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Abstract. This study provides a review of Hypercube Queuing Models (HQMs)
in Emergency Service Systems (ESSs). This survey presents a comprehensive review
and taxonomy of models, solutions, and applications related to the HQM after Larson
[Brandeau, M.L. and Larson, R.C. \Extending and applying the hypercube queueing model
to deploy ambulances in Boston", Management Science, 22, pp. 121-153 (1986).] In
addition, the structural aspects of HQMs are examined. Important contributions of the
existing research are addressed by taking into account multiple factors. In particular, the
integration of location decisions with HQMs for designing an ESS is discussed. Finally, a
list of issues for future studies is presented.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Emergency Service Systems (ESSs) provide �rst care
services when incidents occur and ensure public health
and safety. In these systems, the customer's situation
is usually critical and unstable. This means that
a delay in providing services may cause death or
serious injuries. Given these conditions and, in general,
the uncertainty in these problems, decision-making
becomes more complex for managers. The design of
ESSs requires strategic and tactical decisions [1]. The
strategic decisions determine the number and location
of servers. The dispatching policy that illustrates the
decision about which a server will respond to a request,
and the server's coverage area is speci�ed by tactical
decisions.
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ESSs can be classi�ed into two main categories,
namely customer-to-server and server-to-customer sys-
tems. In the �rst category, servers are immobile, and
customers should visit them to receive a service. In the
second case, servers are mobile and provide a service
at the customer's location. As an example, in the
case of �re, �re trucks are dispatched to the scene;
in Emergency Medical Systems (EMSs), ambulances
travel to the accident location. A system with mobile
servers is called emergency response system. In a
system with immobile servers, servers are usually con-
sidered indistinguishable from each other (e.g., seats of
an airplane or beds of a hospital). In these cases, it
does not matter exactly which server is busy, and only
the number of busy servers is important [1]. On the
other hand, mobile servers can be modeled as servers
more precisely distinguishable from each other. That
is, servers operate independently and can have di�erent
features (i.e., di�erent preferences and mean service
times), and a server's workload may be changed by the
server's location.

The Hypercube Queuing Model (HQM), which
was proposed by Larson [2] and used by many re-
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searchers, is a descriptive model suitable for modelling
server-to-customer systems. Over the years, the model
has been applied to a large number of public and
private emergency systems, such as police departments
and ambulance services. In this research, development
history of the model and its basic ideas are reviewed,
and the implementation of this model is discussed.

1.1. Models description
The basic idea of this model is to develop the state-
space description of a queuing system to use com-
plex dispatching policies and illustrate each server
individually. These models consider the spatial and
temporal complexity of the area under study and
are suitable for centralized systems. In a centralized
system, each customer calls the central unit (i.e.,
dispatcher), and it dispatches the �rst idle server to
that customer, according to a preference list. This
list is prepared based on factors, such as distance
and customer requirements. For example, if the list
is ordered based on the distances between customers
and servers, then once an emergency call is received,
the closest server is dispatched. If the closest server
is busy, then the second, third or closest available
server is dispatched instantly. Therefore, compared
with cases with immobile servers, system workload is
shared between servers better in the case of mobile
servers. In addition, if there are no available servers,
the customer enters a waiting line or is transferred to
another ESS.

The term hypercube is taken from the space that
describes the states of the servers. At any point of time,
each server is free (i.e., 0) or busy (i.e., 1). Therefore,
there are 2N states in a system with N servers. A
certain state of the system is speci�ed by a list of free
and busy servers (an array of 0s and 1s). For example,
the state f011g corresponds to a 3-server system, in
which server 1 is free and servers 2 and 3 are busy
(reading from left to right). For N = 3, the state space
can be shown by a cube (Figure 1), in which each vertex
indicates one state of the system. For N > 3, the state
space becomes a hypercube.

In an HQM, the performance measures of the
system are obtained by calculating limiting probabil-
ities, such as calls per hour, mean travel time, mean

Figure 1. State space of a system with three servers.

response time, mean workload, maximum workload
imbalance, fraction of customers answered by primary
servers, and fraction of customers answered by backup
servers. To determine the limiting probabilities, 2N
balance equations should be solved. This is simply done
by using the ow-balance criterion around the states of
the system. Accordingly, in a steady state, the rate
at which the system enters state i is equal to the rate
at which the system leaves that state. By entering
or exiting a state, a transition occurs. Actually, a
transition arises when a server's state changes from
busy to free, or contrariwise. Each transition takes
place probabilistically over an edge of the hypercube.
When a customer is served by a server, a downward
transition happens. Thus, the rate of downward
transition is equal to the service rate. An upward
transition occurs once a free server is selected to be
dispatched to a customer for service. The rate of
an upward transition is determined by a set of server
assignments and dispatching policies [2].

To better understand the presented concepts, an
example is provided here. Consider a simple network
with three atoms connected by a one-way street (Fig-
ure 2). The distance matrix between these atoms is
presented in Table 1.

It is assumed that the center of each atom is the
location of a server, and a �xed-preference dispatch
policy is in use. That is, when a call is received,
a dispatcher assigns the �rst available server from a
dispatch list ordered from the most preferred to the
least preferred for that call. The preference matrix
based on the shortest travel distance is shown in
Table 2.

To de�ne the hypercube state probabilities, 23

balance equations are written. If �i represents the
arrival rate of customers from atom i = (1; 2; 3) and
�j indicates the service rate of server j = (1; 2; 3), then

Figure 2. Network with three atoms [3].

Table 1. Travel distance matrix between atoms.

From/to 1 2 3

1 0 1 2
2 2 0 1
3 1 2 0
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Table 2. Server dispatch preferences.

Atom Server preference
1st 2nd 3rd

1 1 3 2
2 2 1 3
3 3 2 1

� = �1+�2+�3 and � = �1+�2+�3, where � and � are
the total arrival and total service rates, respectively.

The following is an explanation of how to build
the balance equation for a certain state, like f101g.
The system leaves state f101g if a customer arrives or
server 1 or 3 completes its service; hence, the transition
rate is (�+ �1 + �3)Pf101g, where Pf101g shows the
probability that the system is in state f101g. Moreover,
the system enters this state in one of the following three
ways:

i) From state f001g, if a customer arrives from atom
1 or 3 (in accordance with Table 2);

ii) From state f100g, if a customer arrives from
atom 3;

iii) From state f111g when the service of server 2 is
completed.

The transition rate is (�1 + �3)Pf001g + �3Pf100g +
�2Pf111g. Since the transition rates of the system out
of and into a state are equal in a steady state, the
balance equation of state f101g is written by:

(�+ �1 + �3)Pf101g = (�1 + �3)Pf001g
+ �3Pf100g+ �2Pf111g: (1)

The balance equations for other states can be written
in a similar manner. To �nd out more, see Chiyoshi and
Morabito [3], who presented a set of hypercube models
with di�erent assumptions and indicated steady-state
equations and some practical speci�cations of each
model.

In the next section, a brief introduction of the
exact and approximate HQM is provided. Section 3
classi�es the existing papers in the literature according
to their assumptions and highlights the contributions
of the model formulations and solution approaches.
Section 4 provides the details of studies, which have
incorporated the HQM in the location problem. Fi-
nally, this paper is ended by discussing future research
directions. There are also some papers that cannot be
classi�ed in the following categories; however, they are
very helpful and prepare basic concepts for the HQM.
Potential applications of the HQM, how it works, when
it is preferred to other models and the required resource
are given in Chaiken [4]. Larson [5] presented a manual
for users of the model. Larson [6] prepared a list of

computer programs and provided information for users.
Sacks [7] and Sacks [8] developed a software, named
desktop hypercube and evaluated its performance in
a case study. Larson [9] examined the performance
of operations research in homeland security and in-
troduced the HQM as an e�cient tool in this area.
Galvao and Morabito [1] reviewed probabilistic models
for the design of emergency service systems. They also
surveyed the extensions of these models, embedded into
the HQM.

2. Exact and approximate HQMs

As the �rst HQM, Larson [2] analyzed a multi-
server queuing system with distinguishable servers,
which they support each other. He also developed
a computationally e�cient algorithm to evaluate the
model analytically and calculate several performance
measures. His model was designed for location and
districting problems in urban emergency systems; dis-
tricting is de�ned as partitioning an area into sub-
areas (i.e., districts) according to its features. The
following assumptions are considered in the original
HQM [10,11]:

1. The district of a server is an area that is handled
by the server, of course if it is available. Otherwise,
customers in that area will be responded by a server
out of the district. If all servers are busy, then the
customer enters a queue or is served by another
ESS. In addition, there may be more than one server
in each district that shares the workload of that
area;

2. Each service area is divided into sub-areas, called
atoms. This classi�cation can be done based on
the census report, urban areas, and so on. Demand
points are located at the center of each atom;

3. Demands of each atom are generated independently
via a Poisson process with known rate �i;

4. There is at least one server in each atom, and
exactly one server is dispatched to serve a customer;

5. Server assignment takes place according to a �xed-
preference procedure. For each atom, there is an
ordered list of preferred servers to dispatch. The
dispatcher searches that list in order and sends the
�rst available server. This list is usually obtained by
geographical measures (e.g., travel times); however
other criteria (e.g., allocating expert personnel) can
be considered;

6. Service time follows an exponential distribution
with a known rate. Brandeau and Larson [12]
showed that service time generally includes travel
time, on-scene time, and maybe some follow-up
time (Figure 3).

For the convenience of the reader, a summary
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Figure 3. Divisions of service time [12].

Table 3. Notations used in this paper.

N Number of servers (j = 1; � � � ; N)
M Number of demand points (m = 1; � � � ;M)
C Type of customer (c = 1; � � � ; C)
� Average system busy probability
�j Busy probability of server j
�jm Fraction of dispatches in which server j is sent to atom m
� System-wide arrival rate
�c Arrival rate of customers from node c
� System-wide mean service time
�jc Expected service time for server j and a customer of type c
fjc Probability that a customer of type c is assigned to server j
hm Proportion of demand that is generated at node m
tij Expected travel time between customer m and server j
Wm Set of potential sites covering demand point m;
Sk A state in which exactly k servers are busy
PfSkg or Pk Probability that the system is in state Sk
PfS0g or P0 Probability that all servers are idle
PfSNg or PN Probability that all servers are busy
ack Index of the kth preferred server for customers of type c
Bj The event that the jth selected server is busy
Fj = Bcj The event that the jth selected server is free
PfVkg Steady-state probability of the state corresponding to vertex Vk
Ejm Set of states where server j is the nearest available server to customer m
CN Vertices of N -dimensional unit hypercube
d�im, d+

im Downward and upward Hamming distances between vertices Vi and Vm
Q(N; �; j) Larson's correct factor

de�nitions of symbols frequently used in this paper is
presented in Table 3.

2.1. Approximate HQM
Each system is evaluated by its performance measures.
Larson [2] divided these measures according to the

evaluated characteristics. As an example, the mean
region-wide travel time (considering all types of calls),
workload imbalance, and fractions of dispatches that
are inter-district dispatches are suitable performance
measures from a region-wide perspective; workload
(fraction of time that server is busy), mean travel
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time and fraction of responses of each response unit
that are inter-district can measure the performance
of a response unit (server). It is possible to focus
simultaneously on several performance measures as
objectives while the other measures are maintained at
an admissible level.

There are three main ways to evaluate the perfor-
mance of a system [13]:

1. Exact approaches (e.g., HQM proposed by Lar-
son [12]);

2. Discrete-event simulation;
3. Approximate approaches (e.g., Approximate Hy-

percube (AH) model proposed by Larson [14]).

The advantages of the approximate procedures in com-
parison with two other ones are that their computation
time is low and is not inuenced by the features of the
system.

The AH model is a simple iterative procedure to
estimate the performance measures of a system. In a
system with N servers, the approximate model requires
only N equations rather than 2N , as it is necessary
in the original model. Although, in practice, it has
been approved that the solution of the AH model is
good enough, simpli�ed assumptions are used such as
no cooperation between servers. Furthermore, in most
approximate approaches presented so far, it is assumed
that only one server is located at each base. Regarding
these two assumptions, the state of each server (i.e.,
free or busy) is independent of the state of other
servers; therefore, assuming non-cooperation can be
considered almost equivalent to assuming independent
servers. Hence, the HQM is reduced to an M=M=N
queuing system. In this system, if state Sk represents
that k servers are busy exactly and PfSkg is the
probability that the system is in state Sk, the steady-
state probabilities are as follows:

PfSkg � Pk =
Nk�kP0

k!
; k = 1; 2; � � � ; N � 1;

PfSNg � PN =
NN�NP0

N !(1� �)
;

PfS0g � P0 =
1

N�1P
i=0

Ni�i
i! + NN�N

N !(1��)

; (2)

where � = �
N� < 1, where � and � indicate the demand

and service rates, respectively. These results can be
extended to include the M=M=N=1 queuing system.

In the AH model, the probability that the ith cus-
tomer is served by the jth server in his/her preference
list is equal to the probability of the �rst j � 1 servers
being busy and the jth server being the �rst free server.

In Larson's study [14], servers are selected randomly
until an idle server is found. If Bj indicates the event
that the jth selected server is busy and Fj = Bcj
indicates the event that the jth selected server is free,
then PfB1B2 � � �BjFj+1g shows the probability of the
(j + 1)th selected server being the �rst idle server.
Selection of servers is done in a completely random
process without replacement. Therefore, each server's
probability of being busy is �, and the probability that
the (j + 1)th selected server is the �rst idle server is
�j(1��), if servers are independent. Thus, Larson [14]
presented a factor, Q(N; �; j), to correct the results for
the case, in which the servers are dependent (or, in
other words, there is cooperation between the servers).
PfB1B2 � � �BjFj+1g = PfFj+1jB1B2 � � �BjSkg

PfBj jB1B2 � � �Bj�1Skg � � �PfB1jSkg
= Q(N; �; j)�j(1� �); (3)

Q(N; �; j) =
PfFj+1jB1B2 � � �Bjg

(1� �)

PfBj jB1B2 � � �Bj�1g
�

� � � PfB1g
�

=

N�1P
k=j

(N�j�1)!(N�k)
(k�j)!

�
Nk
N !

�
�k�j

(1� �)
N�1P
i=0

Ni
i! �i + NN�N

N !

: (4)

Jarvis [15] extended the approximation procedure
in [14] and presented an algorithm for loss systems
(zero-line capacity). In his procedure, service time
distribution is dependent on the type of server and
customer. Di�erent types of customers have di�erent
demand rates, and service rate is di�erent for each
pair of server and customer. He also estimated server's
workload more accurately than Larson [14]. Further-
more, he could show that although the shape of service
time distribution was not completely ine�ective in the
results of the HQM, its inuence was very small [15].

The details of the Jarvis algorithm, which ap-
proximates the busy probabilities of each server, are
presented below [16].

In the initial step of the algorithm, �j is calculated
by assuming that every customer is assigned to its �rst
preferred server. Therefore, there is no cooperation
between servers.
�j =

X
c:�c1=i

�c�jc; (5)

� =
CX
c=1

�c
�
��c1;c: (6)

Step 1: Calculate the correction factor using Eq. (4).
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Step 2: Calculate an approximation of the server's
workload for j = 1; � � � ; N :

�j(new) =
Vi

Vi + 1
; (7)

Vi =
NX
k=1

X
c:�ck=i

�c�icQ(N; �; k � 1)
k�1Y
l=1

��cl : (8)

Step 3: Stop if maximum change in �j is less than
convergence criterion.
Step 4: Calculate the following equation:

PN = 1�
NP
i=1

�j

N�
; (9)

fjc = Q(N; �; k � 1)(1� �j)
k�1Y
l=1

��cl ; (10)

� =
CX
c=1

�c
�

NP
i=1

�jcfjc

1� PN : (11)

Step 5: Return to Step 1.

3. Classi�cation of the HQM

The HQM can be classi�ed from di�erent perspectives.
From a general point of view, HQMs are categorized
based on the dispatching policy, backup strategy, and
server type. Dispatching strategies are divided into
two general categories, namely single and multiple.
In a single dispatching strategy, it is assumed that
only one server is needed to respond to the demand
of a customer. In a multiple dispatching strategy,
customers require two or more servers simultaneously.
As an example, in a severe car accident, several low-
level ambulances are sent for transportation, along
with one or two high-level ambulances to provide more
professional medical services; in the case of police
patrol, two police cars each with one or two o�cers
are usually sent.

Backup strategies are divided into two general
categories, namely total and partial. In a total backup
strategy, a customer is lost or enters the queue only if
there are no idle servers. That is, as long as there is an
idle server, customers will not queue up. In a partial
backup strategy, only some servers can respond to each
customer. For instance, a server may be able only to
serve customers who are located at a certain distance
from that server. Therefore, in these models, on the
arrival of a customer, if its backup servers are busy,
the customer is lost or enters a queue, even if there is
a free server.

In this survey, the term `homogeneity' stands for
servers with the same rate. A service rate depends on

many factors. For example, the service rate for trained
servers is usually more than that for newcomers, or,
in some cases, the location of customers and servers
inuences the travel time, which is a part of service
time. In addition, a service rate may be di�erent for
various types of activities; as an example, in police
patrol systems, two kinds of activities are de�ned,
namely dispatching to Call For Service (CFS) and
Patrol Initiated Activity (PIA). O�cers in police patrol
cars control their patrol areas to improve public safety,
and they may check buildings, cars or people; these ac-
tions are called PIA. Such activities can also be de�ned
in medical systems. Suppose that a patient visits an
ambulance base for receiving service. Although, in this
case, the server has not been sent by a dispatcher, it
would be busy with considerable time spent. Therefore,
these activities have di�erent service rates and must
be taken into account in calculating the performance
measures.

Based on the aforementioned explanations, stud-
ies in the �eld of HQMs can be divided into eight
categories. The point that should be noted is that,
in cases where servers are not supposed to support
each other, they should be treated as non-homogeneous
servers; hence, we just review six distinguishable cate-
gories below.

3.1. Single dispatch, total backup, and
homogeneous servers

The assumptions considered in this part are similar
to those of the original model. After Larson [2],
Larson and Franck [10] evaluated the performance
measures of an emergency response system where the
dispatcher has access to Automatic Vehicle Location
(AVL) systems. AVL systems estimate the current
location of servers in the service area and help the
dispatcher forward the closest available server to each
customer. Unlike the studies with a �xed-preference
dispatching strategy, in this study, the upward tran-
sition rate depends on the real-time locations of idle
servers. Therefore, to determine the matrix of upward
transition rates, a recursive method is used. According
to this method, geographical locations of customers are
�rst �xed, and then the hypercube vertices are visited
in a unit-step procedure. This matrix is completed
when all vertices of the hypercube are visited once for
each geographical area.

Chelst and Jarvis [17] proposed an extension of
the HQM where the probability distribution of travel
time is calculated, in addition to its average. Larson
and Rich [18] investigated the relationship between
travel times and dispatching policy in a police depart-
ment. They found that travel times would not increase
remarkably as the service area of each server increased.

Souza et al. [19] proposed a modi�ed HQM in
the context of emergency systems and considered the
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priority of customers in the queue based on the degree
of severity. In their work, high-level customers are
those whose lives are at risk and need more advanced
equipment and highly specialized medical team, as
compared with the low-level customers. They assumed
a non-preemptive priority discipline when a server
becomes idle; it serves a low-level customer in the queue
if there are no high-level customers. In this study, a
layering procedure [20,21] is used to take into account
di�erent classes of customers. In this procedure, the
total service area is divided into di�erent sub-areas,
called atoms, and each atom is distributed into sub-
atoms each of which is an independent source of
customers from one of the priority classes. There is an
example of such systems with in�nite queue capacity.
Consider a queue system with three priority classes, a,
b, and c, where a and c represent the highest and lowest
priority classes, respectively. The dispatching matrix
is shown in Table 4, in which each atom has three
layers. If there are two customers in the queue, then
all possible states of the queue are: faag, fabg, facg,
fbbg, fbcg and fccg. If each class r (r = a; b and c) of
customers arrives according to the Poisson process with
rate �r, and service time is distributed exponentially
with rate �, then the transitions into and out of the
queue state fabg are shown in Figure 4. It is obvious
that according to the priority queuing discipline, when
a server becomes free, the only transition is fabg ! fbg,
and transition fabg ! fag is not allowed. The balance
equation around the state fabg is built as usual by
setting the transition rate into a state equal to the
transition rate out of that state.

Table 4. Example of the dispatching matrix.

Atom Layer Dispatch preference
1st 2nd

1
a 1 2
b 2 1
c 1 2

2
a 2 1
b 1 2
c 2 1

Figure 4. Transition into and out of state fabg [19].

In addition to the studies presented above, some
studies have integrated the HQM and location mod-
els [22,23]. The performance of emergency systems
is associated with the location of servers and their
allocation to the customers. Therefore, optimizing
these two problems can improve some performance
measures (e.g., mean travel time) simultaneously.

Daskin [24] formulated the maximal expected cov-
erage location problem (MEXCLP), where servers are
located optimally to maximize the expected coverage
of demand in a situation, in which some servers may
be unavailable. He recognized the busy probability
of each server �, which can be calculated by an
Erlang loss system equation, � = �=N�. Therefore,
if each demand point is covered by n servers, then
the probability that a demand is covered by at least
one server is equal to 1 � �n. The formulation of this
problem is as follows. In this model, some simpli�ed
assumptions (e.g., independent servers and the same
busy probability for each server) are considered.

max
MX
i=1

NX
j=1

(1� �)�j�1hiyij ; (12)

s.t.
NX
j=1

yij �
MX
i=1

aijxj � 0; 8 i; (13)

NX
j=1

xj � N; (14)

xj = 0; 1; � � � ; N; 8 j;
yij = 0; 1; 8 i; j; (15)

where N is the maximum number of facilities, M is
the number of demand points, and xj is the number of
servers in facility j. In addition, we have:

yij=

(
1 if node i is covered by at least j facilities
0 otherwise

As mentioned before, the objective function (12) max-
imizes the expected number of demands that are
covered. Constraint (13) calculates how many times
demand point j is covered. Constraint (14) limits the
maximum number of facilities that can be deployed,
and Constraint (15) shows that more than one server
can be assigned to each facility.

Batta et al. [25] proposed an adjusted MEXCLP
(AMEXCLP) by relaxing three basic assumptions of
the MEXCLP, independent servers, the same busy
probability for servers, and independence between busy
probability of servers and their locations. The formu-
lations of the AMEXCLP and MEXCLP are similar,
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except for the objective function. The objective func-
tion of the AMEXCLP, which relaxes the independence
assumption using the Larson's correction factor, is as
follows:

max
NX
j=1

MX
i=1

Q(N; �; j � 1)(1� �)�j�1hiyij ; (16)

where yij is one if node i is covered by at least j servers;
otherwise, it is zero, and Q(N; �; j � 1) is computed
by Eq. (4). Batta et al. [25] also integrated the
HQM with a heuristic optimization procedure to �nd a
set of locations for servers, maximizing the expected
coverage. They concluded that there is a conict
between the results of the AMEXCLP and those of
a hypercube optimization procedure. Furthermore,
Chiyoshi et al. [26] showed that the MEXCLP and
its aggregate version (i.e., AMEXCLP) with the HQM
were not comparable, because the structures of their
objective functions were di�erent and the MEXCLP
could not consider queued customers. Furthermore,
for queued customers, the waiting time plus travel
time may exceed the critical covering time. In an
HQM with in�nite line capacity, these customers are
served and added to the system's workload; however,
in the MEXCLP and AMEXCLP, they are not even
covered. They investigated these two points in the
study carried out by Batta et al. [25]. Galvao et
al. [27] compared the MEXCLP with the Maximum
Availability Location Problem (MALP). The MALP
was proposed by ReVelle and Hogan [28] which aimed
at maximizing the number of customers that can be
covered at a target response time with reliability of
�. Both the MEXCLP and MALP are probabilis-
tic extensions of the Maximum Covering Location
Problem (MCLP); actually, they are two di�erent
perspectives of the same concept. They also proposed
an Extension of the MALP (EMALP), in which each
server has a di�erent busy probability. Furthermore,
in the EMALP, the Larson's correction factor is used
to account for dependency between servers. Finally,
Simulated Annealing (SA) solves these two extended
models. Chiyoshi et al. [26] developed Tabu Search
(TS) [29] for the EMALP and compared the results
of this algorithm against those of the SA algorithm
developed by Galvao et al. [27]. They showed that the
solutions of SA outperformed TS for small networks in
terms of quality, while TS performed better than SA for
larger networks generated randomly. The hypercube
queuing model was used to calculate the server's busy
fractions.

Goldberg et al. [30] developed a model to locate
emergency facilities. The goal of their model was to
maximize the expected number of customers who were
responded to within eight minutes (success rate). They
used the Jarvis' procedure to estimate server's uti-

lization rate. They also proposed a model toestimate
travel time distribution between each pair of server and
customer in a case study.

McLay and Mayorga [31] proposed a location
model to maximize two performance measures:

1. The expected number of customers who have sur-
vived;

2. The expected number of customers who are re-
sponded to within the speci�ed time threshold.

These two performance measures are functions of re-
sponse time, which is a�ected by the distance between
servers and customers. These measures are evaluated
only for customers whose lives are threatened, and the
Larson's approximation algorithm is used to estimate
them. They showed that optimization of patient's
survival rate corresponds to how the Response Time
Threshold (RTT) is chosen. Toro-Diaz et al. [32] pro-
posed a non-linear mixed-integer optimization model to
�nd the location of ambulances (see Section 3). They
found that the use of closest dispatching policy enabled
the model to minimize the response time and maximize
the coverage.

Usually, in an EMS, servers are located at a �xed
base. As population grows, demands for ambulances
increase, hence requiring ambulance bases. Demands
for ambulances are time dependent and may change
weekly, daily, and even hourly; thus, building perma-
nent bases to cover variable demands is costly. In re-
sponse to demand uctuation, redeployment strategies
are used to change the location of ambulances dynam-
ically [33,34]. There are two types of redeployment
strategies:

1. Multi-period: In this strategy, the volumes of
demands are predicted for di�erent sectors of the
service area and for di�erent time periods; then,
ambulances are redeployed to face demand uctua-
tion;

2. Real-time: In this strategy, when one or more
ambulances are dispatched, the other available
ambulances are redeployed to guarantee the desired
coverage.

Sudtachat et al. [35] proposed a dynamic relo-
cation strategy by using a nested compliance table.
This table indicates where ambulances should be lo-
cated when there are a certain number of ambulances
available. Actually, ambulance stations are speci�ed as
a function of the state of the system by a compliance
table. A nested compliance table restricts the number
of relocations that can occur simultaneously. They
extended an integer programming model to deter-
mine an optimal nested compliance table strategy and
maximize the expected coverage. The relocation and
approximation of steady-state probabilities are input
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parameters of this model. Finally, they compared
this dynamic strategy with a non-relocation model
(AMEXCLP) proposed by Batta et al. [25], and showed
that the expected coverage provided by their model is
more suitable.

3.2. Single dispatch, total backup, and
non-homogeneous servers

Systems with non-homogeneous servers can be found
in many real-world cases. For example, in an EMS,
some ambulances only provide basic support; however,
some of them can provide advanced support. Thus,
when these two types of ambulances share a workload,
the service rate becomes the average service rate of
basic and advanced ambulances. On the other hand,
two systems with similar servers in terms of vehicle,
personnel, and equipment may have di�erent service
rates based on their locations. For instance, the
mean service time may change due to the travel time,
which is a function of servers' locations. Halpern [36]
investigated the e�ects of dependency on the service
time, customer location, and dispatch units in a simple
two-server, two-customer system.

Larson and McKnew [37] proposed the HQM and
AH model for police patrol, where o�cers can be in
one of three states, i.e., free, busy on PIA, and busy
assigned to a CFS. Therefore, the total number of
states in this study is 3N . They used the Larson's
approximation procedure to estimate the performance
measures. Further to the previous research, McK-
new [38] used a Modi�ed Center of Mass (MCM)
dispatching policy at a police department with 3N
states. In this policy, the total service area is divided
into several sub-areas, and police cars are located at
the center of their mass. Each sub-area is distributed
into atoms, and customers are located at their center of
them. Upon arrival of a customer, the closest available
car is assigned to the respective sub-area even if there
is a closer car from other sub-areas. If all cars in a
sub-area are busy, then the closest car is assigned to
other sub-areas.

A common assumption in the hypercube model is
to use a �xed-preference list to dispatch servers. This
means that upon receiving a call, the �rst available
server is assigned according to this list. Thus, if
there are servers with the same priority for a speci�c
customer, a \tie" occurs. In AH models, it is assumed
that there is only one server, which is preferred to
dispatch; however, when multiple servers are located at
one station, the tie occurs in the dispatch preferences
with high probability. Modeling of such a situation by
taking an arbitrary �xed-preference order leads to an
imbalance in the workload among tied servers, because
tied servers, placed in the more preferred positions,
receive greater workload than those tied servers that
are placed in the less preferred positions. Burwell [39]

and Burwell et al. [40] proposed an \Internal Stacking"
method to handle this situation. In their study, vjm
indicates the number of servers tied with server j,
including server j, for the kth preference position of
customer m. It is also assumed that these servers are
positioned from k to (k�1+vjm) in the dispatch list of
customer m. The set of these servers is given by Hjm:

Hjm =

0@k+vjm�1[
l=k

famlg
1A� 1: (17)

Each time, if the �rst (k � 1) servers are busy, then a
server is selected randomly from Hjm. The workload of
server j must be calculated by conditioning the number
of tied servers, selected before server j.

Brandeau and Larson [12] studied the e�ects
of variable service times in the Larson's AH model.
They also considered the mean service time calibration
feature in this model and o�ered an algorithm to
estimate the travel time e�ectively.

Takeda et al. [21] investigated ambulance decen-
tralization in a case study and indicated that decen-
tralization of ambulances can have positive impact
on system performance measures. Budge et al. [13]
proposed an approximation algorithm based on the
Jarvis' algorithm, in which more than one server could
be assigned to each station; therefore, they computed
a station's (instead of server) busy probability. In
addition, in this algorithm, a set of correction factors
was formulated based on random sampling of stations.
They assumed that N servers were distributed among
j stations, with nj servers at station j, and for all j,
nj � 1. They also de�ned P0 and PN corresponding to
the probability of the system being idle (all servers are
available) and the probability of all servers being busy,
respectively. This algorithm initiates by calculating:
bki The kth preferred station for node i,
nki = nbki The number of servers at the kth

preferred station for node i,

zki = n1i + n2i + � � �+ nki;

�ki = �bkii:

In this algorithm, rj corresponds to the busy fraction
of each open station j, � is the expected workload
per server, and r = �(1 � PN ) is the expected server
utilization.

rj =
1
nj

IX
i=1

�ifij�ij : (18)

The station-speci�c correction factors can be expressed
by:
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Qi(fnkig; �; k)

=

P0
N�1P

s=z(k�1)j

(�N)s
s!

 
z(k�1)i�1Q
u=0

s�u
N�u�

z(k)i�1Q
u=0

s�u
N�u

!
rz(k�1)(1� rnki) ;

(19)

where fij is the multi-server counterpart of Eq. (8) and
is calculated by:

fij � Qi(fnkig; �; k)
k�1Y
l=1

rnlili
�
1� rnjj � : (20)

In Eq. (20), distribution of servers between stations
a�ects the correction factor, because the probability
that a server from station j is dispatched to a customer
from node i not only depends on the number of stations
that are preferred (by node i) to station j, but also on
the number of servers at those stations.

Next, by assuming that the system operates as
an M=M=N=N queuing system, the busy fractions and
the system's wide average service time are calculated
by (superscripts are used as iteration counters):

�0 =
1
�N

JX
j=1

nj
IX
i=1

�i�ij ; (21)

r0
j = r0 = ��0 1� P 0

N
N

; (22)

where P 0
N is calculated using Erlang's loss formula. Set

the iteration counter, h, to one and repeat the following
steps:

Step 1: Use �h�1, �, and N to calculate Ph0 and PhN .
Step 2: Calculate V hj for all j by using Eqs. (20)
and (23):

V hj =
IX
i=1

�i�ijQi
�fnkig ; �h�1; �ij

��ij�1Y
l=1

�
rh�1 or h
li

�nli ;
(23)

where rh�1 or h
li is always the most recently computed

station utilization (i.e., rhli) if it has been computed,
and otherwise rh�1

li . Then, update the station-
speci�c busy fractions using Eq. (24) if rh�1 � 0:5
and using Eq. (25), otherwise:

rhj =
V hj

nj +
�
rh�1
j
�nj�1

V hj
; (24)

rhj =

0@ V hj
V hj + nj=

�
rh�1
j
�nj�1

1A1=nj

: (25)

Step 3: Calculate fhij and normalize these probabil-

ities using fhij  fhij(1� PhN )=
JP
j=1

fhij ; then, calculate

�h, �h, and rh.

fhij � Qi (fnkig ; �; k)
k�1Y
l=1

rnlili
�
1� rnjj � ; (26)

�h =
1

�(1� PN )

IX
i=1

�i
JX
j=1

fhij�ij ; (27)

�h =
��h

N
; (28)

rh =
1
N

JX
j=1

njrhj : (29)

Step 4: If jrhj � rh�1
j j < " for all j, stop. Otherwise,

set h = h+ 1.

Budge et al. [41] used this algorithm to �nd the rela-
tionship between travel time and distance. They con-
cluded that a logarithmic transformation made sym-
metric travel-time distribution. Additionally, Toro-
D��az et al. [42] used this algorithm to extend the work
given by Toro-D��az et al. [32] and presented a multi-
objective location model to make a balance between
e�ciency and fairness, where more than one server
can be assigned to each station. In their work, the
purpose of fairness is to make the same mean response
times and, also, the same server's workload. Ansari et
al. [43] used this approximation algorithm to estimate
the correction factors, the average server workload, and
the individual server workload and treated them as
constants in an MILP model. This model maximized
the number of high-priority calls that can be covered
within a time threshold (i.e., the coverage level) and
balanced server workload by determining the location
of ambulances and dispatching policy simultaneously.
They proposed an iterative algorithm to solve a real-
world example and concluded that the server workload
maintained equivalence by a small reduction in cover-
age.

Boyaci and Geroliminis [44] proposed two ex-
tensions for the AH model, in which more than one
server can be assigned to each atom. In the �rst
extended AH model, it is assumed that the service
rate is equal for the intra- and inter-district customers;
therefore, each server has two states: free and busy.
In addition, in this model, each number in a system
state corresponds to the number of busy servers in the
corresponding atom. For example, state f302g stands
for a state where 3, 0, and 2 servers are busy in the
�rst, second, and third atoms, respectively. Thus, if
ni shows the number of servers assigned to atom i and
M indicates the total number of atoms, then there are
(n1+1)(n2+1) � � � (nM+1) states. As usual, the steady-
state probabilities in this system are computed by ow-
balance equations. As an instance, transition equation
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for state f302g is written as (30), and Figure 5 shows
this transition network.

Pf302g(�1 + �2 + �3 + 3�1 + 2�3) = �3Pf301g
+ �1Pf202g+ 3�3Pf303g+ �2Pf312g
+ 4�1Pf402g: (30)

In the second extended AH model, the service rate is
di�erent for inter �j and intra �0j arrivals; thus, each
server has three states: free, busy serving an intra-
district customer, and busy serving an inter-district
customer. A new de�nition for the states of the system
is proposed, in which the state of each server is shown
by two numbers. For example, in a system with

two servers in each atom, state
�

1 1
1 0

�
indicates a

situation where two servers in the �rst atom are busy
(according to the �rst row), and one of them serves
an intra-district customer and the other one serves
an inter-district customer. Similarly, one server of
the second atom is busy and serves an intra-district
customer, and the other one is free. Therefore, this

system has
Q
j

�
nj + 2

2

�
states. The transition rate of

state
�

1 1
1 0

�
is as Eq. (31), and Figure 6 shows this

transition network:

Figure 5. Transition network for state f302g with equal
inter- and intra-district service rates.

Figure 6. Transition network for state
�

1 1
1 0

�
with

di�erent inter- and intra-district service rates.

P8<:1 1
1 0

9=; (�1 + �2 + �1 + �01 + �2) = �1P8<:0 1
1 0

9=;
+ �2P8<:1 1

0 0

9=; + �02P8<:1 1
1 1

9=; + 2�2P8<:1 1
2 0

9=;: (31)

Finally, they showed that Monte Carlo sampling is
applicable for the HQM and can represent its features
and solve its steady-state probabilities. Boyaci and
Geroliminis [45] proposed a Mixed-Hypercube Queuing
Algorithm (MHQA) in an emergency system, which
can generally be presented in three steps. In the �rst
step, the total service area is divided into the sub-
areas iteratively until the size of each sub-problem
becomes solvable. In the second step, these sub-
problems are solved by considering three states for
each server (i.e., the second extended AH model in
Boyaci and Geroliminis [44]). In the �nal step, sub-
areas are merged by using an approximate hypercube
model, in which some servers have two states and the
others have three states, because servers located near
the borders between two merged areas can provide
service to both areas at the same rate. This algorithm
computes the lost rate for the main service area. Boyaci
and Geroliminis [46] proposed a partitioning algorithm
to obtain highly accurate results in the MHQA.

Baptista and Oliveira [47] extended the AH model
in which the customer arrival process was not sta-
tionary. However, service time, response time, and
preference list were independent of time periods. It
is obvious that the AH model can be applied only
in periods, in which the arrival rate is stationary;
therefore, the average unit workloads are computed by:

�q =

P
q2J

tq�qjP
q2J

tq
; (32)

where:
T Number of time periods;
rt Time period, t (t = 1; � � � ; T );
q The set of periods, rt, where the

arrival rate is stationary, i.e.,
q = r1; r2; � � � ; rtq and q 2 J ;

j The set of q di�erent stationary
periods;

tq The number of time periods, rt, in set
q;

�qj Workload of server j in period q.

They estimated a set of the system performance
measures using the presented hypercube model and
used a simulation model in a case study to assess the
validity of this AH model based on four dispatching
rules:
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1. The nearest neighbor rule: Servers are ranked based
on their distances to the customers;

2. Less occupied preference rule: Servers are ranked
based on the number of times that each server is
assigned;

3. Area preferred server rule: Only a server with the
highest priority can be assigned to serve a customer,
and if it is not available, a server is assigned to
another ESS;

4. Area with two most preferred servers: Only two
servers with the highest priority can be assigned
to respond to a customer in order, and if neither
of them is available, a server is assigned to another
ESS.

Iannoni et al. [48] suggested an HQM to analyze
the EMS, in which customers had di�erent priorities.
In this study, low-level customers were kept waiting
until the number of idle servers reached the threshold
number (i.e., cut-o� level) to increase the probability
of serving the higher-level customers immediately, upon
arrival. They calculated the performance measures for
this cut-o� HQM.

As shown in Section 2.1, the studies that proposed
location models in a hypercube framework are as
follows. Goldberg and Paz [49] modi�ed the model
presented in Goldberg et al. [30] by considering the
FIFO queue discipline, customer classi�cation, and
allocation of multiple servers at each base location.
They tested the applicability of the model in more
real test problems and proposed a heuristic algorithm.
Zhu and McKnew [50] proposed a Workload Balancing
Allocation Model (WBAM) to deploy a number of
ambulances and balance workload between servers.
This model uses a goal programming approach to
address this aim and calculates server workload with
an AH model developed by Burwell [39]. Lei et al. [51]
formulated a four-objective model for a districting-
routing problem under dynamic and stochastic condi-
tions. They solved this model by a two-stage stochas-
tic programming approach and an enhanced multi-
objective evolutionary algorithm.

Geroliminis et al. [52] proposed a hybrid queuing
location model to minimize the mean response time
and meet the minimum coverage level. Actually, they
extended the MCLP for locating servers and used
the HQM for districting and dispatching purposes.
In this study, the server's response time depends
on the customer's location, and the service rate for
intra-district customers located in the server's region
is lower than that for customers out of that region
(i.e., inter-district). Later, Geroliminis et al. [53]
extended the previous model for locating emergency
vehicles in urban networks with many servers, subject
to hypercube ow-balancing equations. This model will

be described in Section 4. Geroliminis et al. [54] used a
GA combined with the hypercube model to solve this
model in a two-stage approach. In the �rst stage, the
overall service area is districted into subareas, and a
number of servers are allocated to each subarea. In
the second stage, the optimal location of servers is
determined in their subarea. In both stages, the AH
model is used to evaluate the �tness function. The
results of the model application indicated that this
model was suitable as an optimization tool, particularly
when many servers must be located.

Erkut et al. [55] extended ten existing covering
models for emergency systems by considering the sur-
vival function, which maximized the expected number
of patients who survived cardiac arrest. They used the
Jarvis' algorithm to evaluate this function. Ingolfsson
et al. [56] designed a location model to minimize the
number of ambulances and to satisfy the minimum
threshold of the service level. They determined the
service level by the number of customers responded to
at a time interval. They also considered random pre-
trip delays, in addition to random travel times. They
used the approximation procedure proposed by Budge
et al. [13] to evaluate the server's busy fraction.

McLay [57] proposed an MEXCLP with two types
of servers and multiple types of customers (MEXCLP2)
to determine the locations of ambulances optimally.
The goal of their model was to maximize the expected
number of customers in life-threatening situations cov-
ered within a speci�ed time. To calculate server's
busy probabilities, they extended an approximation
algorithm based on the Jarvis' algorithm for a case with
an in�nite queue.

Rajagopalan and Saydam [58] formulated a Mini-
mum Expected Response Location Problem (MERLP)
to determine the locations of ambulances in order to
minimize the expected response distances and meet
minimum coverage requirements. They incorporated
the concept of coverage in their model by using the
Daskin's expected coverage [24], as presented in Sec-
tion 2-1, and the Marianov and Revelle's available
coverage [59], in which only those customers were incor-
porated in the coverage statistics and covered with pre-
determined reliability. They also incorporated server
busy probabilities, computed by the Jarvis' algorithm,
in the expected and available coverage statistics. By
applying the MERLP to a case study, they compared
this model with the MEXCLP [24], and showed that,
in MERLP, the response time was faster; hence, more
lives could be saved.

3.3. Single dispatch, partial backup, and
non-homogeneous servers

When assuming that there is partial cooperation be-
tween servers, some servers cannot respond to some
customers for some reasons, such as the location
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Figure 7. Network with three atoms.

Table 5. Server dispatch preferences.

Atom Server preference
1st 2nd 3rd

1 1 3 |
2 2 1 3
3 3 | |

of the customer or the type of the customer's de-
mand. In these systems, on arrival of a customer,
if the backup servers are busy, the customer is
lost or enters a queue even if there are other free
servers.

To better understand the presented concepts, the
reader may consider the example provided in Section 1.
Assume that there is no way between atoms 2 and 3
(Figure 7). Therefore, the preference matrix based on
the shortest travel distance is changed, as shown in
Table 5.

Now, the balance equation for state f011g is as
follows. The system leaves state f011g if a customer
arrives from atom 1 or 2, or server 2 or 3 completes its
service; hence, the transition rate is (�1 + �2 + �2 +
�3)Pf011g. Moreover, the system enters this state in
one of the following three ways (in accordance with
Table 4):

i) From state f001g if a customer arrives from atom
2 (it is noteworthy that, in this state, if a customer
arrives from atom 3, it has been lost or served by
another system, although servers 1 and 2 are idle);

ii) From state f010g if a customer arrives from
atom 3;

iii) From state f111g when the service of server 1 is
completed.

The transition rate is (�2)Pf001g + �3Pf010g +
�1Pf111g. The balance equation of state f011g is
written by:

(�1 + �2 + �2 + �3)Pf011g = (�2)Pf001g
+ �3Pf010g+ �1Pf111g: (33)

Mendonca and Morabito [60] investigated ambulance
deployment on a highway, connecting the cities of Sao

Paulo and Rio de Janeiro in Brazil. In this study,
only a part of the highway was analyzed, covered by
the Anjos do Asfalto's emergency system. This EMS
had six ambulance bases (i.e., 26 states) along the
highway, and one ambulance was stationed at each
base. The central dispatcher was located in Rio de
Janeiro and recorded all the movements of ambulances,
even for fueling. When an emergency call is received,
the nearest ambulance is dispatched to the place of
incident, and if it is busy, the second nearest ambulance
is dispatched. If this ambulance is busy too, then the
customer is lost and transferred to another EMS. They
used a hypercube model to evaluate the performance
measures of this system, such as mean response time
and workload of ambulances. They showed that the
ambulance workload became more balanced only by
changing the sizes of the atoms.

Atkinson et al. [61] proposed one exact and two
heuristic methods to estimate loss probabilities and
ambulance utilization rate for the EMS studied by
Mendonca and Morabito [62]. They also showed the
accuracy of the proposed heuristic methods with a
numerical example. Atkinson et al. [63] extended these
two heuristic methods for a system with 3n states:
free, busy serving a �rst-preference customer, and
busy serving a second-preference customer. Iannoni et
al. [64] presented several greedy heuristic algorithms to
optimize ambulance location and dispatch policies for
the EMS presented in Mendonca and Morabito [62].
The hypercube approximation algorithm proposed by
Atkinson et al. [61] was embedded in each optimiza-
tion procedure to solve large-scale problems fast with
acceptable precision.

Morabito et al. [65] investigated the e�ects of
considering homogeneous against non-homogeneous
servers in calculating the performance measures with
HQM. They concluded that even when the level of
non-homogeneity was not signi�cant, it led to di�erent
results to consider it in performance measures. Kim
and Lee [66] used the HQM to compute steady-state
probabilities in a Probabilistic Location Set Covering
Problem (PLSCP) to satisfy the reliability require-
ments. In the PLSCP presented by ReVelle and
Hogan [67], the total number of ambulances was mini-
mized while the location of ambulances was determined
such that the number of ambulances covering each node
would be higher than minimum requirement. They
also suggested two iterative optimization algorithm
based on the HQM and simulation, and found that
the performance of these two algorithms was almost
equivalent.

3.4. Multiple dispatch
As noted above, in the original model, only one server is
dispatched to serve a customer; however, in real-world
situations (e.g., large �re or severe accidents), more
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than one server is usually dispatched. This section
presents the studies with multiple dispatch assumption
in hypercube models, in which some customers require
simultaneous dispatching of two or more servers.

Now, assume that, in the example presented in
Section 1, customers from each atom, j, can be of two
types. Customers of type 1 require services by a server
with arrival rate �[1]

j , and customers of type 2 require
the simultaneous service by two servers with arrival
rate �[2]

j . The total arrival rate of the system is as
follows:

� = �[1]
1 + �[2]

1 + �[1]
2 + �[2]

2 + �[1]
3 + �[2]

3 : (34)

Suppose that each server can be dispatched to each
atom (total backup), and when a type 1 customer asks
for service, a server with the highest priority among
available servers (Table 2) will be dispatched. In the
case of type 2 customer, the �rst two preferred servers
are dispatched simultaneously. If one of them is busy,
the third server from the priority list is sent. When
only one of the three servers is available, it is assigned
as a single dispatch. As a result, in addition to the
transitions which occur at the cube edges (Figure 1),
some upward transitions can occur on the diagonals of
this cube, such as:

f000g ! f110g; f100g ! f111g;
f010g ! f111g:

The mean service rate for a customer of type 1
served by server i is �i. In the case of a customer
of type 2, the model considers two servers that are
servicing simultaneously the same customer, similar
to two independent servers that service two separated
type 1 customers. Thus, when a customer of type 2 is
served by servers i and k, the mean service rates are �i
and �k, respectively.

Now, the balance equation for state f110g is as
follows. The system leaves this state if a customer
arrives, or server 1 or 2 completes its service; therefore,
the transition rate is (� + �1 + �2)Pf110g. Moreover,
the system enters this state in one of the following four
ways (in accordance with Table 4):

i) From state f000g if the customer of type 2 arrives
from atom 2;

ii) From state f010g if the customer of type 1 arrives
from atom 1 or 2;

iii) From state f100g when the customer of type 1
arrives from atom 2;

iv) From state f111g when a service of server 3 is
completed.

The balance equation of state f110g is written by:

(�+ �1 + �2)Pf110g = �[2]
2 Pf000g

+
�
�[1]

1 + �[1]
2

�
Pf010g+�[1]

2 Pf100g+�3Pf111g:
(35)

Chelst and Barlach [68] studied an example of multiple
dispatch HQM in a police patrol system for the �rst
time. They proposed the HQM and AH models
for ESSs, in which two servers could be dispatched
together to one customer; however, these servers were
homogeneous. Then, they estimated the performance
measures of this system by the exact and approximate
models. In the approximate model, they assumed that:

- Uj is the jth ranked server is unavailable;
- Fj is the jth ranked server is available (free);
- PfU1U2 � � �Uj�1Fjg is the probability that the jth

ranked server will be dispatched to the customer of
type 1, which requires service by a server;

- PfU1 � � �Um�1FmUm+1 � � �Uj�1Fjg is the probabil-
ity that the jth and mth ranked servers will be
simultaneously dispatched to the customer of type
2, which requires the simultaneous service by two
servers.

For a set of identical servers, we have:

PfU1U2 � � �Uj�1Fjg=Q(N; j�1; 1)�j�1(1��); (36)

PfU1U2 � � �Uk�1FkUk+1 � � �Uj�1Fjg
= Q(N; j � 1; 2)�j�2(1� �)2; (37)

whereQ(N; j�1; 1) andQ(N; j�1; 2) are the correction
factor for customers of types 1 and 2. The �rst
correction factor is calculated like Larson's correction
factor (Eq. (4)); however, unlike Larson's models, there
is not a simple closed form for P (Sk) (the reader may
refer to [68], Appendix II):

Q(N; j � 1; 1) =
N�1X
k=j�1

�
k

j � 1

�
�

N
j � 1

� � N � k
N � (j � 1)

� P (Sk)
�j�1(1� �)

: (38)

To �nd the second correction factor, suppose that
k out of N servers is busy. The probability that only
one server out of the �rst (j � 1) servers is free is as
follows:�

k
j � 2

��
N � k

1

���
N
j � 1

�
: (39)

The probability that the free server is the mth ranked
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server is 1=(j � 1) and is not dependent on m. There-
fore, the probability that only the mth server out of
the �rst (j � 1) servers is free is as follows:�

k
j � 2

��
N � k

1

���
N
j � 1

�
(j � 1) : (40)

The conditional probability that the jth server is
available is as follows:

(N � k � 1)=N � (j � 1): (41)

In addition, Eq. (37) becomes as follows:

PfU1U2 � � �Uk�1FkUk+1 � � �Uj�1Fjg

=
N�1X
k=j�2

�
k

j � 2

�
�

N
j � 1

� (N � k)
(j � 1)

N � k � 1
N � (j � 1)

P (Sk):
(42)

The second correction factor is calculated by Eqs. (38)
and (42) and is independent of m.

Q(N; j�1; 2)=

N�1P
k=j�2

0@ k
j�2

1A0@ N
j�1

1A (N�k)
(j�1)

N�k�1
N�(j�1)P (Sk)

�j�2(1� �)2 :
(43)

Davoudpour et al. [69] introduced a probabilistic cov-
erage model that integrates the MEXCLP with hyper-
cube queuing model. They indicated the applicability
of this model by applying it to an EMS center in Tehran
with two basic support and two advanced support
ambulances. Because of the small size of their problem,
they solved steady-state equations to calculate state
probabilities. They concluded that the number of
servers at the center had large e�ect on the number
of customer, who has been responded to. Then, they
showed that the relationship between this performance
measure (i.e., system responsiveness) and the param-
eters of the system was linear. Sudtachat et al. [70]
tried to maximize the patient survival probability in
a system with two types of ambulances: Basic Life
Support (BLS) and Advanced Life Support (ALS).
They also considered three priorities for customers
based on their severity level, which is determined at
�rst by the dispatcher and can be updated when the
server arrives on the scene. The customers of priority 1
need to be served by two servers simultaneously, an
ALS and a BLS; the customers of priority 2 are served
by the closest available BLS. The customers of prior-
ity 3 need one BLS which is selected according to an
ordered preference list, because this type of customers
is considered non-critical and sending the closest BLS

unit to them may make ambulances unavailable for
the next life-threatening customers. They developed
a simulation model for small problems and proposed
a heuristic algorithm based on the AH model for
large-scale problems to design dispatching strategies.
They concluded that dispatching based on customer
priorities improved patient survival probability rather
than dispatching based on the closest strategy. They
also showed that the number of ALS units and their
location are important factors in the e�ciency of the
heuristic policy.

Iannoni and Morabito [71] formulated an HQM
that simultaneously takes into account various assump-
tions including di�erent types of customers and servers,
partial backup, single or multiple dispatch, and a third
state for servers. They stated that these extended
HQM could be embedded directly into an optimization
procedure and might be suitable for evaluating the
performance measures. Iannoni et al. [72] embedded
HQM into a GA algorithm to optimize the size of
each atom for the model presented in Iannoni and
Morabito [71]. In this GA/hypercube algorithm, each
generated con�guration (represented by a chromosome)
is evaluated by the hypercube model. They veri�ed
that this GA/hypercube algorithm was e�ective in
calculating the performance measures, and showed that
these measures could be improved only by modifying
the atom sizes of the system, and it was not necessary
to relocate the ambulances and additional investments
on capacity. Iannoni et al. [73] used this algorithm
to determine the locations of ambulances and their
coverage areas to minimize the response time and
imbalances in the ambulance workload. In this study,
ambulance bases can be located anywhere along the
highways. Table 6 presents a list of studies in the
literature with focus on their assumptions.

4. Location models and solution approaches

In recent years, the increasing costs of emergency
service, high volume of emergency calls, and tra�c
problem have made the location-allocation problem a
major issue in designing emergency service systems.
On the other hand, the server performance is related
to the dispatching and districting policy, which are
dependent upon the locations of emergency facilities
and allocation of servers. In addition, there are
usually a limited number of servers that must be
allocated to the facilities to ensure adequate coverage
and appropriate response time. Most studies in the
literature tried to integrate location models with HQM
because this model is able to assess the potential node
of facility location from di�erent perspectives. Table 7
represents a summary of these studies. As shown in
this table, most studies used approximate hypercube
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Table 6. List of studies in the literature with focus on their assumptions.

Category Type of
customer

Queue discipline

No queue FIFO Other type

Single dispatch,

total backup,

homogeneous

servers

Identical

customer

Larson [2],

Larson and Franck [10],

Chelst and Jarvis [17],

Berman et al. [22],

Larson and Rich [18],

Chiyoshi et al. [26],

Rajagopalan et al. [33],

Galvao et al. [27],

Chiyoshi and Morabito [3],

Toro-Diaz et al. [32],

Saydam et al. [34],

and Sudtachat et al. [35]

Larson [14],

Batta et al. [25]
|

Non-identical

customer
Goldberg et al. [30]

Berman and Larson [23],

McLay and Mayorga [31]
Souza et al. [19]

Single dispatch,

total backup,

non-homogeneous

servers

Identical

customer

Brandeau and Larson [12],

Zhu and McKnew [50],

Geroliminis et al. [52],

Erkut et al. [55],

Rajagopalan and Saydam [58],

Larson and McKnew [37]

Geroliminis et al. [53],

Budge et al. [41],

Geroliminis et al. [54],

and Toro-D��az et al. [42]

|

Non-identical

customer

Halpern [36],

McKnew [38],

Jarvis [15],

Burwell [39],

Burwell et al. [40],

Ingolfsson et al. [52],

Budge et al. [13],

Boyaci and Geroliminis [45],

Boyaci and Geroliminis [46],

and Ansari et al. [43]

Goldberg and Paz [49],

Takeda et al. [21],

McLay [57],

Baptista and Oliveira [47]

Iannoni et al. (2015)

Single dispatch,

partial backup,

homogeneous

servers

Identical

customer
| | |

Non-identical

customer
| | |
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Table 6. List of studies in the literature with focus on their assumptions (continued.)

Category Type of
customer

Queue discipline

No queue FIFO Other type

Single dispatch,

partial backup,

non-homogeneous

servers

Identical

customer
Kim and Lee [66]

Non-identical

customer

Mendonca and Morabito [60],

Atkinson et al. [61],

Atkinson et al. [63],

Iannoni et al. [64]

Morabito et al. [65] |

Multiple dispatch,

total backup,

homogeneous

servers

Identical

customer
| | |

Non-identical

customer
Chelst and Barlach [68] | |

Multiple dispatch,

total backup,

non-homogeneous

servers

Identical

customer
| | |

Non-identical

customer

Davoudpour et al. [69],

Sudtachat et al. [70]
| |

Multiple dispatch,

partial backup,

homogeneous

servers

Identical

customer
| | |

Non-identical

customer
| | |

Multiple dispatch,

partial backup,

non-homogeneous

servers

Identical

customer
| | |

Non-identical

customer

Iannoni and Morabito [71],

Iannoni et al. [72],

Iannoni et al. [73]

| |

queuing model since this model is easier to solve than
the exact model. Batta et al. [25] showed that using the
AHQM in location models usually overestimated the
coverage and underestimated the number of required
servers.

Geroliminis et al. [52-54] and Toro-Diaz et al. [32]
developed a model in the framework of hypercube to
optimize the performance measures in large urban net-
works with many servers, without using approximate
approaches. The objective of this model is to minimize
the mean system response time, subject to hypercube
constraints. The general structure of these models is
as follows:

min :

z =
NX
j=1

MX
m=1

�jmtjm; (44)

s.t. :X
i2Wm

xi � ym; m = 1; 2; : : : ;M; (45)

IX
i=1

xi = N; (46)
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Table 7. List of studies in the literature with focus on location models.

Ref. Hypercube Location
model

Objective
function

Solution
approach

HQM as an
optimization

Case
studyExact App1.

[22] * Q-median Minimization of the travel time |

[23] * Q-median Minimization of the steady state
expected travel time

|

[25] * AMEXCLP Maximization of the expected
coverage

Daskin's heuristic procedure
followed by post heuristic and
post-IP analysis

[30] * Maximization of the expected
success rate

Pairwise interchange heuristic *

[49] * Maximization of the expected
success rate

Pairwise interchange heuristic

[52] * Minimization of the
mean response time

An iterative heuristic *

[33] * DECL Minimization of the number
of ambulances

Incremental search heuristic

[27] * EMALP
Maximization of the number
of customers covered with
reliability �

Simulated annealing and pure
Vertex Substitution (VS) local
search heuristic

[55] * Maximization of the number
of survivors

Jarvis's location-allocation
heuristic

*

[52] * Maximization of the expected
coverage

Branch and bound algorithm
and an iterative heuristic

*

[57] * MEXCLP2
Maximization of the number
of high level customer covered
within a threshold

Branch and bound algorithm *

[58] * MERLP Minimization of expected
response distances

Reactive Tabu Search (RTS)
algorithm and a greedy search
heuristic

*

[53] * Minimization of mean response
time

Discrete-event simulation *

[31] *
Maximization of the number of
customers covered in a
time threshold

| *

[54] * Minimization of mean response
time

Embedding heuristic of the GA
with hypercube model

* *

[32] * Minimization of the mean
response time

Genetic algorithm *

[34] * DRCL
Minimization of the total
number of redeployments
and ambulances

Reactive Tabu Search (RTS)
algorithm and a search heuristic

*

[69] * MEXCLP Maximization of the coverage
of emergency region

Branch and bound algorithm *

[42] *
Minimization of the mean
response time and
maximization of the fairness

Reactive Tabu
Search (RTS)

*

[43] * Maximization of the coverage An iterative heuristic *

[66] * PLSCP Minimization of the number
of ambulances

Two iterative algorithms
based on hypercube and
simulation

*

1: Approximate.
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xi 2 f0; 1g; i = 1; 2; � � � ; I; (47)

ym 2 f0; 1g; m = 1; 2; � � � ;M; (48)

�jm = hm

P
Vi2Ejm

PfVig
1� P fV2N�1g ;

j = 1; � � � ; N ; m = 1; � � � ;M; (49)

P (Vm)

26666664
X8<: i

Vi2CN : d+
im=1

9=;
�im

+
X8<: i

Vi2CN : d�im=1

9=;
�im

37777775
=

X8<: i
Vi 2 CN : d�im = 1

9=;
�imPfVig

+
X
i

Vi 2 CN : d+
im = 1

�imPfVig;

m = 1; � � � ; 2N � 1; (50)

2N�1X
i=0

PfVig = 1; (51)

there are two decision variables:

xi =

(
1 if afacility is located at potential site i
0 otherwise

ym =

(
1 if demand point m is covered
0 otherwise

where PfVkg is the steady-state probability of the state
corresponding to vertex Vk, k = 0; 1; � � � ; 2N � 1; d�im
and d+

im represent the downward and upward Hamming
distances between vertices Vi and Vm(d�im+d+

im = dim);
the Hamming distance between two vertices Vi and Vm
is the number of digits that are di�erent between two
vertices. For example, the Hamming distance between

states f0011g and f0111g is equal to one; however, the
distance between states f0110g and f1001g is equal
to 4. d�im and d+

im represent the number of digits
changed from 0 to 1 and from 1 to 0, respectively.
Given that the system is in state i, �ij and �ij are the
upward and downward rates of transition from state i
to state j corresponding to vertices Vi and Vm.

In this model, Constraint (46) speci�es the de-
mand points to be covered. Constraint (47) speci-
�es the number of facilities that must be deployed.
Constraints (48) and (49) are integrality constraints
for the decision variables. Constraint (51) calculates
�jm, where its denominator shows the probability that
all servers are not busy. Constraint (51) shows the
set of ow-balancing equations, which compute the
probability of states. Actually, these equations are
the modi�ed versions of the original HQM [2] to take
into account di�erent service rates for inter-district and
intra-district customers. Constraint (52) guarantees
that the sum of probabilities is equal to one. This
model is in fact a two-step model, in which the service
area is distributed into sub-areas in the �rst step, and,
in parallel, the required number of servers is assigned to
each sub-area. In the second step, the optimal locations
of servers in their atoms are determined.

5. Conclusion and future research

This study reviewed the literature on hypercube queu-
ing model with focus on the research published after
Larson [2]. These studies were classi�ed with respect
to their assumptions, such as dispatch policy, backup
policy, and the homogeneity of servers. The growing
attention to the hypercube model in comparison with
simulation approaches results from its application in
real-world problems. Actually, the HQM can reect
various aspects of an emergency service system and
describe the states of these systems, too. However,
the existing models are far from real-world situations,
and still much work remains to be done. As an
example, Souza et al. [19] discussed the provision of
a model to subdivide a service area into smaller sub-
areas optimally. Davoudpour et al. [69] considered a
number of uncertain parameters, such as demand rate
and service time. Chiyoshi et al. [3] suggested that
di�erent demand rates should be considered during a
day or a week. They also o�ered multiple dispatching,
in which servers are not sent simultaneously.

The authors of this paper suggest that eliminating
the server's returning time can improve the HQM. The
main purpose of an emergency system is to provide
service as fast as possible. In real-world examples, the
response time is reduced by eliminating the server's
returning time to its base. In addition, when a
customer enters during the time of returning, the server
can go to the customer's location directly. Because
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of the complexity of modeling such assumptions, the
existing studies have supposed that a server returns
to its base when a service is completed and will then
be dispatched to serve a queued customer. Therefore,
taking into account these assumptions helps calculate
the performance measures more accurately. On the
other hand, in EMS papers, there are no various
policies for returning servers, and most articles suppose
that servers should come back to their home base
station; however, this is not necessary. Sometimes,
servers should come back to another station for better
coverage. It appears that a new state de�nition in the
HQM models should be formed for this repositioning
problem to save the lives of more people.

Furthermore, due to the complex nature of the
problems in this �eld, many studies have used a �xed
procedure to dispatch servers. In real-world problems,
server dispatch and backup policies are dependent
upon the conditions of the system, such as the real-
time location of the server, demand uctuation, and
the type of the customer's demand. Therefore, it is
recommended that a exible procedure be de�ned to
reect these conditions. In view of the aforementioned
literature and Table 7, which summarizes the studies
that have tried to integrate the HQM with location
model, a number of suggestions for future studies are
given below:

� As noted before, to design an ESS, decisions are
divided into two types: strategic decisions for de-
termining the number and locations of servers and
tactical decisions for specifying dispatching policies
and server coverage areas. As it turns out, strategic
and tactical decisions are related to each other.
Thus, the location model and HQM should be in-
tegrated to increase their e�ectiveness. The studies
presented so far have not been successful in fully
integrating the two models and are, at best, designed
in two phases, and there is no relationship between
the state probabilities and decision variables of the
location model. In fact, the balance equations have
not been considered in location models explicitly,
and existing models use an approximate hypercube
or are designed in two phases. Therefore, it is
a promising area for the further study to design
a model that can provide a relationship between
balance equations and location variables;

� As it can be seen in Table 7, the objective functions
of most location models are either travel time mini-
mization or coverage maximization. Furthermore,
all of these studies have only a single objective
function. Despite the humanitarian nature of these
problems, the economic concern is noteworthy, be-
cause, in these types of problems, available �nancial
resources are very restricted. Thus, models with
multiple objectives considering economic and per-

formance measures are more e�ective. Additionally,
environmental measures can be regarded;

� Due to the signi�cance of travel time as a portion of
service time, many studies have tried to analyze this
time more accurately [12,18,30,41]; however, travel
time is always evaluated as part of the service time.
Therefore, it can be very helpful to de�ne a measure
to examine the travel time solely. It seems reason-
able to consider separate rates for travel time and
on-scene time, because travel time is dependent on
factors (e.g., distance and type of vehicles) while on-
scene time depends on the expertise of the medical
team and severity of the incident. It is recommended
that distinct distributions with di�erent rates of
travel time and on-scene time be used.
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