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Abstract. We address the electronic properties of armchair graphene nanoribbon with
intight binding model Hamiltonian. Speci�cally, we have investigated the behavior of
density of states and electrical conductivity. The possible gap parameter e�ects, ribbon
width, and chemical potential on electrical conductivity are investigated. Using Green's
function, the electrical conductivity and density of states of the system have been calculated.
Based on the results, the band gap in density of states increases with gap parameter and
decreases with ribbon width. The dependence of the electrical conductivity on temperature
for various ribbon widths and chemical potentials has been found. Our results show that
a peak appears in temperature dependence of electrical conductivity for each value of
chemical potential and ribbon width.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Recently, a single sheet of graphite (Graphene), has
drawn the attention of both theoretical and experi-
mental condensed matter physicists due to its novel
electronic and thermal properties [1-3]. The novel
physical properties come from the fact that the exci-
tations are massless Dirac fermions, which could lead
to physical behavior di�erent from that of the standard
two-dimensional systems [1,4,5]. One can mention that
a number of anomalous phenomena ranging from half
integer quantum Hall e�ect, nonzero Berry's phase [6],
to minimum conductivity [1] have been observed in
experiments. Due to its high values for mobility [7]
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and electrical conductivity [3], graphene is recognized
as one of the key materials for realizing electronic
devices of the next generation. The presence of edges
in graphene has strong implications for the low-energy
spectrum of the �-electrons [8-10]. The properties of
graphene ribbons are determined through two basic
edge shapes, namely, armchair and zigzag.

The construction of graphene nanoribbons with
various widths is possible with using the mechanical
method [6] and the epitaxial growth [11] method. The
high degree of roughness at the edges can signi�cantly
change the properties of edge states [12]. Such edge
disorder leads to Anderson localization and Coulomb
blockade e�ects [13]. The edge passivation can be
modeled through the tight binding approach by modi�-
cations of hopping energies [14] or via additional phases
in the boundary conditions [15]. Spin dependent
transport properties such as spin hall e�ect of graphene
nanoribbons have recently been calculated [16]. Rib-
bons with zigzag edges possess localized edge states
with energies close to the Fermi level [9,17]. Optical
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selection rules of zigzag graphene nanoribbons have
been presented in a theoretical work [18,19]. On the
other hand, edge states are absent from ribbons with
armchair edges. A number of research groups [20,21]
have derived the analytical wave function and en-
ergy dispersion of zigzag nanoribbon. Using the
e�ective-mass approximation [22-24], the analytical
forms of electronic wave functions of armchair graphene
nanoribbons within the low-energy range have been
found. Based on the achieved, all zigzag graphene
nanoribbons are metallic with localized states on the
edges [20,21] while armchair graphene nanoribbons
are either metallic or insulating, depending on their
widths [22,20]. Moreover the authors of a theoret-
ical paper have derived an analytical expression for
electronic band energy and energy spectrum in arm-
chair graphene nanoribbons [25]. Because of quantum
con�nement e�ects, the spectrum breaks into a set
of subbands and the wave vector along the con�ned
direction becomes discretized [26]. The study of
properties of armchair graphene nanoribbons is an
interesting topic due to achievements in fabrication
of narrow nanoribbons characterized by well-controlled
width [27,28]. The dynamical and static spin suscepti-
bilities of graphene nanoribbon have been studied using
random phase approximation [29]. Analytical study of
electronic properties of gapped graphene nanoribbons
has been performed [30].

We investigate the e�ects of ribbon width on
temperature dependence of electrical conductivity of
armchair graphene nanoribbon by using tight binding
model Hamiltonian. The static electrical conductivity
has been obtained using Green's function method. By
means of the electronic band structure, the Green's
function matrix elements have readily been found.
In the last section, we will discuss and analyze our
numerical results regarding the e�ects of ribbon width
and chemical potential on the dependence of the
electrical conductivity on the temperature. Moreover,
we investigate the impact of gap parameter on the
density of states and electrical conductivity of armchair
graphene nanoribbon.

2. Theoretical formalism

The electronic structure of gapped graphene nanorib-
bon can be obtained in the context of a nearest
neighbor tight-binding model for � electrons. This
model Hamiltonian is introduced by:

H = �t X
hmm0i

�
cymcm0 + h:c:

��X
m

�
�mcymcm

�
; (1)

in which hmm0i implies the nearest neighbor lattice
sites; h.c. denotes the Hermitian conjugate; operator
cym(cm) creates (annihilates) an electron at the mth site

of the lattice; �m denotes the on-site energy; t implies
the hopping integral of electrons from one atomic site to
other one. Since no long-range magnetic ordering has
been assumed for electrons, the spin index of electrons
does not require to be considered. Figure 1 shows
crystal structure of armchair graphene nanoribbon
lattice consisting of two types of sublattices A and
B. The unit cell contains n A-type atoms and n B-
type atoms. Translational invariance along x direction
results in de�ning the following electronic creation
cyAi(Bi);kx operator using Fourier transformation:

cyAi;kx =
1p
N

NX
l=1

eikxxlcyAi;l

cyBi;kx =
1p
N

NX
l=1

eikxxlcyBi;l; (2)

where cyAi(Bi);kx creates an electron with wave number
kx at A(B) sublattice with position i along the width
of the ribbon, i.e. y direction as shown in Figure 1. xl
refers to the position of the lth unit cell of nanoribbon
lattice along x direction according to Figure 1. N is
the number of unit cells along x direction. kx is a wave
vector in the �rst Brillouin zone of nanoribbon lattice
of which the constant is 3a, according to Figure 1.
cyAi;l(c

y
Bi;l) creates an electron in pz orbit of a carbon

atom located at A(B) sublattices at position i along
the width of ribbon, i.e. y direction, on the lth unit
cell. The band spectrum of electrons in armchair
graphene nanoribbon is obtained by considering the
following expansions for the wave functions of A and B
sublattices in operator form (cyA;kx;p; c

y
B;kx;p) [25]:

Figure 1. Structure of an armchair graphene nanoribbon,
consisting of sublattices, A and B. n is the width of the
ribbon. Every unit cell contains a number, n, of atoms of
the A and B sublattices. Two additional hard walls
(j = 0; n+ 1) are imposed on both edges.
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cyA;kx;p =

s
2

(n+ 1)

nX
i=1

sin(
p�
n+ 1

i)cyAi;kx ;

cyB;kx;p =

s
2

(n+ 1)

nX
i=1

sin(
p�
n+ 1

i)cyBi;kx : (3)

so that cyA(B);kx;p creates an electron at sublattice A(B)
with wave vector kx belonging to the �rst Brillouin
zone. n denotes the width of ribbon and p is an
integer number with values p = 1; 2; 3; :::; n. Hard-wall
boundary condition [25] implies the factor sin( p�

n+1 i)
in the expansion in Eq. (3). The tight binding
model Hamiltonian is written in terms of basis kets
fj A;kx;pi; j B;kx;pig as:

H =
X
kx;p

�
f(kx; p)cyA;kx;pcB;kx;p +H:c:

�
�X
kx;p

�
�AcyA;kx;pcA;kx;p + �BcyB;kx;pcB;kx;p

�
;

(4)

where f(kx; p) = �t[2eikxa=2cos( p�
n+1 ) + e�ikxa]. Also,

�A(B) refers to electronic on-site energy of sublattice
A(B). Diagonalization of the Hamiltonian in Eq. (4)
yields a two-band spectrum. By assuming �A = ��B �
�, the band energies are :

E�(kx; p) = �pjf(kx; p)j2 + �2; (5)

where � implies the conduction and valence bands,
respectively. Moreover, � introduces the gap param-
eter. Using band energy spectrum in Eq. (5), the
Hamiltonian in Eq. (4) is expressed by:

H =
X

kx;p;�=�
E�(kx; p)cy�;kx;pc�;kx;p: (6)

The de�nition of matrix elements for the electronic
Matsubara Green's function [31] is given by:

G�;p(kx; �) = �hT� c�;p;kx(�)cy�;p;kx(0)i; (7)

where � refers to imaginary time. The Fourier trans-
formation of each matrix element of Green's function
is obtained by:

G�;p(kx; i!n) =
Z 1=kBT

0
d�ei!n�G�;p(kx; �); (8)

and !n = (2n + 1)�kBT is the fermionic Matsubara
frequency in which T is equilibrium temperature.

Using the model Hamiltonian in Eq. (6), we can
�nd the Fourier transformation of each matrix element
of Green's function as:

G�;p(kx; i!n) =
1

i!n � E�(kx; p) + �
; (9)

where chemical potential, ��, is determined by the
electronic concentration (ne) through the following
expression:

ne =
1
nN

X
kx;p;�=�

1
e(E�(kx;p)��)=kBT + 1

: (10)

The amount of electronic concentration ne determines
the chemical potential, �, by means of Eq. (10).

In order to obtain electrical conductivity, the
correlation function of the electrical current operators
should be calculated. The �nal result for the single-
band model Hamiltonian [32] has been obtained and
one can generalize this result to multiband model
Hamiltonians. Using the Green's function in band
space, the static electrical conductivity of armchair
graphene nanoribbon is expressed as follows:

�xx(T ) =
e2

4Nn

X
kx;p;�

(
@E�(kx; p)

@kx
)2

Z 1
�1

d�
2�

��@nF (�)
@�

�
(2ImG�;p(kx; i!n

�! �+ i0+))2
�
; (11)

where nF (x) = 1
ex=kBT+1 introduces the Fermi-Dirac

distribution function. Substituting electronic Green's
function into Eq. (11) and integrating over wave vector
through interval ��=3a < kx < �=3a, the results
for static electrical conductivity have been obtained.
Moreover, density of states is found based on Green's
function as:

D(E)=
1

2nN

X
kx;p;�

�2ImG�;p(kx; i!n �! E + i0+):
(12)

3. Numerical results and discussion

The main numerical results for total density of
states and electrical conductivity of armchair graphene
nanoribbon in the presence of the e�ects of electronic
concentration, gap parameter, and ribbon width are
predicted in this section. The results for electronic den-
sity of states and electrical conductivity are obtained
by substituting the Green's function matrix elements
into Eqs. (11) and (12).

The density of states, D(E), of armchair graphene
nanoribbon as a function of energy for di�erent values
of ribbon width, namely, n = 3; 4; 5; 7; 9; 10, is illus-
trated in Figure 2. This �gure implies two features.
The increase in ribbon width, n, leads to a decrease in
band gap width in density of states. Since the armchair
nanoribbon with the mentioned widths is the band
insulator, we expect the semimetallic properties of the
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Figure 2. The total density of states D(E) of armchair
graphene nanoribbon as a function of the normalized
energy, E=t, for di�erent ribbon widths, n, at �=t = 0.

graphene sheet to appear by increasing n. Therefore
the band gap width in the density of states decreases
with ribbon width. Moreover, the height of Van Hove
singularity increases with n as shown in Figure 2. Also,
the di�erence between the maximum and the minimum
energy for which the density of states has a nonzero
value is independent of ribbon width n. In Figure 3,
we show the density of states of armchair graphene
nanoribbon with n = 7 for di�erent values of gap pa-
rameter, �=t. The increase in on-site energy di�erence
enhances gap parameter, �, which in turn increases
the band gap in density of states. Since the area
below density of states curve corresponds to electronic
concentration, this quantity remains constant under
the variation of �=t according to Figure 3. Therefore,
the width of density of states increases with gap
parameter. We plot the static electrical conductivity of
armchair graphene nanoribbon without gap parameter,

Figure 3. The total density of states D(E) of armchair
graphene nanoribbon as a function of the normalized
energy, E=t, at �xed ribbon width, n = 7, for di�erent
values of gap parameter, �=t.

Figure 4. Electrical conductivity of undoped armchair
graphene nanoribbon versus normalized temperature,
kBT=t, for di�erent ribbon widths.

�=t = 0, versus normalized temperature, kBT=t, for
di�erent amounts of ribbon width, n, in Figure 4.
This plot indicates that electrical conductivity reaches
the value of zero up to �nite nonzero temperature
for all values of n. Electronic transition from the
valence band to the conduction one takes place when
temperature reaches a characteristic �nite value and,
consequently, electrical conductivity begins to increase
above this characteristic temperature. Such tem-
perature behavior of electrical conductivity has been
predicted in several experimental works [33-35]. More-
over, each curve presents an exponential decay at low
temperature, which manifests the presence a �nite-
energy gap in excitation spectrum. Lower values of
ribbon width lead to more rapid decay corresponding
to larger energy gap. There is a peak in the electrical
conductivity. The height of peak increases upon
increasing n. The increasing behavior of �xx can be
justi�ed by the point that temperature leads to increase
the electronic transition between two bands. However,
this is not the case for temperatures above the position
of the peak. In this range, the increase in temperature
causes more scattering of electrons which reduces the
electrical conductivity [36,37]. At a �xed temperature,
the electrical conductivity increases with ribbon width,
n, due to reduction in energy gap. We have also
studied the e�ect of gap parameter, �, on temperature
behavior of electrical conductivity. In Figure 5, we plot
�xx(T ) of armchair graphene nanoribbon with n =
7 versus normalized temperature for di�erent values
of gap parameter, namely �=t = 0; 0:1; 0:2; 0:3; 0:4.
This plot indicates that electrical conductivity reaches
the value of zero up to a �nite temperature due to
energy gap in electronic density of states. Upon more
increase temperature, electrical conductivity rises until
it reaches a maximum for each gap parameter, �=t.
The phanomenon can be understood through the fact
that temperature enhances the number of electronic
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Figure 5. Electrical conductivity of undoped armchair
graphene nanoribbon versus normalized temperature,
kBT=t, for di�erent values of gapped parameter, �=t, for
n = 7.

Figure 6. Electrical conductivity of doped armchair
graphene nanoribbon versus normalized temperature,
kBT=t, at �xed ribbon width, n = 7, for di�erent chemical
potential values, �=t.

transitions from the valence band to the conduction
one. Afterwards, electrical conductivity decays for
temperatures above peak characteristic temperature.
This comes from the e�ect of scattering of electrons,
which reduces the conductivity. In addition, at �xed
values of the temperature, lower gap parameter �=t
causes less energy gap and, thus, higher values of
electrical conductivity. Figure 6 shows the temperature
behavior of electrical conductivity of doped armchair
graphene nanoribbon with n = 7 for di�erent chemical
potentials. This �gure indicates that each curve has
a peak at characteristic temperature of kBT=t =
2:0. The other novel feature of this �gure is the
enhancement of electrical conductivity with increase in
chemical potential at �xed temperature. This can be
understood from the fact that higher chemical potential
yields higher electronic concentration which results in
larger electrical conductivity.

4. Conclusion

We studied the temperature dependence of electrical
conductivity of gapped graphene nanoribbon in the
presence of electron doping, which means increase in
the concentration of electrons in the system via adding
impurity atoms to the structure. Using a tight binding
model Hamiltonian and a Green's function approach,
the excitation spectrum of the model Hamiltonian was
studied. In particular, the e�ect of gap parameter
on electrical conductivity and density of states was
investigated. The increase in gap parameter led to
decrease in electrical conductivity. Moreover, at a
�xed temperature, the increase in ribbon width caused
the enhancement of electrical conductivity. On the
other hand, our results showed that increase in the
chemical potential gave rise to increase in electrical
conductivity. The exponential behavior of electrical
conductivity of graphene nanoribbon was a sign of
energy gap in density of states. In other words at low
temperature the conductivity was related to band gap
width (�) as � / e��=T . Thus, we could read the
band gap in density of states by using temperature
behavior of static electrical conductivity. One of the
most important applications of band gap in density
of states is the study of optical absorption spectra of
the graphene nanoribbon. The variation of band gap
in density of states causes the change of frequency of
absorbed electromagnetic wave.
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