
Scientia Iranica D (2018) 25(3), 1441{1455

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
http://scientiairanica.sharif.edu

Making problem: A new approach to reachability
assurance in digraphs

M. Valizadeha, M.H. Tadayona,*, and A. Bagherib

a. Iran Telecommunication Research Center (ITRC), Tehran, P.O. Box 14155-3961, Iran.
b. Faculty of Computer Engineering, Amirkabir University of Technology, Tehran, Iran.

Received 31 December 2016; received in revised form 7 October 2017; accepted 13 January 2018

KEYWORDS
Marking problem;
Reachability
assurance;
Path�nding;
Software testing.

Abstract. Considering G as a weighted digraph, and s and t as two vertices of G, the
Reachability Assurance (RA) problem is how to label the edges of G such that every path
starting at s �nally reaches t and the sum of the weights of the labeled edges, called
the RA cost, is minimal. The common approach to the RA problem is path�nding,
in which a path is sought from s to t and, then, the edges of the path are labeled.
This paper introduces a new approach, the Marking Problem (MP), to the RA problem.
Compared to the common path�nding approach, the proposed MP approach has a lower
RA cost. It is shown that the MP is NP-complete, even when the underlying digraph is
an unweighted Directed Acyclic Graph (DAG) or a weighted DAG with an out-degree of
two. An appropriate heuristic algorithm to solve the MP in polynomial time is provided.
To mitigate the RA problem as a serious challenge in this area, application of the MP in
software testing is also presented. By evaluating the datasets from various program ow
graphs, it is shown that the MP is superior to the path�nding in the context of test case
generation.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The goal of the reachability query is to determine
whether or not it is possible to reach a target vertex
from a source vertex in a given digraph. The reachabil-
ity query problem has been extensively discussed in the
literature [1]. When the size of the underlying digraph
is small, the reachability query can be easily answered
using primitive algorithms such as depth-�rst-search or
transitive-closure. However, if the underlying digraph
is very large, primitive approaches are not e�cient.
Most of existing reachability query approaches belong

*. Corresponding author. Tel.: +98 84977629
E-mail addresses: valizadeh80@gmail.com (M. Valizadeh);
tadayon@itrc.ac.ir (M.H. Tadayon);
ar bagheri@aut.ac.ir (A.R. Bagheri).

doi: 10.24200/sci.2018.20104

to either transitive closure compression [2-4] or online
search [5-7] categories.

In this paper, it is assumed that the target
vertex is reachable from the start vertex and is merely
intended to determine how to assure reaching the target
from the source. In this respect, G is considered to
be a weighted digraph, and s and t are two vertices
of G. The Reachability Assurance (RA) problem is
meant to address how to label the edges of G such
that every path starting at s �nally reaches t and the
sum of the weights of the labeled edges, called the
RA cost or simply the reachability cost, is minimal.
Various practical problems can be reduced to the RA
problem. For instance, in the context of graph-based
test case generation, the main problem is to generate
test cases in order to cover the vertices or edges of a
given digraph [8].

The common solution to the RA problem is
path�nding, in which a path p is sought from s to t

1442 M. Valizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1441{1455

and, then, every edge of p is labeled as T , which implies
that the edge should be followed [9,10]. Starting at
s, we should pass through the labeled outgoing edge
of s (ei) and, then, to the labeled outgoing edge of
the head of ei and so on, until we reach t. The
lower bound of the reachability cost of this solution
is the shortest path weight. Some techniques use the
path�nding approach to solving the RA problem. For
example, in the software-testing context, a symbolic
execution technique uses a path to assure reaching a
vertex of a given digraph [11]. Although path�nding
is e�cient, it is generally not e�ective, especially when
the size of G or the weight of the edges of G increases.
The symbolic execution technique su�ers from the
problems of path explosion and path complex con-
straints because of the ine�ectiveness of the path�nding
approach [11,12].

Path�nding carries out total labeling to assure
that the target vertex is reached, implying that it
provides full information about reaching the target
from the source. In order to decrease the reachabil-
ity cost, labeling should be done as infrequently as
possible. Because of this, the proposed solution to
the RA problem is to label arbitrary edges (and not
necessarily consecutive edges) of G. Moreover, it is
possible to use two labels T and F on the edges of G.
Starting from s, when reaching a vertex vi of G, if an
outgoing edge of vi is labeled with T , then we must
pass through it. In contrast, if an outgoing edge of vi
is labeled with F , then we must not pass through it.
If we reach a vertex where none of the outgoing edges
is labeled, we can optionally pass through any of those
edges. The proposed solution to the RA problem is
called the Marking Problem (MP) approach.

Example 1. Figure 1 represents ow graph, G, of a
computer program with start and �nal vertices, v1 and
v10, respectively. An edge of the ow graph denotes a

Figure 1. The ow graph of a computer program with
start and �nal vertices v1 and v10, respectively.

logical expression (le). For instance, if x and y are the
input variables of the program, then le(e1) = (x > y)
and le(e2) = (x � y). Suppose that this study
intends to assure reaching vertex v8. The path�nding
approach uses path p from start vertex v1 to target
vertex v8. In this approach, the logical expression of
every edge of path p must be satis�ed (evaluated as
True). Because the length of the shortest path from
v1 to v8 is 3, in order to assure reaching v8 by a path,
it is required to satisfy 3 logical expressions, e.g. the
logical expression of every edge of the shortest path
e1e3e9 or e1e4e10. Hence, the reachability cost in the
path�nding approach is 3. Since G is the ow graph
of a computer program, execution of the program with
any input leads to traversal of G starting at v1 and
ending at v10. The MP approach assures reaching v8
from v1 by satisfying the logical expression of only
edge e9 (e9 = T). The second solution of the MP
approach is to unsatisfy (evaluate as False) the logical
expression of only edge e15 (e15 = F). Thus, the
reachability cost in the MP approach is 1. Solution
e15 = F or e9 = T means that, in order to assure
reaching v8 from v1, edge e15 (F -marked edge or every
sibling edge of the T -marked edge) should be removed
from G. To verify this solution, it is enough to note
that, by the removal of e15 from G, every path starting
at v1 �nally reaches v8. This simple example shows
why the MP approach is superior to the path�nding
approach.

Reachability assurance is a serious challenge to
software testing [8]. Di�erent methods could be used
to design test cases for a computer program to detect
the faults. Node coverage is one method which states
that every vertex of the ow graph of the underlying
program should be reached [8]. To achieve this goal,
input data (test data) should be provided to the
program in which every statement of the program is
reached at least once. Let G be the ow graph of
a given program and s be the start vertex of G. To
extract such test data using the path�nding approach,
a path from s to each vertex of G should be found
and, then, the labels (Boolean expressions) of all the
edges of the path be satis�ed. If G is a small digraph,
this may not be di�cult, but if G is large enough,
this goal can become very hard to achieve, implying
that it might not be solvable using the current SAT
solvers [11]. Moreover, the labels of the edges of G
might be dependent on each other, complicating the
test case extraction problem.

The results of the benchmarks performed on thou-
sands of program ow graphs show that the reachability
cost of the path�nding approach is 3.5 times greater
than that of the MP approach.

This article is structured as follows. Section 2
presents the required notation and terminology. Sec-
tion 3 provides a formal de�nition of the marking

M. Valizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1441{1455 1443

problem and its basic properties. Section 4 discusses
the computational complexity of the marking problem
and presents a heuristic algorithm to solve it. Section 5
compares the marking problem and path�nding ap-
proaches by evaluating them on datasets from various
program ow graphs. Section 6 concludes the research
�ndings and proposes future work.

2. Preliminaries and notation

To move further, G = (V;E) is considered here to
be a digraph, and the vertex and edge sets of G are
V (G) and E(G), respectively. A path in a digraph
is a sequence of vertices such that, from each vertex,
there is an edge to the next vertex in the sequence.
A simple path is one in which all vertices are distinct.
The term SP denotes the shortest path. If the �rst and
last vertices of a path are the same, it is called a cycle.
The set of reachable vertices from vertex v is denoted
as reach(v). The set of outgoing edges of a vertex v is
denoted as oe(v).

It is supposed here that e = (vi; vj) is a an edge
of G, and vi and vj are the tail and head of edge e,
respectively. E0 is a subset of E, and Tail(E0) and
head(E0) are the sets containing the tail and head of
every edge of E0. H is a subgraph of G. The removal of
subgraphH from G is denoted as (G�H). Edge ei is an
outgoing edge of H if tail(ei) 2 H and head(ei) 2 H.
Edges e1 and e2 are said to be siblings if their tails are
the same. The out-degree of a vertex v of G is denoted
as od(v), and the out-degree of G is the maximum out-
degree of the vertices of G.

Digraph G is said to be a binary DAG if G has
no cycle, and the out-degree of G is two. A subgraph
H of a graph G is said to be induced, provided that,
for any pair of vertices vi and vj of H, (vi; vj) is an
edge of H if and only if (vi; vj) is an edge of G. If
the vertex set of H is the subset S of V (G), then H
can be written as G[S] and is said to be induced by S.
A Flow Graph (FG) is a triple (V;E; s) where (V;E)
is a digraph, s 2 V is the unique start vertex of the
digraph, and there is a path from s to each vertex of
G [13]. If G = (V;E) is a digraph and vi 2 V , then a
ow graph can be formed with start vertex vi by the
removal of any vertex of G (and its adjacent edges)
that is not reachable from vi. In this paper, function
FG(G; vi) is used for this purpose. Thus, FG(G; vi) =
(V 0; E0; vi) = G[V 0] s.t. V 0 = fv 2 V jv 2 reach(vi)g.
G = (V;E; s) is a ow graph and vi and vj are two
vertices of G. It can be said that vi dominates vj in
G if every path from s to vj contains vi [14]. Edge
e = (vi; vj) is a back edge if every path from s to vi
goes through vj ; thus, vj dominates vi [15]. A ow
graph is said to be reducible if the removal of its back
edges leads to an acyclic digraph where each vertex can
be reached from s.

3. Marking problem

De�nition 1 (Marking problem). Let G = (V;E)
be a digraph with non-negative edge weights and vi; vj 2
V . The MP describes how to assign marks T and F to
some of the edges of G, such that every path starting
at source vi will reach target vj. When the digraph is
traversed and a vertex vk is visited, these marks have
the following interpretation:

1. If some outgoing edges of vk are marked with T ,
then we must pass through one of these edges;

2. If some outgoing edges of vk are marked with F ,
then these edges must not be chosen;

3. If some outgoing edges of vk are not marked, then
any of these edges may be chosen. The optimization
problem consists of minimizing the total weight of
the marked edges. The marking problem is denoted
by the triple (G; vi; vj). The sum of the weights of
the marked edges is called the reachability cost.

Observation 1. Although two outgoing edges of a
vertex can be marked with T, such marking is not
minimal, implying that it cannot be an optimal solution
to the marking problem.�

Observation 2. Marking problem MP = (G; vi; vj)
has a solution if and only if vj is reachable from vi.�

Observation 3. Let MP = (G; vi; vj) be an instance
of the marking problem and vk be a vertex of G from
which vj is not reachable. In an optimal solution to
the MP, none of the outgoing edges of vk is marked. In
fact, the outgoing edges of vk can be removed with no
e�ect on the solution to the MP.�

A solution to marking problem MP = (G; vi; vj)
is a partial function from domain E(G) to co-domain
fT; Fg. In the context of a pure (non-labeled) digraph,
marking edge e with F means the removal of the edge,
and marking edge e with T means the removal of
every sibling edge of e. If G denotes the ow graph
of a computer program, marking edge e with T=F is
equivalent to making TRUE=FALSE the label (logical
expression) of e. In ow graphs, the terms \making
TRUE=FALSE label of an edge" and \marking an
edge with T=F" are interchangeable.

Observation 4. Let G = (V;E) be a digraph and
vi; vj 2 V . If FG(G; vi) is the function converting G
to ow graph G0 with start vertex vi, MP1 = (G; vi; vj)
and MP2 = (G0; vi; vj), and then G0 is a reduced sub-
graph of G; so, MP1 is reducible to MP2.

Note that when digraph G = (V;E) is converted
into a ow graph with start vertex vi, only those
vertices of G and their adjacent edges called E0 which

1444 M. Valizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1441{1455

are not reachable from vi are removed. Moreover,
because any edge of E0 is not reachable from vi, there
is no need to mark that edge.

Observation 5. Let G = (V;E; s) be a ow graph
and MP = (G; s; vj) be an instance of the marking
problem. In an optimal solution to the MP, the
outgoing edges of a vertex of G cannot be marked with
both marks T and F .

Lemma 1. Let G = (V;E; s) be a ow graph and
MP = (G; s; vj) be an instance of the marking problem.
In an optimal solution to the MP, all outgoing edges of
a vertex of G cannot be marked with F .

Proof. Suppose that all outgoing edges of vertex
vk of G are marked with F . Thus, there will be a
path from s to vk which does not reach vj , hence
contradicting De�nition 1.�

Lemma 2. Let G = (V;E; s) be an unweighted
ow graph and MP = (G; s; vj) be an instance of the
marking problem. In an optimal solution to the MP,
for each vertex vk of G, at most one of the outgoing
edges of vk can be marked with F .

Proof. Let two outgoing edges of vk, called e1 and
e2, be marked with F . By Lemma 1, vk has another
outgoing edge called e3 which is not marked with F .
Moreover, by Observation 5, e3 is not marked with T .
Thus, edge e3 has no mark. Through similar reasoning,
every outgoing edge of vk, except e1 and e2, is not
marked. By De�nition 1, any unmarked outgoing edge
of vk can be chosen to reach the target. Hence, instead
of marking edges e1 and e2 with F , only one of the
unmarked outgoing edges of vk, such as e3, can be
marked with T , which implies that the marking is not
minimal, which is a contradiction. As G is unweighted,
the cost of marking any edge is 1.�

Lemma 3. Let G = (V;E; s) be an unweighted
ow graph and MP = (G; s; vj) be an instance of the
marking problem. In this case, the MP has a solution
such that every marked edge is T -marked and, at most,
one of outgoing edges of a vertex is marked.

Proof. Let the total function f : E1 ! fT; Fg s.t.
E1 � E be a solution to the marking problem MP =
(G; s; vj). By Observation 5, for each vertex v of G,
the outgoing edges of v cannot be marked with both
marks T and F . By Lemma 2, for each vertex v of G,
at most one of the outgoing edges of v can be marked
with F . By Lemma 1, if a vertex of G has only one
outgoing edge, that edge cannot be marked with F .
Thus, for each edge e1 of E1, if the mark of e1 is F ,
then (e2; T) can be substituted for (e1; F) such that e2
is an unmarked sibling edge of e1.�

4. Solving marking problem

4.1. Computational complexity of marking
problem

The computational complexity of the marking problem
can be studied in both unweighted and weighted
digraphs. Moreover, the complexity of the marking
problem can be considered in three practical cases
including general digraphs, acyclic digraphs (DAGs),
and binary DAGs. MPII and MPI denote the decision
versions of the marking problem in the weighted and
unweighted digraphs, respectively. Decision problems
MPI, MPII, and HSD (Hitting Set) are shown in
Tables 1 to 3. The hitting set problem will be used
to prove the NP-hardness of the marking problem.

Theorem 1. If the underlying digraph is a weighted
DAG, then the marking problem is NP-complete.

Proof. Let G be a weighted DAG, s and t be two
vertices of G, and MPII = (G; s; t) be a decision
problem of the marking problem. Firstly, it is shown

Table 1. Decision version of marking problem in weighted digraphs (MPII).

Input: A digraph G = (V;E) with non-negative edge weights, vertices s and t of G, and a real value w1.
Parameter: w1

Question: Is it possible to mark some edges of G with fT; Fg, where every path starting at s will reach
t and the sum of the weights of the marked edges is at most w1?

Table 2. Decision version of marking problem in unweighted digraphs (MPI).

Input: An unweighted digraph G = (V;E), vertices s and t of G, and an integer k1.
Parameter: k1

Question: Is it possible to mark some edges of G with fT; Fg, such that every path starting at s will reach
t and the number of the marked edges is at most k1?

M. Valizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1441{1455 1445

Table 3. Decision version of hitting set problem (HSD).

Input: A ground set fa1; a2; :::; amg, a collection of n subsets si of that ground set and an integer k1.
Parameter: k1

Question: Does there exist a subset A of the ground set, such that jAj � k1 and for each i = 1; :::; n,
si \A 6= �?

that MPII is NP. A given solution to MPII can be
veri�ed in polynomial time as follows: Suppose that
f1 : E1 ! fT; Fg is a given solution to MPII which
needs to be veri�ed such that f1 = f2 [f3; f2 : E !
fFg, f3 : E3 ! fTg, and E1, E2, E3 are the subsets
of E. Remove every element (edge) of E2 from G as
well as every sibling edge of any edge of E3 and denote
the new digraph as G0. For each vertex v of G0, check
whether v is reachable from s and does not reach t.
If such a vertex, v, does not exist and the sum of the
weights of all elements (edges) of E1 is less than or
equal to w1, then f1 is a solution to MPII; otherwise,
it is not. Clearly, this check can be performed in
polynomial time. Now, it can be demonstrated that
MPII is NP-hard. The decision version of the hitting-
set problem is reduced, which is one of 21 classic NP-
complete problems proved by Karp in 1972 [16], to
MPII. Suppose that S = fs1; s2; :::; sng are the given
sets and fa1; a2; :::; amg is the union of all the sets.
Given the number k1, the decision version of the hitting
set problem states whether or not there exists a set
A with k1 or fewer elements such that every element
of S (every set si s.t. i = 1; :::; n) contains at least
one element of A. The hitting set decision problem is
denoted as HSD(S). The DAG H from the given set S
is created as follows (Figure 2(a)). s is considered as
the start vertex of DAG H. For each set, si, of HSD s.t.

i = 1; :::; n, the corresponding vertex, si, is considered
and an edge is added with an in�nite weight from s to
each si. Then, for each element aj of the union of the
input sets s.t. j = 1; :::;m, the corresponding vertex aj
is considered and an edge is added from each si to any
aj s.t. aj 2 si in HSD. Furthermore, two �nal vertices
called k and t are considered and two edges are added
from each aj s.t. j = 1; :::;m to both �nal vertices.
Finally, each vertex si s.t. i = 1; :::; n is connected to
vertex k. Clearly, H can be made in polynomial time.

Because the weight of every outgoing edge of s is
in�nite in H, no outgoing edges of s are marked. If all
other edges of H are considered, namely edges E1 =
E(H)� oe(s), it can be observed that every edge of E1
has the same weight. Therefore, the sum of the weights
of the marked edges of H equals the number of marked
edges. It is now shown that HSD(S) has a solution with
k1 or fewer elements if and only if MPII = (H; s; t) has a
solution with n+k1 or fewer marked edges s.t. n = jSj.

HSD ! MPII. Suppose that A is a set with k1 or
fewer elements such that every element of S contains
at least one element of A. It will now be shown that
MPII = (H; s; t) has a solution with n + k1 or fewer
marked edges. For each element aj 2 A, mark edge
(aj ; t) with T . Furthermore, because A contains at

Figure 2. (a) Digraph of marking problem corresponding to hitting set problem. (b) Square digraph M with r � r vertices
s.t. r = jEj+ 1. Subgraph M is placed between start vertex s and si' s.

1446 M. Valizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1441{1455

least one element of any element of S, for each set si 2
S, mark one and only one outgoing edge of si called
(si; ap) with T s.t. ap 2 si \ A. Now, when moving
from vertex s of H, vertex si s.t. i = 1; :::; n is reached
�rst. Because one outgoing edge of every element of
S has been marked, by starting from si, vertex ap s.t.
ap 2 A will be reached. Finally, as the outgoing edge
(ap; t) of any element of A is marked, t will be reached
and the total number of marked edges is at most n+k1.
Notice that H has no cycle and any path of H is �nite.

MPII ! HSD. Suppose that function f1 : E1 !fT; Fg is a solution to MPII = (H; s; t) s.t. E1 �
E(H). Any solution to the marking problem needs
to mark one and only one outgoing edge of every si
s.t. i = 1; :::; n. At least one outgoing edge of each si
must be marked because vertex si has a direct edge to
vertex k which never reaches t. In addition, at most one
outgoing edge of si must be marked because either edge
(si; k) can be marked with F or edge (si; aj) with T s.t.
aj 2 si in HSD(S) and the weights of both the edges
are the same. Hence, it is not necessary to mark more
than one outgoing edge of si. Furthermore, one and
only one outgoing edge of some aj 's must be marked s.t.
1 � j � m. Indeed, depending on which outgoing edge
of any element of S is marked, the outgoing edges of the
corresponding aj 's, but not all aj 's, must be marked.
Again, at least one outgoing edge of each of such aj
must be marked, because vertex aj has a direct edge
to vertex k which never reaches t. In addition, at most
one outgoing edge of each of such aj must be marked
because either (aj ; k) can be marked with F or (aj ; t)
with T , and the weights of both the edges are the same.
Hence, there is no need to mark both of the outgoing
edges of aj . Thus, the solution to MPII has used at
most n+k1 marked edges s.t. n is the number of marks
used in the form of ((si; aj)! T or (si; k)! F) for all
si's, and k1 is the number of marks used in the form of
((aj ; t) ! T or (aj ; k) ! F) for some aj 's. Thus, the
solution to MPII can be considered to be f1 = f2 [f3,
such that f2 : (si; x) ! fT; Fg s.t. (x = aj or x = k,
i = 1; :::; n, 1 � j � m), and f3 : (aj ; y) ! fT; Fg s.t.
(y = t or y = k, 1 � j � m). The tail set of the domain
of function f3 can be denoted as A1. It is claimed that
A1 with size k1 is a solution to HSD(S). Suppose that
A1 does not hit one of the elements of S, e.g., si. This
means that, in digraph H, no outgoing edges of some
aj 's have been marked s.t. aj 2 si in HSD(S). Hence,
path s:si:aj :k in H starts at s, but does not reach t,
which is a contradiction because f1 is the solution to
marking problem MPII = (H; s; t).�

Theorem 2. The marking problem is NP-complete
even if the underlying digraph is an unweighted DAG.

Proof. Let G be an unweighted DAG, s and t be two
vertices of G, MPI = (G; s; t) be a decision problem of
the marking problem, and MPX = (G; s; t) be another
decision problem of the marking problem with the extra
condition of \the outgoing edges of s are not markable".
It can be observed that, in the proof of Theorem 1,
no outgoing edges of s are marked, as if the outgoing
edges of s are not markable, implying that MPX is NP-
complete. By Theorem 1, the decision version of the
marking problem is NP in a weighted DAG, so MPI
is NP. To show the NP-hardness of MPI, the MPX
is reduced to MPI as follows: make square digraph M
with (jEj+1)�(jEj+1) vertices such that each vertex of
any row of the digraph is connected to all vertices of the
next row of M (Figure 2). Now, DAG G0 = (V 0; E0) is
made from G as follows: First, remove every outgoing
edge of s in G. Then, connect s to each vertex of
the �rst row of digraph M . After that, connect each
vertex of the last row of M to every successor of s in
G. Moreover, set the weight of every edge of G0 to 1.
Notice that the structure of DAG G0 is similar to that
of DAG G, except that subgraph M has been added
between vertex s and its successors. Clearly, DAG G0
can be made in polynomial time. Now, it will be shown
that MPI has a solution with k or fewer marked edges
in G0 if and only if MPX has a solution with k or fewer
marked edges in G.

MPX ! MPI. Let function f1 : E1 ! fT; Fg be a
solution to MPX in DAG G s.t. E1 � E. Moreover,
let k = jE1j. If function f1 is applied to G0, then the
reachability of t from s is assured in G0 and the number
of the marked edges is k.

MPI ! MPX. Let c1; :::; cn be the successors of s
in G. DAG G0 is made such that the reachability cost
of any vertex ci from s is at least jEj+1 s.t. 1 � i � n.
For instance, consider a path from s to ci in G0 and
mark every edge of the path with T . As the length of
p is (jEj+ 2), then (jEj+ 2) edges are marked with T .
Also, consider the edge set connecting the last row of
M to ci and mark them with T . In this case, the (E+1)
edges are marked with T . Also, the reachability cost of
some ci's from s is at least (jEj+1). Indeed, in G0, it is
impossible to reach ci or a set of ci's from s (e.g., c1 or
c2) with jEj marks. Let function f2 : E01 ! fT; Fg be a
solution to MPI in DAG G0 s.t. E01 � E0. Moreover, let
k = jE01j. Firstly, suppose that E01\E(M) = �. In this
case, if function f2 is applied to G, the reachability of t
from s is assured in G and the number of marked edges
is k. Now, suppose that E01 \ E(M) = �. If k � jEj,
and then function f2 can be ignored. Indeed, for each
ci s.t. 1 � i � n, it is possible to select the shortest
path p from ci to t in G and mark every edge of p with
T using fewer than jEj marks, because jEj is the total

M. Valizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1441{1455 1447

number of edges of G. If k < jEj, the marked edges
of set E01 [E(M) cannot assure reaching ci or a set of
ci's in G0. Thus, the marked edges of set E01 \ E(M)
can be ignored, implying that only the marked edges of
(G0�M) should be considered in G to assure reaching
t from s, and that the number of marked edges will be
less than k.�

Theorem 3. If the underlying digraph is a weighted
binary DAG, then the marking problem is NP-complete.

Proof. Let G be a weighted binary DAG, s and t be
two vertices of G, and MPII = (G; s; t) be a decision
problem of the marking problem. By Theorem 1,
MPII is NP-complete. Theorem 3 explains that MPII
remains NP-complete even if the maximum out-degree
of any vertex of G is two. The proof is exactly the
same as that of Theorem 1, except that the new binary
DAG H 00 should be considered instead of DAG H in
the reduction of HSD(S) to MPII. In DAG H from
the proof of Theorem 1, the out-degree of s and any
si s.t. i = 1; :::; n (n = jSj) can be greater than 2;
however, the out-degree of any aj is 2 s.t. j = 1; :::;m
and m is the number of elements of the union of all
elements of S. Hence, to convert H to a binary DAG,
the structure of the outgoing edges of s and si's should
be modi�ed. DAG H can be converted into binary
DAGH 0 in polynomial time. This can be demonstrated
by example using n = 3 and m = 5. Figure 3(a) shows
the DAG H of HSD(S) with n = 3 and m = 5.

The outgoing edges of s are substituted with the
binary DAG given in Figure 3(b). Herein, because the
weight of every edge of the binary DAG is in�nite, none
of the edges is marked. Therefore, to assure reaching
target vertex t, the outgoing edges of every si s.t.
i = 1; :::; n should be marked. Therefore, replacing
the outgoing edges of s with the binary DAG given in
Figure 3(b) will not change the solution to MPII in H.

For each si of H, its outgoing edges are substituted
with the binary DAG given in Figure 3(c). In order to
assure reaching t, it must be assured that it is possible
to reach aj from si (in this case s1) s.t. aj 2 si in
HSD(S). The binary DAG given in Figure 3(c) is made
such that the reachability cost of any aj from si is the
same. In order to keep the same marking cost in H
and H 0, the weights of the outgoing edges of si's in H
should be changed. If the out-degree of any si in H is
greater than 2, then the weight of every outgoing edge
of si in H should be changed to (out-degree(si) + 2).
Now, the cost of reaching any aj from s1 in Figure 3(c)
is 5, which equals the cost of marking one outgoing
edge of s1 in H, namely (3 + 2). Thus, replacing the
outgoing edges of any si with the binary DAG given
in Figure 3(c) does not change the sum of weights of
the marked edges. Thus, substituting the outgoing
edges of s and any si with the binary DAGs given in
Figure 3(b) and (c) does not change the cost of marking
to reach t, implying that (H; s; t) = (H 0; s; t). Hence,
digraph H 0 can be considered instead of H in the proof
of Theorem 1; therefore, the theorem holds. This proof
was given for n = 3 and m = 5. For arbitrary values of
n andm, only the heights of the binary DAGs presented
in Figure 3(b) and (c) are increased polynomially. The
presented idea is generalizable to di�erent values of n
and m. Moreover, the in�nite weight of any edge of H
or H 0 can be substituted with M such that M is the
sum of the weights of all edges with �nite weights.�

Conjecture. The marking problem is NP-complete
even if the underlying digraph is an unweighted binary
DAG.

4.2. Heuristic algorithm for solving the
marking problem

De�nition 2 (complete ow graph). Quadruple
G = (V;E; s; f) where (V;E) is a digraph, s 2 V is the

Figure 3. (a) Digraph H of marking problem corresponding to hitting set problem with n = 3 and m = 5. (b) The
conversion of outgoing edges of s to binary mode. (c) The conversion of outgoing edges of s1 to binary mode.

1448 M. Valizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1441{1455

Algorithm 1. CFG(G; vi; vj).

unique start vertex of G, and f 2 V is the unique �nal
vertex of G, there is a path from start vertex s to each
vertex of G; as well as a path from each vertex of G to
�nal vertex f .

Let G = (V;E) be a weighted DAG and vi and
vj be two vertices of G. Algorithm 1 assures reaching
vj from vi by removing any vertex of G which is not
reachable from vi or does not reach vj . To remove such
vertices, it is su�cient to consider induced sub-graph
G[H] s.t. H = fk 2 V jk 2 reach(vi) and vj 2 reach(k)g
and, then, remove every outgoing edge of H, namely
every edge e of G s.t. tail(e) 2 H and head(e) =2 H. By
the removal of the outgoing edges of sub-graph H of G,
digraph G will be converted to a complete ow graph
with start and �nal vertices vi and vj , respectively,
where every path starting at vi will �nally reach vj .
Instead of removing (marking with F) multiple sibling
outgoing edges e1; e2; ::: of H, their sibling edge ek can
be marked with T s.t. head(ek) 2 H and the weight
of ek is less than the sum of weights of the F -marked
edges.

Let G = (V;E) be a weighted DAG, s and t be

two vertices of G, E1, E2, and E3 be the subsets of E,
MP = (G; s; t) be an instance of the marking problem,
f1 : E1 ! fT; Fg be an optimal solution to the MP,
f2 : E2 ! fT; Fg be a heuristic solution to the MP, and
SP : E3 ! fTg be the T -marked edges of the shortest
path from s to t in G. jEij s.t. Ei � E denotes the
sum of the edge weights. According to the de�nition
of the marking problem, jE1j � jE3j, which means
that the shortest path length is an upper bound to the
solution of the marking problem. Thus, the solution of
a good heuristic algorithm to the MP would be better
than SP(s; t), which means that jE1j � jE2j � jE3j.
One trivial way to compute f2 is to compute SP(s; t)
and, then, mark every edge of the shortest path with
T . However, in order to compute f2, marking a set
of edges can be considered instead of marking the
sequential edges of a path (Algorithm 1). In some cases,
the value of function CFG(G; s; t) is a good initial
value for the solution of the MP. However, the size of
CFG(G; s; t), which is the sum of weights of the edges
marked by CFG(G; s; t), may be greater than that of
SP(s; t). Therefore, min(SP(s; t),CFG(G; s; t)) should

M. Valizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1441{1455 1449

Algorithm 2. MP DAG (G = (V;E); s; t).

be considered as the initial value for the solution of the
MP, namely, the one with the minimal total weight of
the marked edges. Algorithm 2 improves this initial
value by using an iterative improvement technique.

Lemma 4. Algorithm 2 provides a heuristic solution
to the marking problem in a given weighted DAG.

Proof. The removal of the outgoing edges of t obvi-
ously has no e�ect on the solution of the marking prob-
lem. Moreover, by Observation 4, the marking problem
can be considered in ow graph G0 = (V 0; E0; s) =
FG(G; s) instead of digraph G (lines 1-4 of Algorithm
2). In the initialization phase of the algorithm, for each
pair (vi; vj) s.t. vj 2 reach(vi), consider the minimum
SP(vi; vj) and CFG(G0; vi; vj) as the initial values for
the solution of marking problem (G0; vi; vj) (lines 6-11
of Algorithm 2). Function SP(vi; vj) is a T -marking
of the shortest path from vi to vj in G0. Function
CFG(G0; vi; vj) uses the marking approach to assuring
that vj is reached from vi in G0. It considers the
set of every vertex reachable from vi and to vj . This
vertex set with all edges among them creates induced
subgraph H. Now, in order to assure reaching t from
s in G0, it is enough to mark the outgoing edges of H
with F or to mark a sibling edge of the F -marked edges
with T , if the weight of T -marked edge is less than the
total weight of the F -marked edges.

To �nd a better solution to marking problem
MP = (G0; s; t), an iterative improvement technique
is used to assure reaching intermediate vertex v from
s (for each v of V 0 s.t. v 2 reach(s) and t 2 reach(v))
and, then, reaching vertex t from v. To apply this
technique, G0 is sorted reverse-topologically (line 12 of
Algorithm 2) where t and predecessors of t become the
�rst vertices of G0 for the computation of the MP. For
each vertex vi in the reverse-topologically sorted vertex
list of G0, the formula in line 15 of Algorithm 2 is used
to assure reaching intermediate vertex vj from vi, for
each vertex vj between vi and t and, then, reaching t
from vj . Because the order of vj is less than that of vi in
the sorted list, MP(vj ; t) should be computed prior to
MP(vi; t). When execution of lines 13-17 of Algorithm
2 is �nished, MP(vi; t) is computed for the last vertex
of the list, namely for vi = s. Hence, MP(s; t) is a
heuristic solution to the given marking problem, as it
assures reaching t from s.�

Complexity. The complexity of �nding single-source
shortest paths in the weighted DAG G is �(jV j +
jEj) [17]. Thus, the complexity of �nding all-pairs
shortest paths is �((jV j + jEj) � jV j) which equals
�(jV j � jEj) in a ow graph. Suppose that the function
shortestPath stores the shortest path between every
pair of vertices in a matrix jV j � jV j for subsequent
access. Moreover, suppose that the function reach

1450 M. Valizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1441{1455

has already been computed and stored in matrix
jV j*jV j. Hence, the memory consumption of algorithm
MP DAG is �(jV j2+jEj). The complexity of algorithm
CFG is �(jV j + jEj) in the worst case. Hence, the
complexity of lines 6-11 of Algorithm 2 is �(jV j2 �
(jV j + jEj)), which equals �(jV j2 � jEj) in a program
ow graph. Moreover, the complexity of lines 13-17
of Algorithm 2 is �(jV j2 � jEj) because of the union
of two edge sets. The complexity of other parts of
Algorithm 2 is linear or constant. Thus, the total
complexity of Algorithm 2 is �(jV j2 � jEj). If G
indicates the ow graph of a computer program, then
usually �(jEj) = �(jV j). Therefore, in this particular
case, the total complexity of MP DAG is �(jV j3).

Lemma 5. The back edges of ow graph G have no
e�ect on the computation of the solution of the marking
problem in G.

Proof. Let G = (V;E; s) be a ow graph, t be
a vertex of G, and MP(G; s; t) be an instance of
the marking problem. At �rst, it is claimed that
the statement \every path starting at s reaches t" is
equivalent to the statement \every simple path starting
at s reaches t". If there exists a non-simple path p
that starts at s and does not reach t, then there also
exists a simple path p0 that starts at s and does not
reach t. The converse holds trivially. Thus, the claim
holds. Any simple path starting at s cannot contain a
back edge; otherwise, it will contain a cycle, which is a
contradiction. Hence, the back edges of ow graph G
do not change the set of simple paths from s to t in G.
This implies that the back edges of G can be removed
and the solution of the MP can be computed in G0 s.t.
G0 = G � backEdges(G). Note that the back edges of
a ow graph can be computed using a dominator tree
of the ow graph with linear complexity [18].

Observation 6. Algorithm MP DAG can be used
for cyclic ow graphs, which are reducible. By
Lemma 5, the back edges of the reducible ow graph
can be removed and, then, the solution of the marking
problem is computed in the obtained acyclic ow graph.

4.3. Evaluation of heuristic algorithm
The heuristic algorithm is implemented and its quality
and running time evaluated in many randomly gen-
erated and user-speci�ed digraphs. The quality of a
heuristic algorithm in fact implies the distance of the
heuristic solution from the optimal one. In most cases,
the heuristic algorithm gives an optimal solution to
the marking problem. However, if the solution of the
marking problem cannot be computed by composing
the solutions of the constituent marking problems, the
heuristic algorithm does not provide an optimal result.
Figure 4 shows such an example.

Figure 4. An example of a digraph in which the heuristic
algorithm does not give an optimal solution to the
marking problem (G; s; t).

Example 2. In the unweighted DAG G of Figure 4,
one solution to MP = (G; s; t) using Algorithm 2
is function f1 : f(v1; v3); (v2; v3); (v3; t)g ! fTg;
however, the optimal solution to the MP is function
f2 : f(v3; t); (v4; t)g ! fTg.

Herein, the quality of the proposed heuristic
algorithm is compared with that of the optimal one
based on thousands of digraphs generated by four graph
generators focused mainly on the ow graphs, namely
the connected digraphs whose vertices are reachable
from the start vertex.

FileBasedGraphGenerator allows de�nition of
the speci�cation of a digraph in a �le in the form
of an adjacency list. The program can parse this
�le and generate an object of the digraph. Ex-
cept for the �le-based graph generator, every other
graph generator �rst creates a base graph and,
then, adds randomly generated edges to the base
graph. ChainBasedRandomGraphGenerator gener-
ates a random digraph based on a chain. It �rst creates
a chain (a sequence of connected edges) with the length
of n � 1 for a digraph with n vertices and, then, adds
randomly generated edges to the chain.

TreeBasedRandomGraphGenerator generates
a random digraph based on a binary tree. It �rst
creates a binary tree having a speci�c depth and,
then, adds randomly generated edges to it. Finally,
CounterExampleBasedRandomGraphGenerator
generates a random graph based on a counterexample
digraph. The counterexample digraph speci�es a
case in which the heuristic algorithm does not give
the optimal solution to the marking problem. It
�rst creates a counterexample digraph and, then,
adds randomly generated edges to the digraph. Note
that the number of vertices of every random graph
generated by a particular graph generator is �xed.
However, the number of generated edges varies.

The evaluation results are shown in Table 4. In
most cases, the heuristic algorithm gives the optimal
solution to the marking problem. In order to compute
this optimal solution, an exponential-time algorithm is
implemented that considers di�erent combinations of

M. Valizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1441{1455 1451

Table 4. Evaluating the quality and running time of the proposed heuristic algorithm to the MP. `H' denotes the
heuristic algorithm and `E' denotes the exponential-time algorithm to the MP.

Benchmark Description Quality

Average
running

time
(mili-second)

1 It generates the single digraph of Figure having 10
vertices using FileBasedGraphGenerator

.

The heuristic solution
is NOT optimal for the
target vertex t, but the

distance of the
solutions is 1.

H : 47
E : 250

2

It generates the single digraph of Figure 5 having 26
vertices using FileBasedGraphGenerator and

considers each vertex of the digraph (except the start
vertex) as a target vertex. Hence, the comparison is

performed for (26� 1) = 25 cases.

For all 25 cases, the
heuristic solution is

optimal.

H : 807 ms
E : 10919 ms

3

It generates 34 random digraphs having 31 vertices
using TreeBasedRandomGraphGenerator and

considers each vertex of each digraph (except the start
vertex) as a target vertex. Hence, the comparison is

performed for (31� 1)�34 = 1020 cases.

For all 1020 cases, the
heuristic solution is

optimal.

H : 436 ms
E : 299234ms

4

It generates 68 random digraphs having 16 vertices
using ChainBasedRandomGraphGenerator and

considers each vertex of each digraph (except the start
vertex) as a target vertex. Hence, the comparison is

performed for (16� 1)�68 = 1020 cases.

The heuristic solution
is optimal for 1010
cases out of 1020

ones. Therefore, it
gives the optimal

solution in 99% of the
cases.

H : 46 ms
E : 4681 ms

5

It generates 43 random digraphs having 25 vertices
using CounterExampleBasedRandomGraphGenerator and
considers each vertex of each digraph (except the start
vertex) as a target vertex. Therefore, the comparison is

performed for (25� 1)�43 = 1032 cases.

For all 1032 cases, the
heuristic solution is

optimal.

H : 259 ms
E : 160335 ms

edges to be marked. The algorithms are implemented
and tested in Java 1.7 with 1 GB of heap memory. The
computer used for testing is an ASUS X554L laptop
with Windows 8.1 equipped with an Intel Core i5-
5200U CPU running at 2.20 GHz with 7.90 GB of
usable main memory. As observed, the worst-case
running time of the heuristic algorithm was less than
one second, whereas the exponential-time algorithm
consumed minutes.

5. Comparison of reachability assurance
approaches

This section provides the empirical and theoretical
results of the comparison of the reachability cost in
the current and proposed RA approaches, namely the
SP and MP, respectively. In this section, sample ow
graph G is �rst considered; then, the reachability cost
of each vertex of G is computed. The reachability costs

are computed for both the path�nding and the MP
approaches, and it is shown that the MP always gives a
better solution to the RA problem than the path�nding
approach does.

Let G be the unweighted ow graph of Figure 5
with start and �nal vertices s and f , respectively.
Moreover, let t be an arbitrary vertex of G. The
goal is to assure that target vertex t is reached from
start vertex s in G. By Lemma 3, in unweighted
ow graphs, the MP has a solution that uses only
mark T . In the following, the use of only mark T is
considered for the marking approach. Moreover, by
Observation 6, the back-edges of G, namely the set
fe0010; e0011; e0018; e0023; e024; e025g, have no e�ect on solution
of the MP; hence, they can be removed from G in
advance.

For each vertex v of G, Table 5 depicts the
reachability condition and the reachability cost of v
by both RA approaches. Because G is unweighted,

1452 M. Valizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1441{1455

Figure 5. The ow graph of a program with start and �nal vertices s and f , respectively. The ow graph has 6 back edges.

the reachability condition is speci�ed by a set of edges
to be marked with T and the reachability cost is
speci�ed by the number of the edges to be marked with
T . Note that none of the RA approaches has unique
solutions. Hence, in Table 5, an arbitrary solution to
these approaches has been considered.

According to Table 5, the total cost of the
path�nding approach is 137, whereas the total cost
of the marking approach is 39, which implies that
the reachability cost of the path�nding approach is
(137=39 ' 3:51) times greater than that of the marking
approach in the ow graph of Figure 5.

A Java program was developed to compare the
reachability cost of both RA approaches on 5000
random ow graphs, each containing 50 vertices and
88 edges. The results show that the reachability cost
of the path�nding approach is 3.47 times greater than
that of the marking approach.

To verify the correctness of a solution to the
marking problem, it is su�cient to remove all sibling

edges of every T -marked edge of the solution and, then,
check whether every path starting from s �nally reaches
the target vertex. In Table 5, it is interesting to note
that the maximum reachability cost of the marking
approach is 3, while that of the path�nding approach is
10. Note that, in this example, the proposed heuristic
algorithm provides an optimal solution to the marking
problem for all vertices of the digraph.

De�nition 3 (disconnection ratio). Let G be
a ow graph with start vertex s and v 2 V be a
cut vertex of G. The disconnection ratio of G on
v is jV (G1)j=jV (G2)j such that G1 and G2 are the
disconnected components of G after the removal of v
and s 2 V (G1).

Lemma 6. Let G be a ow graph with start vertex
s, n be the number of vertices of G, v 2 V be a cut
vertex, and the disconnection ratio of G on v be 1=p.

M. Valizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1441{1455 1453

Table 5. The reachability cost of every vertex of the ow graph of Figure 5 in both RA approaches, namely the SP and
MP.

Vertex The reachability condition
in the SP

The reachability
condition in the MP

The reachability
cost in the SP

The reachability
cost in the MP

v1 fe1g fe1g 1 1
v2 fe01g fe01g 1 1
v3 fe1; e2g � 2 0
v4 fe1; e2; e4g fe4g 3 1
v5 fe1; e2; e04g fe04g 3 1
v6 fe1; e2; e4; e5g fe4; e5g 4 2
v7 fe1; e2; e4; e05g fe4; e05g 4 2
v8 fe1; e2; e04; e6g fe04; e6g 4 2
v9 fe1; e2; e04; e06g fe04; e06g 4 2
v10 fe1; e2; e4; e5; e7g fe4; e8g 5 2
v11 fe1; e2; e4; e05; e08g fe4; e05; e08g 5 3
v12 fe1; e2; e04; e6; e09g fe04; e6; e09g 5 3
v13 fe1; e2; e04; e06; e10g fe04; e06; e10g 5 3
v14 fe1; e2; e4; e5; e7; e11g fe4g 6 1
v15 fe1; e2; e04; e6; e09; e13g fe04; e09g 6 2
v16 fe1; e2; e4; e5; e7; e11; e15g � 7 0
v17 fe1; e2; e4; e5; e7; e11; e15; e17g fe17g 8 1
v18 fe1; e2; e4; e5; e7; e11; e15; e017g fe017g 8 1
v19 fe1; e2; e4; e5; e7; e11; e15; e17; e18g fe17; e18g 9 2
v20 fe1; e2; e4; e5; e7; e11; e15; e17; e018g fe17; e018g 9 2
v21 fe1; e2; e4; e5; e7; e11; e15; e017; e19g fe017; e19g 9 2
v22 fe1; e2; e4; e5; e7; e11; e15; e017; e019g fe017; e019g 9 2
v23 fe1; e2; e4; e5; e7; e11; e15; e17; e18; e20g fe17; e21g 10 2
v24 fe1; e2; e4; e5; e7; e11; e15; e017; e19; e22g fe017g 10 1

Sum = 137 Sum = 39

Moreover, let l be the length of the shortest path from s
to v. The lower bound of the saved cost of reachability
is l � (n� 1) � p=(1 + p) when the MP approach is used
instead of the SP.

Proof. Because v is a cut vertex, every path starting
at s passes through v. Hence, in order to reach v
from s using the MP approach, there is no need to
mark any edge of G. This implies that the cost of
reachability from s to v in the MP approach is zero.
In contrast, the minimal cost of reachability from s to
v in the SP approach is l. As jV (G1)j=jV (G2)j = 1=p
and jV (G1)j + jV (G2)j + 1 = n, we have jV (G2)j =
(n � 1) � p=(1 + p). In order to reach any vertex of
G2 from s in G using the SP approach, v should be
reached �rst from s at cost l. Hence, when using the SP
approach, the extra cost of C = l�(n�1)�p=(1+p) will
be accrued. The saved cost of reachability is greater
than C because only the cost of reachability from s to
v has been considered and not from v to the vertices of

G2. Moreover, only the reachability cost of the vertices
of G2 has been considered and not the vertices of G1.�

A comparison of the current and proposed ap-
proaches to the reachability assurance problem is de-
picted in Table 6. The computational complexity of the
single-source shortest path problem in a non-negative
edge-weighted digraph results from applying Dijkstra's
algorithm with a Fibonacci heap [19]. The complexity
of the marking problem and its heuristic version is de-
scribed in Section 4. The \reachability cost in theory"
is provided by Lemma 6. The \reachability cost in
practice" is provided by a benchmark performed on
5000 random ow graphs. By assuming the reachability
cost of the MP-Heuristic to be k, the reachability cost
is computed for the two other approaches in theory
and practice. The path�nding approach speci�es all
the edges to be followed in order to reach the target
vertex; therefore, it is said that its reachability type is
total. However, the marking approach does not specify
the exact path; hence, it is said that its reachability
type is partial.

1454 M. Valizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1441{1455

Table 6. Comparison of the RA approaches in ow graph G with n vertices and m edges. To compute the reachability
cost in theory, it is supposed that G has a cut vertex with disconnection ratio 1=p where the shortest path length from s to
v is l.

Reachability
assurance
approach

Computational
complexity

Reachability cost
(in theory)

Reachability
cost

(in practice)

Reachability
type

Shortest Path (SP) m+ n� logn k + l�(n� 1)�p=(1 + p) 3:5�k Total
Marking Problem (MP) NP-complete � k � k Partial

MP-Heuristic (MPH) n2�m
in reducible ow graphs

k k Partial

6. Conclusion and future work

The marking problem was presented as an optimization
problem that used minimal marks T and F to assure
the reachability of t from s in a digraph G. If G is
unweighted, the minimal number of marked edges will
be desired; otherwise, the minimal sum of weights of
the marked edges will be desired. We showed that
the reachability cost of the path�nding approach is 3.5
times greater than that of the MP approach in practice.

Fundamental properties of the marking problem
were presented; then, it was proved that the marking
problem was NP-complete in an arbitrary unweighted
DAG as well as in an arbitrary weighted binary DAG.
An appropriate heuristic algorithm was provided to the
marking problem in a given DAG and demonstrated
its high performance and quality by evaluating it on
thousands of digraphs. It was shown that the provided
algorithm could also be used for cyclic ow graphs that
are reducible. In practice, most program ow graphs
are reducible [20]. Given the results presented in this
paper, new areas for further works have been identi�ed,
including:

� To prove whether or not the marking problem is
NP-complete in an unweighted binary DAG;

� To present an approximation algorithm to compute
a near-optimal solution to the marking problem;

� To compute the reachability cost of the marking
problem in general ow graphs;

� To study the infeasibility problem in the context of
the marking problem. If the underlying digraph of
a marking problem indicates the ow graph of a
computer program, some edge sets of the digraph
cannot be marked with fT; Fg. Indeed, a set
of edges marked with T and F can lead to the
generation of Boolean equations, which have no
solution. The infeasibility problem is shown to be
undecidable in general [21,22].

Acknowledgements

The authors would like to thank Hassan Mirian, Amir
Daneshgar, Reza Sadraei, Batool Mokhtarshahi, AND

Hossein Valizadeh for their help and encouragement
throughout the paper writing process.

Abbreviations

RA Reachability Assurance
MP Marking Problem
SP Shortest Path
HS Hitting Set
DAG Directed Acyclic Digraph

References

1. Yu, J.X. and Cheng J. \Graph reachability queries:
A survey", In Managing and Mining Graph Data,
Springer, pp. 181-215 (2010).

2. Agrawal, R., Borgida, A., and Jagadish, H.V. \E�-
cient management of transitive relationships in large
data and knowledge bases", In SIGMOD, 18(2), pp.
253-262 (1989).

3. Nuutila, E. \E�cient transitive closure computation
in large digraphs", PhD Thesis, Finnish Academy of
Technology (1995).

4. van Schaik, S.J. and de Moor, O. \A memory e�cient
reachability data structure through bit vector compres-
sion", Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2011,
Athens, Greece, pp. 913-924 (12-16 June 2011)

5. Tri�l, S. and Leser, U. \Fast and practical indexing and
querying of very large graphs", In SIGMOD'07 (2007).

6. Yildirim, H., Chaoji, V., and Zaki, M.J. \Grail:
Scalable reachability index for large graphs", PVLDB,
3(1), pp. 276-284 (2010).

7. Juping, W. \Discussion of graph reachability query
with keyword and distance constraint", IDEAL-2016,
pp. 293-301 (2016).

8. Ammann, P. and O�utt, J., Introduction to Software
Testing, First Ed., Cambridge University Press, 120 p.
(2008).

9. Sharma, P. and Khurana, N. \Study of optimal path
�nding techniques", Int. J. Adv. Technol., 4(2), pp.
124-130 (2013)

M. Valizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1441{1455 1455

10. Dellin, C. and Srinivasa, S. \A unifying formalism for
shortest path problems with expensive edge evalua-
tions via lazy best-�rst search over paths with edge
selectors", ICAPS-2016, London, UK (2016).

11. Anand, S., Burke, E., Chen, T.Y., Clark, J., Cohen,
M.B., Grieskamp, W., Harman, M., Harrold, M.J., and
McMinn, P. \An orchestrated survey on automated
software test case generation", Journal of Systems and
Software, 86(8), pp. 1978-2001 (2013).

12. Do, T., Khoo, S.C., Fong, A.C.M., Pears, R., and
Quan, T.T. \Goal-oriented dynamic test generation",
Information and Software Technology, 66, pp. 40-57
(2015).

13. Saito, N. and Nishizeki, T. \Graph theory and al-
gorithms", 17th Symposium of Research Institute of
Electrical Communication, Tohoku University, Sendai,
Japan (1980).

14. Prosser, R.T. \Applications of Boolean matrices to the
analysis of ow diagrams", AFIPS Joint Computer
Conferences, Eastern Joint IRE-AIEE-ACM Com-
puter Conference (Boston, MA: ACM), pp. 133-138
(1959).

15. Aho, A.V., Lam, M.S., Sethi, R., and Ullman, J.D.,
Compilers, Principles, Techniques, and Tools, the 2nd
Ed., Pearson Addison Wesley, pp. 659-666 (2007).

16. Karp, R.M. \Reducibility among combinatorial prob-
lems", In R.E. Miller and J.W. Thatcher (Eds.),
Complexity of Computer Computations, New York:
Plenum, pp. 85-103 (1972).

17. Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein,
C., Introduction to Algorithms, 2nd Ed., MIT Press
and McGraw-Hill, ISBN 0-262-03293-7 (2001).

18. Fraczak, W., Georgiadis, L., Miller, A., and Tarjan,
R.E. \Finding dominators via disjoint set union",
Journal of Discrete Algorithms, 23, pp. 2-20 (2013).

19. Fredman, M.L. and Tarjan, R.E. \Fibonacci heaps
and their uses in improved network optimisation al-
gorithms", Journal of the ACM, 34(3), pp. 596-615
(1987).

20. Hecht, M.S., Flow Analysis of Computer Programs,
Amsterdam: Elsevier North-Holland (1977).

21. DeMillo, R.A. and O�utt, J. \Constraint-based au-
tomatic test data generation", IEEE Transactions on
Software Engineering, 17(9), pp. 900-910 (1991).

22. Goldberg, A., Wang, T.C., and Zimmerman, D. \Ap-
plications of feasible path analysis to program testing",
In 1994 International Symposium on Software Testing
and Analysis, Seattle, Washington, USA, pp. 80-94
(1994).

Biographies

Mohammad Valizadeh received his BSc and MSc
degrees in Software Engineering from Shahid Beheshti
University, Tehran, Iran. He is now a PhD student in
Software Engineering at the Iran Telecommunication
Research Center. His research interests include soft-
ware testing, security testing, and graph theory. He
has �fteen years of experience in the software testing
and quality assurance industry.

Mohammad Hesam Tadayon received the MSc
degree in Mathematics from the University of Tarbiat
Modares, Tehran, Iran in 1997, and the PhD degree
in Applied Mathematics (coding and cryptography)
from the University of Tarbiat Moallem of Tehran
(Kharazmi), Tehran, Iran in 2008. Currently, he is
an Associate Professor at Iran Telecommunication Re-
search Center (ITRC). He is the Director of IT Systems
group at ITRC and also a member of national councils
in the Iranian Ministry of Science and Technology. He
has served in many research and industrial projects.
His research interests include information theory, error-
control coding, and data security.

Alireza Bagheri received his BSc and MSc degrees
in Computer Engineering from Sharif University of
Technology (SUT), Tehran, Iran. He received his PhD
degree in Computer Science from Amirkabir University
of Technology (AUT), Tehran, Iran. Currently, he is an
Assistant Professor at the Computer Engineering and
IT Department at Amirkabir University of Technology
(AUT). His research interests include computational
geometry, graph algorithms, big data and social net-
work analysis.

