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Abstract. In this article, we propose some modi�cations to the maximum likelihood
estimation for estimating the parameters of the Pareto distribution and evaluate the
performance of these modi�ed estimators in comparison with the existing maximum
likelihood estimators. Total Relative Deviation (TRD), Total Mean Square Error (TMSE),
and Stein Loss Function (SLF) were used as performance indicators of goodness of �t
analysis. The modi�ed and traditional estimators were compared for di�erent sample
sizes and di�erent parameter combinations using a Monte Carlo simulation in R-language.
We concluded that the modi�ed maximum likelihood estimator based on expectation of
empirical Cumulative Distribution Function (CDF) of �rst-order statistic performed much
better than the traditional ML estimator and other modi�ed estimators based on median
and coe�cient of variation. The superiority of the mentioned estimator was independent
of sample size and choice of true parameter values. The simulation results were further
corroborated by employing the proposed estimation strategies for two real-life datasets.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Pareto distribution is one of the most important life-
time distributions. It was developed by Pareto [1]
on the basis of the law of income distribution. The
two-parameter Pareto distribution is commonly used to
model uneven distribution of wealth among individual
units in society [2]. It has wide applications in eco-
nomic studies as it plays a vital role in the investigation
into several economic phenomena [3]. However, it is
not limited to application in economics and has also
been applied in many other disciplines [4,5]. In recent
times, it has been used to study the ozone levels in
the uppermost atmosphere, tensile strength of nylon
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carpet �bers, occurrence of natural resources, insurance
risks and the commercial features, etc. Burroughs
and Tebbens [6] discussed some applications of the
Pareto distribution in modeling the data related to
earthquakes, forestry �re areas, and oil and gas in
di�erent �eld sizes. Di�erent variants of Pareto dis-
tribution like generalized and transmuted forms have
also been discussed in the literature with practical
applicability [7,8].

The parameter estimation of Pareto distribution
has been carried out with di�erent estimation methods
available in the literature. Quandt [9] derived the
algebraic expressions for di�erent methods of esti-
mation like method of moments, method of maxi-
mum likelihood, quantiles method, and least squares
method. A�fy [10] derived the recurrence relations
and estimated the parameters by moments of order
statistics for Pareto distribution. Lu and Tao [11] con-
sidered weighted least squares method for estimating
the parameters of Pareto distribution. Their results
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showed that both maximum likelihood and weighted
least square estimators performed almost identically.

Maximum likelihood estimation is considered as
the most important analytical technique for estimat-
ing the parameters of any probability distribution.
Pobo�c��kov�a and Sedlia�ckov�a [12] compared four meth-
ods for parameters estimation of Weibull distribution,
namely least squares, weighted least squares, maximum
likelihood, and method of moments. The numerical
results indicated that the method of moments and
maximum likelihood provided equivalent results, but
they recommended maximum likelihood because of its
optimal properties. Similar results have been docu-
mented in favor of maximum likelihood estimation for
exponential-Pareto distribution [13] and Generalized
Pareto distribution [14].

In the literature on estimation of parameters,
di�erent modi�cations have been proposed to the
standard estimation techniques. Cohen and Whit-
ten [15] derived the modi�ed moment estimators and
modi�ed maximum likelihood estimators for three-
parameter Weibull distribution. Most of their modi-
�cations were based on �rst-order statistic. Numerical
evaluations have shown that the modi�ed estimators
provide higher accuracy than traditional methods.
Iwase and Kanefuji [16] studied the modi�ed maximum
likelihood estimators and modi�ed moment estimators
for the Log-normal distribution with shifted unknown
origin. Lalitha and Mishra [17] suggested the modi�ed
maximum-likelihood estimation for scale-parameter of
the Rayleigh distribution. Modi�cations to maximum
likelihood estimation and moments methods have also
been found better than traditional estimators for two-
parameter exponential distribution [18]. Similarly,
for Power Function distribution, Zaka and Akhter
[19] suggested some modi�cations to the method of
maximum likelihood, method of moments, and method
of percentile estimation.

Keeping in view the importance of Pareto distri-
bution and maximum likelihood method as well as the
superiority of modi�ed maximum likelihood estimation
for di�erent distributions in the recent literature, the
present study is focused on deriving the modi�ed
maximum likelihood estimators for Pareto distribution.
The derived modi�cations have been compared with
traditional maximum likelihood estimators using some
common performance indicators.

The rest of the article is structured as follows:
Section 2 presents di�erent properties of Pareto distri-
bution. Section 3 provides a brief review of methods
and derivations performed and the performance indices
used for comparison. Section 4 describes the simulation
procedure employed. Sections 5 and 6 present the
results and discussion on simulation study and real-life
applications, respectively. Finally, Section 7 concludes
the article.

2. Properties of Pareto distribution

The Pareto distribution can be expressed with shape
(�) and scale (�) parameters. The values of these
parameters must be positive. Let t1; t2; t3; :::; tn be a
random sample from two-parameter Pareto distribu-
tion; then, probability density function (pdf) is given
as:

f (t;�; �) =
���

t�+1 t � � and �; � > 0:

Di�erent properties of Pareto distribution are given
below:

The Cumulative Distribution Function (CDF) of
Pareto distribution:

F (t) = P (T � t) = 1�
�
�
t

��
:

Survival function:

S (t) = 1� F (t) = P (T > t) =
�
�
t

��
:

Hazard function:

h (t) =
f (t)
S (t)

=
��
t

�
:

Entropy of Pareto distribution:

Entropy = log
��

�
�

�
e(1+ 1

� )
�
:

Mean and variance of Pareto distribution:

Mean =
��
�� 1

; � > 1;

Variance =
��2

(�� 2) (�� 1)2 ; � > 2:

Coe�cient of variation:

CV =
1p

� (�� 2)
:

Median:Z m

�1
f (t) dt =

1
2

) Median = �(2)
1/�:

Harmonic mean:

HM = �
�

1 +
1
�

�
:

The geometric mean:

GM = �e1=�:

Mean deviation:
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Figure 1. Pareto distribution with di�erent parameter
combinations.

MD = 2� (�� 1)
�

1� 1
�

���1

:

The rth moments about origin:

�r 0 =
��r

�� r ; where r < �:

Coe�cient of skewness:

1 =
2 (�+ 1)
(�� 3)

r
(�� 2)
�

; � > 3:

Measure of kurtosis:

2 =
3 (�� 2)

�
3�2 + �+ 2

�
� (�� 3) (�� 4)

; � > 4:

Moment generating function:

M (r;�; �) = E
�
er t
�

= �(�r �)�� (��;�r�) :

Characteristics function:

' (r;�; �) = �(�i� r)�� (��;�i r�) :

Shape of Pareto distribution with di�erent combina-
tions of scale and shape parameters is depicted in
Figure 1.

3. Methodology

In the current study, we have derived some modi�-
cations through the maximum likelihood estimation
approach and compared them with the traditional
one. The proposed modi�cations are based on median,
coe�cient of variation, and expectation of empirical
CDF of �rst-order statistic of Pareto distribution.

3.1. Maximum Likelihood (ML) estimation
The method of ML estimation was introduced by
Fisher [20]. This method is widely used for parameter
estimation. The ML estimators are generally unbiased
and possess optimal properties.

3.2. Maximum likelihood estimation of Pareto
distribution

Let t1; t2; :::; tn be a random sample from Pareto
distribution. The Probability density function of the
Pareto distribution is:

f(t;�; �) =

(
���
t�+1 ; t � �; � > 0; � > 0
0 Elsewhere;

where � is shape and � is the scale parameter
commonly denoted by ti � Pareto (�; �). The log
likelihood function is:

lnL =

 
n ln�+ n� ln� � (�+ 1)

nX
i=1

ln ti

!
I
n

min
i

ti > �
o
: (1)

Di�erentiating Eq. (1) with respect to \�" leads to:

n
�

+ n ln� �
nX
i=1

ln ti = 0; (2)

hence, ML estimators of � and � (by direct maximiza-
tion) are:

�̂ =
n

nP
i=1

ln ti � n ln�
; (3)

�̂ = t(1); (4)

where t(1) is the lowest value in the sample.

3.3. Modi�ed maximum likelihood estimator-I
For the �rst modi�cation to the ML method, we fol-
lowed Cohen and Whitten [15], Rashid and Akhter [18],
and Zaka and Akhter [19] who derived the modi�ed ML
estimators for Weibull, exponential, and power func-
tion distributions, respectively. In this modi�cation,
we use median of Pareto distribution and Eq. (2).

The median of Pareto distribution is:

~t = �2
1
� ; (5)

� =
~t

2 1
�
: (6)

Putting the value of � in Eq. (2), we get the �rst
modi�ed ML estimators of Pareto distribution as:
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�̂ =
n (1� ln 2)
nP
i=1

ln ti � n ln ~t
; (7)

�̂ =
~t

21=�̂ : (8)

In the following, we name them as ML-I.

3.4. Modi�ed maximum likelihood estimator-II
For the second modi�cation to the method of ML es-
timation, we followed Cohen and Whitten [21], Rashid
and Akhter [18], and Zaka and Akhter [19]. They
derived the modi�ed ML estimators for gamma, expo-
nential, and power function distributions, respectively.
This modi�cation employs the coe�cient of variation
and Eq. (2).

The coe�cient of variation of Pareto distribution
is given as:

C:V: =
1p

�(�� 2)
; � > 2; (9)

from Eq. (2):

� = exp

0BB@
nP
i=1

ln ti � n
�

n

1CCA ; (10)

and from Eq. (9):

s
�t

=
1p

�(�� 2)

) � (�� 2) =
�t2

s2

�̂ = 1 +

r
1 +

�t2

s2 : (11)

Putting �̂ from Eq. (11) in Eq. (10), we get the
estimator of � as:

�̂ = exp

0BB@
nP
i=1

ln ti � n s
s+
p
s2+�t2

n

1CCA : (12)

Thus, Eqs. (11) and (12) are the second modi�ed
ML estimators of � and �. In the following, we name
them as ML-II

3.5. Modi�ed maximum likelihood
estimator-III

For the third modi�cation to the ML method, we
followed Rashid and Akhter [18]. They derived the
modi�ed ML estimator for exponential distribution.
This modi�cation is based on Eq. (2) and expectation

of empirical CDF of �rst-order statistic of Pareto dis-
tribution. Following Cohen and Whitten [15], Rashid
and Akhter [18], Zaka and Akhter [19], and Cohen and
Whitten [21], expectation of empirical CDF of �rst-
order statistic is de�ned as:

E
�
F
�
t(1)
��

=
1

n+ 1
:

Hence, expectation of empirical CDF of �rst-order
statistic of the Pareto distribution is:

1
n+ 1

= 1�
�
�
t(1)

��
; (13)

� = t(1)

�
n

n+ 1

�( 1
� )
: (14)

Putting � from Eq. (15) in Eq. (2) and solving it for �,
we get:

�̂ =
n [1 + ln (n)� ln (n+ 1)]

nP
i=1

ln ti � n ln
�
t(1)
� : (15)

Eq. (15) becomes:

�̂ = t(1)

�
n

n+ 1

�( 1
�̂ )
: (16)

Thus, Eqs. (15) and (16) provide the third mod-
i�ed ML estimators of Pareto distribution. In the
following, we call them ML-III.

3.6. Performance indices
For comparing the performances of traditional ML
estimators and the proposed modi�ed ML estimators,
three performance indices, namely Total Mean Square
Error (TMSE), Total Relative Deviation (TRD), and
Stein Loss Function (SLF), are used. These indices
provide precision and accuracy of estimators. These
measures are frequently used in the literature as
performance criteria for the comparison of estima-
tors [18,19,22-25].

TMSE for the parameter vector is calculated as:

TMSE =

RP
r=1

��
�̂r
�̂r

�
�
�
�r
�r

��0��
�̂r
�̂r

�
�
�
�r
�r

��
R

;

where R is the number of replications, which reduces
to:

TMSE =

RP
r=1

��
�̂r � �

�2
+ (�̂r � �)2

�
R

= MSE
�
�̂
�

+ MSE (�̂) :

The following expression is used for the calculation of
TRD:
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TRD =
����E(�̂)� �

�

����+

�����E(�̂)� �
�

����� ;
where � and � are the true parameters.

Stein Loss Function (SLF) is de�ned by James
and Stein [26] as:

SLF =
�̂
�
� log

 
�̂
�

!
:

4. Numerical evaluation

A simulation study is conducted to assess the perfor-
mances of modi�ed ML estimators proposed in the
current article. This comparison is done for di�erent
sample sizes (n = 20, 50, 100, 200) and di�erent
parameter combinations (� = 1 � = 3; � = 1 � = 4;
� = 2 � = 3; � = 2 � = 4). The random samples
are drawn such that if Ui � Uniform (0; 1), then
ti = �(1� Ui)�1=� is a Pareto random variable with
parameters (�; �). All the simulation results are based
on 10,000 replications using R-language [27].

5. Results and discussion

The comparison of di�erent estimators based on TMSE
and TRD is given in Tables 1-4 for di�erent samples
sizes and parameter combinations. From Table 1, for
n = 20, it can be observed that ML-III (TMSE =

0.597061; TRD = 0.054101; SLF = 0.028364) provides
more precise and e�cient estimates than ML (TMSE
= 0.735645; TRD = 0.124546; SLF = 0.032513),
ML-I (TMSE = 6628.903; TRD = 0.225408; SLF =
0.033465), and ML-II (TMSE = 2.299222; TRD =
0.420594; SLF = 0.088004), respectively. For n = 50,
ML-III (TMSE = 0.207959; TRD = 0.02242; SLF
= 0.010825) gives estimates which are more e�cient
and close to true parameters than the estimates of
ML (TMSE = 0.228458; TRD = 0.04969; SLF =
0.0115), ML-I (TMSE = 226.6148; TRD = 0.215618;
SLF = 0.01824), and ML-II (TMSE = 0.881554; TRD
= 0.257158; SLF = 0.039857), respectively. Similarly,
for the sample size of 100, ML-III performs better
than traditional ML and two modi�ed ML estimators
in terms of TMSE (0.097426, 1.252958, 0.466227, and
0.092797 for ML, ML-I, ML-II, and ML-III, respec-
tively) as well as in terms of TRD (0.023491, 0.106291,
0.179633, and 0.010054 for ML, ML-I, ML-II, and
ML-III, respectively) and SLF (0.005158, 0.049679,
0.022946, and 0.005002 for ML, ML-I, ML-II, and
ML-III, respectively). Finally, for n = 200, ML-III
also performs better than other competing estimators
considered. ML-III gives TMSE = 0.04677, while ML,
ML-I, and ML-II give TMSE = 0.04795, 0.407725, and
0.263359, respectively. Similarly, TRD is computed at
0.005321 for ML-III compared to TRD = 0.012011,
0.046269, and 0.127321 for ML, ML-I, and ML-II,
respectively. For n = 200, in terms of SLF, the

Table 1. Comparison of ML, ML-I, ML-II, and ML-III for � = 1 and � = 3.

n Method E(�̂) E(�̂) TMSE TRD SLF

20

ML 1.017117 3.322288 0.735645 0.124546 0.032513
ML-I 1.044508 3.5427 6628.903 0.225408 0.033465
ML-II 1.07382 4.040321 2.299222 0.420594 0.088004
ML-III 1.000703 3.160193 0.597061 0.054101 0.028364

50

ML 1.006673 3.12905 0.228458 0.04969 0.0115
ML-I 1.017977 3.592925 226.6148 0.215618 0.01824
ML-II 1.049072 3.624257 0.881554 0.257158 0.039857
ML-III 1.000058 3.067086 0.207959 0.02242 0.010825

100

ML 1.003304 3.060562 0.097426 0.023491 0.005158
ML-I 1.008047 3.294731 1.252958 0.106291 0.049679
ML-II 1.036149 3.430452 0.466227 0.179633 0.022946
ML-III 0.999982 3.030108 0.092797 0.010054 0.005002

200

ML 1.001657 3.031062 0.04795 0.012011 0.0026
ML-I 1.003702 3.127701 0.407725 0.046269 0.020397
ML-II 1.0265 3.302463 0.263359 0.127321 0.013839
ML-III 0.999994 3.015944 0.04677 0.005321 0.00256



610 S. Haider Bhatti et al./Scientia Iranica, Transactions E: Industrial Engineering 26 (2019) 605{614

Table 2. Comparison of ML, ML-I, ML-II, and ML-III for � = 1 and � = 4.

n Method E(�̂) E(�̂) TMSE TRD SLF

20

ML 1.012651 4.447734 1.380098 0.124585 0.033644

ML-I 1.028744 6.971119 4878.77 0.771524 0.185629

ML-II 1.039263 5.095194 3.419774 0.313061 0.073896

ML-III 1.000401 4.230728 1.120442 0.058083 0.029338

50

ML 1.00496 4.164452 0.388137 0.046073 0.011032

ML-I 1.011489 4.87495 132.8122 0.230226 0.127452

ML-II 1.02419 4.598745 1.236833 0.173876 0.032191

ML-III 0.999997 4.081985 0.353632 0.020499 0.010405

100

ML 1.002504 4.078189 0.177935 0.022051 0.005277

ML-I 1.006098 4.405924 5.563232 0.107579 0.050877

ML-II 1.016198 4.374583 0.625432 0.109844 0.017776

ML-III 1.000011 4.037609 0.169828 0.009413 0.005129

200

ML 1.001261 4.040215 0.084378 0.011315 0.002571

ML-I 1.002893 4.173587 0.700546 0.046289 0.019442

ML-II 1.010139 4.233041 0.344255 0.068399 0.010534

ML-III 1.000013 4.020065 0.082338 0.005029 0.002532

Table 3. Comparison of ML, ML-I, ML-II, and ML-III for � = 2 and � = 3.

n Method E(�̂) E(�̂) TMSE TRD SLF

20

ML 2.032983 3.334168 0.773015 0.127881 0.033618

ML-I 2.083013 5.50672 6222.556 0.87708 0.179457

ML-II 2.14457 4.033481 2.292159 0.416779 0.086644

ML-III 2.000253 3.171493 0.626941 0.057291 0.029286

50

ML 2.01352 3.1227 0.22508 0.04766 0.011338

ML-I 2.034664 3.998999 459.6621 0.350332 0.044614

ML-II 2.09871 3.619203 0.890822 0.255756 0.039591

ML-III 2.000264 3.060863 0.205327 0.02042 0.010705

100

ML 2.006758 3.062779 0.101324 0.024305 0.005341

ML-I 2.021307 3.354927 7.999015 0.128963 0.061298

ML-II 2.073637 3.440908 0.495619 0.183788 0.023805

ML-III 2.000117 3.032304 0.096454 0.010826 0.005177

200

ML 2.003418 3.030724 0.047555 0.01195 0.00257

ML-I 2.008491 3.132881 0.416321 0.048539 0.020534

ML-II 2.053206 3.304872 0.278185 0.128227 0.014233

ML-III 2.000091 3.015609 0.046379 0.005248 0.00253
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Table 4. Comparison of ML, ML-I, ML-II, and ML-III for � = 2 and � = 4.

n Method E(�̂) E(�̂) TMSE TRD SLF

20

ML 2.025154 4.443085 1.352143 0.123348 0.033198
ML-I 2.058967 3.974279 31993.43 0.035914 0.074343
ML-II 2.080093 5.108112 3.467063 0.317075 0.074179
ML-III 2.000645 4.226306 1.096509 0.056899 0.02895

50

ML 2.009922 4.167355 0.396775 0.0468 0.011231
ML-I 2.026314 5.088347 131.543 0.285244 0.046526
ML-II 2.04903 4.608011 1.271466 0.176518 0.032646
ML-III 2.000001 4.084831 0.361413 0.021208 0.010589

100

ML 2.00497 4.08406 0.177909 0.0235 0.005297
ML-I 2.013689 4.418893 2.371643 0.111568 0.048882
ML-II 2.03278 4.387988 0.650319 0.113387 0.018412
ML-III 1.999992 4.043422 0.169322 0.01086 0.005135

200

ML 2.002537 4.039 0.084804 0.011018 0.002585
ML-I 2.006899 4.184829 0.729367 0.049657 0.01999
ML-II 2.020911 4.238906 0.358476 0.070182 0.010864
ML-III 2.00004 4.018856 0.082804 0.004734 0.002548

results show superiority of ML-III as it has lower SLF
value than other competing estimators (SLF = 0.00256
for ML-III compared to SLF = 0.0026, 0.020397, and
0.013839 for ML, ML-I, and ML-II, respectively).

From Tables 2, 3, and 4, it is evident that the
parameter estimates of ML-III are more precise and
e�cient than those of the traditional ML and other
modi�ed estimators (ML-I and ML-II) for all sample
sizes and all parameter combinations. The TMSE
and TRD, in case of ML-III, are smaller than the
results of other estimators. ML-I performs the worst
for small samples; however, when the sample size
becomes large, ML-I estimates get closer to the actual
parameters. During computations, similar results are
observed for sample sizes of up to 1000 for all parameter
combinations. These results have been skipped to avoid
redundancy.

It is also worth mentioning that ML-III performs
better for all sample sizes and for all parameter com-
binations. However, its superiority over traditional
ML estimators has a decreasing tendency with growing
sample size.

6. Real data applications

In addition to the simulation study, the proposed
modi�ed estimators are compared using two real-life
datasets. The �rst example is taken from Clark [28],
which was also used by Kantar [29], and consists of

21 observations of the data on the number of deaths
in major earthquakes during 1900-2011 as published
by the U.S. Geological Survey. The second example is
taken from Beirliant et al. [30] consisting of 142 values
of �re damage claims (in 1000's of Norwegian Krones)
in Norway during 1975. The same dataset has also
been used by Munir et al. [2] and Obradovi�c [31] for
comparing di�erent estimators as well as the e�ciency
of goodness of �t tests in case of Pareto distribution.

The TMSE and TRD cannot be used as perfor-
mance measures in real-life data, because, unlike in the
simulation, the true parameters are not known. Thus,
for the comparison of the performance of estimators in
real-life situations, we use two other measures. The
�rst one is values of the test statistic of Kolmogorov-
Smirnov (KS) goodness of �t test [32,33] assuming a
Pareto distribution with given parameters estimated
from any of the four methods. The second one is the
Sum of Squared Di�erences (SSD) between observed
(sample) distribution function, S(ti), and expected
distribution function, F̂ (ti), with parameters estimated
from any method. This squared di�erence is de�ned as:

SSD =
nX
i=1

n
S(ti)� F̂ (ti)

o2
:

Both of the above measures are based on choosing
the combination of parameter estimates that provide a
better �t to the observed data. The results from real-
life applications are presented in Table 5.
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Table 5. Comparison of estimators for real-life examples.

Method �̂ �̂ K � S test (statistic) SSD

Example-1
n = 21

ML 20085 0.903376 0.152473 0.046585
ML-I 32192.86 1.574339 0.404264 0.715023
ML-II 40353.96 2.443539 0.443881 1.020271
ML-III 19029.02 0.861351 0.150542 0.040972

Example-2
n = 142

ML 500 1.19403 0.054996 0.053872
ML-I 532.6737 1.291658 0.097218 0.268736
ML-II 702.0035 2.007348 0.352113 3.420614
ML-III 497.0494 1.185651 0.051481 0.048543

From the application of the considered estimation
strategies to the �rst real-life example, it is evident
that ML-III provides a more precise �t to the actual
data in terms of KS-test statistic (0.150542 for ML-III
compared to 0.152473, 0.404264, and 0.443881 for ML,
ML-I, and ML-II, respectively) as well as in terms of
the sum of squared di�erences between observed and
expected CDFs (SSD = 0.040972 for ML-III compared
to SSD = 0.046585, 0.715023, and 1.020271 for ML,
ML-I, and ML-II, respectively). Similar results are
obtained for the second real-life example. Hence,
both real data applications corroborate our simulation
results presented in the previous section.

7. Conclusion

The study dealt with the parameter estimation of
Pareto distribution with some modi�ed ML estimators.
We derived the algebraic expressions for three modi�ed
ML estimators. The proposed modi�cations were based
on median, coe�cient of variation, and expectation
of empirical CDF of �rst-order statistic. A Monte
Carlo simulation study based on 10,000 replications
was performed with di�erent sample sizes and di�erent
parameter combinations. From the results, it could be
concluded that modi�ed estimator based on expecta-
tion of empirical CDF of �rst-order statistic (ML-III)
was more precise and e�cient than the traditional and
other modi�ed ML estimators for all the sample sizes
and parameter combinations considered. The results
were further con�rmed by applying the proposed esti-
mation strategies to two real-life examples.
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