or continuous
solutions to di�erential equations, �rst introduced by
Jang et al. [29].

In this study, an explicit and highly accurate
numerical method has been developed by applying the
semi-analytic DTM to the equally sized subintervals.
The main advantage of the Local Di�erential Trans-
form Method (LDTM) is that the accuracy of the
results can increase with and without a change in the
order of the Taylor expansion. Thus, the LDTM has
less symbolic calculations than the MDTM does and
is more accurate than the DTM and MDTM. One
of the signi�cant advantages of the LDTM is that
providing high accuracy not only at the neighbourhood
of the initial position, but also in the entire domain.
Even though the LDTM is similar to the Taylor series
method, the computational structure and symbolic
calculation are di�erent from both methods. The
explicit structure of the LDTM is similar to the fourth-
order Runge-Kutta method; however, the LDTM is
more exible and accurate than the RK4 due to the free
choices of the Taylor expansion order. By providing a
su�ciently small time increment in the LDTM, higher-
order accuracy is guaranteed as long as the exact
solution is considered to be su�ciently smooth. As
shown, in the rest of the paper, the LDTM is suitable
for many types of di�erential equations, even for the
di�erential equations involving power nonlinearities.

Thus, the LDTM has also high capability to solve
nonlinear di�erential equations encountered in various
�elds of science.

The Kudryashov method [30,31] based on the
logistic function and solution of the �rst-order Riccati
equation was used to �nd exact solutions to the di�er-
ential equation. The present study produces an exact
solution to the cubic nonlinear Du�ng equation with
speci�c parameters and initial guesses. The similarity
between the �rst-order Riccati equation and the cubic
nonlinear Du�ng equation is found herein, and the
exact solution to the equation is given in terms of
the logistic function. Thus, a special Du�ng equation
is obtained which is satis�ed by the logistic function.
To measure the accuracy and stability of the present
numerical approach, the LDTM, it is compared with
the currently produced exact solution.

In this study, it is proved that the order of the
LDTM is stable with increasing time. The cubic
nonlinear Du�ng equation is considered for various
problem parameters including conservative and non-
conservative systems. The accuracy of the LDTM
method is �rst compared with the currently produced
exact solution and, then, with the DTM and the
fourth-order Runge-Kutta method. As demonstrated,
the LDTM provides far better results than the other
techniques do.

2. Di�erential transformation

The main concept of the di�erential transform method
can be found in the literature [32]. The de�nitions are
reorganized by considering its local sense as follows:

De�nition 1. Let x(t) be analytic in domain T , and
function '(t; k) can be de�ned as follows:

dkx(t)
dtk

= '(t; k) for all t 2 T; (1)

where k is a non-negative integer. With the use of
De�nition 1, the di�erential transform of function x(t)
at any time t = ti in the time domain is locally de�ned
as follows:

Xi(k) =
'(ti; k)
k!

=
1
k!

�
dk x(t)
dtk

�
t=ti

: (2)

De�nition 2. If x(t) is analytic in domain T =
[0; tF ], then x(t) can be denoted by Taylor series at
time t = ti by considering De�nition 2 as follows:

x(t) =
1X
k=0

(t� ti)k Xi(k) = D�1X(k); (3)

where D�1 denotes an inverse di�erential transform
operator. Function x(t) can be expressed in a �nite
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series form with a truncation error of order (N + 1) as
follows:

x(t) =
NX
k=0

(t� ti)k X(k) +O
�

(t� ti))N+1
�
: (4)

Notice that the di�erential transformation of the
derivative of any function can be written in terms of
the di�erential transform of the function itself. In
virtue of this respect, the di�erential transformation
can be applied to the di�erential equations. In the
literature [32], transformed forms of some well-known
functions can be found in detail. By considering the
de�nition of the di�erential transformation, Table 1 can
be generated.

3. Localized di�erential transform method for
the nonlinear Du�ng oscillator

The following cubic nonlinear Du�ng equation can be
considered with damping e�ect:

x00 + �x0 + �x+ x3 = 0 for 0 � t � tf ; (5)

with the initial position and velocity:

x(0) = x0 and x0(0) = x�0; (6)

where �, �, and  are given constant coe�cients. By
using u1(t) = x(t) and u2(t) = x0(t), Eq. (5) can be
transformed into the following system of di�erential
equations:

u1
0(t) = u2(t); (7)

u2
0(t) = ��u2(t)� �u1(t)� u3

1(t): (8)

Considering di�erential transformation of Eqs. (7) and
(8) leads to:

U(k + 1) =
1

k + 1
(AU(k) +Bk); (9)

where U(k) = [U1(k); U2(k)]T is the di�erential trans-
formation of:

[u1(t); u2(t)]T ;

BK =
�
0;�

kX
l=0

lX
n=0

U2(n)U2(l � n)U2(k � l)
�T
:

Matrix A can be de�ned as follows:

A =
�

0 1
�� ��

�
: (10)

The interval [0; tf ] is partitioned into N subdomains
with equally spaced grid points de�ned as 0 = t0 <
t1 < : : : < tN = tf such that ti+1 = ti + dt where
dt = tf

N . For the �rst subinterval, function u(t) can be
approximated by u0(t) such that:

u0(t)=U0(0)+U0(1)t+ U0(2)t2 + : : :+ U0(K)tK ;
(11)

U0(k + 1) =
1

k + 1
(AU0(k) +Bk); (12)

where U0(0) = [x0; x�0]T is the initial guess, and K is
the order of the di�erential transformation. Approxi-
mate value of the required function u(t) at t = t1 can
be evaluated as follows:

u(t1) �= u0(t1) =
KX
k=0

U0(k)dtk: (13)

The main idea for building up the LDTM is that the
obtained solution is taken to be the initial value of
the next iteration, namely u1(t1) = U1(0) = u0(t1).
Thus, the approximate solution u1(t) for the second
subdomain can be expressed as follows:

u1(t) = U1(0) + U1(1)(t� t1) + U1(2)(t� t1)2

+ : : :+ U1(K)(t� t1)K : (14)

Table 1. Algebraic properties of di�erential transformation and transformations of well-known functions.

Function Transformed function

X (t) = y (t)� z (t) X (k) = Y (k)� Z (k)
x (t) = �y (t) X (k) = �Y (k)
x (t) = dy(t)

dt X (k) = (k + 1)Y (k + 1)
x (t) = dmy(t)

dtm X (k) = (k + 1) (k + 2) : : : (k +m)Y (k +m)

x (t) = tm X(k) =

8<:1 if k = m

C(m; k)t(k�m)
k if k 6= m

x (t) = exp (t) X (k) = exp (tk) 
k

k!

x(t) = y(t)z(t) X (k) =
kP
l=0

Y (l)Z (k � l)
x(t) = ym(t) X (k) =

kP
l=0

Y m�1 (l)Y (k � l)
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Coe�cients U1(i) of function u1(t) can be found using
the same recursive relation in Eq. (12) with the initial
condition U1(0) = u0(t1). Then, approximate solution
u(t2) is written as follows:

u(t2) �= u1(t2) =
KX
k=0

U1(k)dtk: (15)

Hence, the approximate solution at grid point ti+1 can
be stated as follows:

u(ti+1) �= ui(ti+1) =
KX
k=0

Ui(k)dtk; (16)

where subscripts are taken to be i = 0; 1; 2; : : : ; N � 1:

4. Kudryashov method

The Kudryashov method [30,31] is an analytic tech-
nique for obtaining exact solutions to di�erential equa-
tions using the following logistic function:

Q(t) =
1

1 + e�t ; (17)

where function Q(t) is a particular solution to the �rst-
order Riccati equation:

Qt �Q+Q2 = 0: (18)

Di�erentiating Eq. (18) with respect to t and replacing
the term Qt by Q�Q2 leads to the following nonlinear
di�erential equation:

Qtt �Qt + 2Q2 � 2Q3 + F (Q;Qt; : : :)

(Qt �Q+Q2) = 0; (19)

where F (Q;Qt; :::) is an arbitrary function of function
Q(t) and its derivatives. Taking F (Q;Qt; : : :) = �2 to
vanish quadratic term yields:

Qtt � 3Qt + 2Q� 2Q3 = 0: (20)

As clearly seen, Eq. (20) is a cubic nonlinear Du�ng
equation (5) with the following parameter values:

� = �3; � = 2;  = �2; x0 = 0:5; x�0 = 0:25: (21)

Thus, logistic function (17) is an exact solution to
the cubic nonlinear Du�ng equation (20). However,
at long-time interval, the logistic function (17) cannot
represent the physical behavior of the Du�ng equation
since function (17) is not harmonic. To measure the
e�ectiveness of the LDTM, solution (17) is used as a
test case and without considering the physical behavior
of the logistic function.

5. Numerical experiments

This section is devoted to the numerical illustration
of various test problems including conservative and
non-conservative systems. Since the exact solution to
the cubic nonlinear Du�ng equation does not exist,
the currently produced exact solution (17) is �rst
considered.

In later cases, physically acceptable parameters
and the nonlinear oscillations are assumed that are
demonstrated at long-time intervals.

For the last three cases, it is preferred to use high
values of N , and the obtained results are accepted as
exact solutions to evaluate error norms [33]. Accuracy
and stability of the obtained results are �gured out by
demonstrating error norms and order of the present
method. The produced results are compared with the
RK4 solutions and the DTM solutions.

Case 1: In this case, the cubic nonlinear Du�ng
equation is considered with parameters (21) and exact
solution (17). For the exact solution, DTM and LDTM
are compared in Figure 1 at the interval t 2 [0; 5].
For the present algorithm, parameters K = 10 and
N = 100 are used. In Figure 2, the relative and
absolute errors of the LDTM and RK4 are compared
with the same parameters used in Figure 1. As seen
in the �gures, the LDTM produces more acceptable
results than the other two techniques.

Case 2 [19]: In the present case, low damping
e�ect, strong nonlinearity, and initial displacement are
considered with the following parameters:

� = 0:5; � =  = 25; x0 = 0:1; x�0 = 0: (22)

In Figure 3, the present numerical technique is
compared with the DTM given in the literature [19].
As seen in Figure 3, the DTM produces physically

Figure 1. Comparison of the LDTM and DTM solutions
with the exact solution for � = �3, � = 2,  = �2,
x0 = 0:5, and x�0 = 0:25.
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Figure 2. Comparison of the LDTM with the RK4 in terms of absolute and relative errors produced for � = �3, � = 2,
 = �2, x0 = 0:5, and x�0 = 0:25.

Figure 3. The LDTM and DTM solutions for � = 0:5,
� =  = 25, x0 = 0:1, and x�0 = 0.

acceptable results only at the small-time interval.
However, the non-conservative system represented by
the Du�ng equation is exactly captured by the LDTM.
Parameters K = 7 and N = 100 are used both for
the LDTM and DTM in Figure 3. In Table 2, the
computed solutions are compared for various values of
parameters N and K = 10. The reference solution
can be considered as an exact solution with parameters
N = 1000 and K = 10.

Case 3 [23]: In this case, critical damping, strong
nonlinearity, and initial displacement in the cubic
nonlinear Du�ng equation (5) can be assumed with
the following parameters:

� = 2; � = 1;  = 25; x0 = 0:1; x�0 = 0: (23)

The comparison of the solutions produced both by
the LDTM and DTM for the non-conservative Du�ng
equation with parameters (18) is demonstrated in
Figure 4. The DTM solutions are in agreement with
the LDTM solutions only at the small-time interval.
In Figure 4, parameters K = 7 and N = 100 are used
in both cases. The absolute errors produced by the
LDTM with various values of K are demonstrated in
Table 3 by considering the solution produced for pa-
rameters N = 1000 and K = 10 as reference solutions.

Case 4: In the last case, the conservative case of the
cubic nonlinear Du�ng equation can be assumed with
the following parameter values:

� = 0; � =  = 25; x0 = 0:1; x�0 = 0: (24)

Figure 4. The LDTM and DTM solutions for � = 2,
� = 1,  = 25, x0 = 0:1, and x�0 = 0.
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Table 2. Comparison of the LDTM solutions for various parameters values N with K = 10.

t N = 20 N = 40 N = 60 N = 80 N = 100

0.5 2.96E-06 4.27E-10 1.48E-11 9.50E-13 1.07E-13
1.0 3.29E-06 9.69E-10 3.82E-12 1.19E-13 3.30E-14
2.0 7.50E-07 5.59E-10 1.16E-11 6.61E-13 7.03E-14
3.0 1.80E-06 1.86E-10 2.43E-12 2.63E-13 3.52E-14
4.0 5.12E-07 6.90E-10 9.66E-12 4.61E-13 4.36E-14
5.0 8.46E-07 6.56E-11 3.74E-12 2.63E-13 3.08E-14

Table 3. Comparison of the LDTM solutions for various parameters values K with N = 100.

t K = 2 K = 4 K = 6 K = 8 K = 10

0.5 2.80E-05 3.35E-09 2.07E-12 2.75E-15 4.44E-16
1.0 2.10E-05 8.85E-09 6.30E-12 1.87E-15 4.02E-16
2.0 6.19E-06 7.50E-09 3.79E-12 8.33E-17 5.55E-17
3.0 1.27E-05 2.57E-09 1.69E-12 3.12E-17 1.01E-16
4.0 9.60E-06 5.21E-10 7.80E-13 5.03E-17 6.85E-17
5.0 5.68E-06 2.85E-11 3.53E-13 3.82E-17 3.08E-17

As seen in Figure 5, the LDTM produces physically
acceptable results, while the DTM solutions are valid
only about the initial time. The period of the produced
solution is obtained about tp = 2:5. The results in
Figure 5 are evaluated to select the parameters to be
K = 7 and N = 100. The absolute errors of the

Figure 5. Comparison of the LDTM with DTM solutions
for � = 0, � =  = 25, x0 = 0:1, and x�0 = 0.

present algorithm with various values of K are shown in
Table 4. The present solution produced for parameters
N = 1000 and K = 10 is accepted as reference solution
in Table 4.

6. Conclusions and recommendation

The cubic nonlinear Du�ng equation representing
behaviour of forced oscillators with a spring, which
has a restoring force, has been solved by a local
di�erential transformation method. Since the exact
solutions of the corresponding equation for all initial
guesses do not exist in the literature, an exact solution
for speci�c parameters was �rst produced using the
Kudryashov method to measure the accuracy of the
suggested method. In addition, the derivation of the
exact solution to the Du�ng equation can be accepted
to be an important consequence. It has been shown
that the LDTM produces highly accurate results in
comparison to its rivals. It has been proved that the
innovative approach has great ability to capture non-

Table 4. Comparison of the LDTM solutions for various parameters values K with N = 100.

t K = 2 K = 4 K = 6 K = 8 K = 10

1.0 2.18E-02 2.67E-04 1.74E-06 1.12E-08 1.45E-10
2.0 1.93E-02 1.07E-04 6.43E-07 3.73E-09 4.34E-11
4.0 9.45E-02 7.95E-04 5.02E-06 2.73E-08 2.77E-10
6.0 1.34E-01 1.63E-03 9.98E-06 4.05E-08 2.22E-10
8.0 2.12E-02 1.97E-03 1.19E-05 3.91E-08 4.48E-11
10.0 2.21E-01 1.30E-03 7.94E-06 2.86E-08 6.92E-11
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linear behaviour of the physical process even at long-
time intervals as opposed to the compared methods,
which are e�ective mostly at short-time intervals. Note
that the suggested approach has been seen to be a very
good alternative to achieving a high degree of accuracy
while analysing the processes represented by the model
equation. Future studies can focus on the design of the
current technique to physical processes represented by
more involved nonlinear models with the forcing terms.
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