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Abstract. This study deals with the e�ect of locator positioning in the 3-2-1 locating
scheme to control the out-of-plane distortion in gas tungsten arc welding of sheet metals.
To apply this locating scheme to the sheet metals, a suitable �xture was designed. The
distortion of the welded plates was predicted using the Radial Basis Function (RBF) neural
network. To gather the experimental data employed in the RBF modeling process, a set
of welding tests was performed on the sheet specimens by varying the positions of the
three locators. The parameters of the network were optimally selected using the Simulated
Annealing (SA) optimization algorithm. The average and maximum errors computed for
the test dataset were respectively 2.43% and 5.30% while in some cases, the error fell below
1%. The results of the RBF network showed very good agreement with the experiments and
it can be concluded that this modeling technique can be utilized successfully in predicting
the welding distortions when the 3-2-1 locating scheme is used.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Welding is one of the most well-known methods to join
materials permanently. Roughly speaking, welding of
machinery parts is inevitable for most of the engineer-
ing requests [1]. Selecting the welding process type
is contingent on the structure, technical requirements,
and application conditions [2]. As a class of fusion
welds, the Gas Tungsten Arc Welding (GTAW), also
known as the Tungsten Inert Gas (TIG) welding
process, is widely used for joining thin sheet metals
remarkably implemented in aerospace, naval, and au-
tomobile industries. This type of welds is performed
by the use of a non-consumable tungsten electrode
together with inert shielding gas, like argon, which
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protects the weld from atmospheric contamination [3].
However, extremely non-uniform heating during the
welding process causes distortion, especially in thin
structures, since the weldment heats and cools. The
welding distortions will lead to many problems like
loss of dimensional control and structural integrity,
di�culty in subsequent alignment with the adjacent
component, and increase in fabrication costs with
straightening [4].

As shown in Figure 1, welding distortions can be
classi�ed into six di�erent types including transverse
shrinkage, longitudinal shrinkage, and rotational dis-
tortion, which are known as the in-plane distortions,
and the angular distortion, bending distortion, and
buckling, which are the out-of-plane distortions [4-6]. It
should be noted that multiple types of these distortions
may occur at the same time in welded structures and
it is sometimes di�cult to distinguish the types of
distortion present in a workpiece [5].

Many factors a�ect the welding induced distor-
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Figure 1. Various types of welding distortions [5].

tions. Thus, it is di�cult to control this phenomenon
by only relying on practical experiences. If distortions
can be forecasted before welding, mitigating of this
unwanted event can be done successfully [7].

Many studies have been done to predict and
control the welding induced distortions. Thanks to
the development of high-speed computers, the Finite
Element Analysis (FEA) can be used to simulate and
predict the welding distortions. Pazooki et al. [5]
conducted a study to control the gas metal arc welding
distortions by the use of additional heat source. In
addition to the experiments, they used a 3D �nite
element model to understand the distortion reduction
mechanism. Deng et al. [7] investigated the e�ect
of external restraint on the welding deformations. In
their research, six clamps were employed to restrain the
welded specimens. Both numerical results and exper-
iments proved that external restraint could mitigate
the �nal deformation to some extent. Li et al. [8]
investigated the e�ect of welding parameters on the
weld shape and distortion of the Ti2AlNb alloy joint.
The e�ect of �xtures on the welding distortion was also
studied, and it was shown that welding without �xtures
in bead-on-plate welding would cause less distortion
than the butt welds.

Compared to their many capabilities in modeling
of various processes, the applications of Arti�cial Neu-
ral Networks (ANNs) in predicting the welding induced
distortion are still rare. Therefore, the implementation
of ANNs and meta-heuristic optimization algorithms is
a promising and exciting area of welding researches.
Lightfoot et al. [9] established an ANN model to
predict the welding distortion of the steel plates. They
also performed a sensitivity analysis to �nd out the
factors a�ecting the welding distortion. Bruce and
Lightfoot [10] modeled the distortion caused by welding
operation using the ANN and found that the results
of the ANN well �tted the actual values. Yang and
Shao [11] developed a thermo-mechanical model to
forecast the welding residual stress and distortion.
In this research, the welding sequence causing the
minimum distortion was determined using the Genetic
Algorithm (GA), and at last, the optimization strategy

was successfully pursued for a real product. Choobi et
al. [12] used an ANN structure to forecast the angular
distortions in single-pass butt-welded 304 stainless
steel plates. They employed a set of FEM results
obtained for various plate dimensions as the ANN
inputs. Barclay et al. [13] investigated the suitability
of the induction heating process with the traveling
induction coil to rectify the welding angular distortion.
By using the experimental data, they considered an
ANN to predict the distortion. According to their
�ndings, the ANN was well-suited to predict the �nal
distortion of the plate for both after-welding and
induction heating. Tian et al. [14] developed a back-
propagation neural network to predict the transverse
shrinkage and angular distortion in bead-on-plate GTA
welding of S304L stainless steel. The employed data to
construct the neural network were captured from the
FEM simulation while the accuracy of numerical results
was veri�ed by the experiments. The same work has
also been performed by Narayanareddy et al. [15].

As it can be seen, several studies have been con-
ducted on the welding distortions. However, the work
on the e�ect of jigs and �xtures on the welding induced
distortions is relatively rare [7,8,16-18]. Therefore, the
e�ect of jigs and �xture as the external mechanical
constraints a�ecting the welding distortions can be
further attended to. In addition, a thorough search
through the relevant literature on the application of 3-
2-1 locating scheme in arc welding operations yielded
very limited works [19].

This paper focuses on the application of 3-2-1
locating scheme in GTAW process for sheet metals with
regards to the resultant distortion in the workpiece.
The main purpose is to evaluate the out-of-plane dis-
tortion, as a�ected by various arrangements of locators.
To achieve this, an Arti�cial Neural Network (ANN)
model is developed for accurately predicting the �nal
distortion of the welded workpiece when the positions
of locators are simultaneously changed.

The study is organized as follows: in Section 2,
the 3-2-1 locating scheme is introduced. In Section 3,
the tools used in this work, the Radial Basis Function
(RBF) neural network, and the Simulated Annealing



M.M. Tafarroj and F. Kolahan/Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 869{878 871

(SA) optimization technique are brie
y presented. Sec-
tion 4 explains the procedure for the experimental
work, including experiment setups and output mea-
surements. The main �ndings of this research are
presented and discussed in Section 5. Finally, the
concluding remarks are rendered in Section 6.

2. The 3-2-1 locating scheme

The 3-2-1 locating scheme is a method utilized to re-
strain all 6 (Degree of Freedom) DoFs2 of a workpiece.
According to Figure 2, the points A1, A2, and A3
construct a plane and restrain the translation in z-
direction and rotation in x- and y-directions. Addition-
ally, the points B1 and B2 de�ne a line and restrain the
translation in y-direction and rotation in z-direction.
Finally, C1 locks the translation in x-direction. An
adequately designed �xture for sheet metals usually
needs N � 3 carefully selected locators on the primary
datum plane to restrain deformation of the part [20].

In 3-2-1 locating approach, the 2-1 locating is
applied by using a 4-way pin and a 2-way pin. A typical
illustration of the 3-2-1 locating scheme is provided
in Figure 3. As can be seen, the 4-way and 2-way
pins restrain the translations in x- and y-directions and

Figure 2. The 3-2-1 locating scheme.

Figure 3. A typical 3-2-1 locating scheme applied to a
plate.

rotation in z-direction.
For any arrangement of locators constraining the

z-direction and the rotations in x- and y-directions, if
a method is presented to predict the distortion prior to
the welding operation, considerable values of time and
cost can be saved.

3. Modeling approach

3.1. The Radial Basis Function (RBF)
network

An arti�cial neural network is a processing system of
information initially inspired by the biological neural
units. ANNs method can be a noteworthy tool for
material design. It is common to regard an ANN as
a \black box" concentrated on the prediction accu-
racy [21].

The radial basis functions are neural networks
with three �xed layers. Simple structure of such
networks has the advantage of lower processing time.
The ability of online learning, high power of extending
the results and generalization, and high tolerance to
input noises are the other advantages of the RBF
networks [22]. Thanks to the high capability of
generalization, the RBFs are suitable techniques to
�gure out the patterns not used in training procedure.
RBF networks have robust tolerance to the input
noise, which improves the stability of the constituted
systems. Therefore, it is sensible to consider RBF
as a competitive approach to modeling of nonlinear
problems [23]. As stated previously, an RBF has three
layers. The numbers of input and output neurons
are imposed by the problem at hand. The Gaussian
functions are implemented in the hidden layer while the
sigmoid or linear functions are used in the output layer.
A schematic view of the constructed RBF is illustrated
in Figure 4. In the �gure, inputs are the positions of
the locators represented by Pi and the output is the
welding induced distortion.

In the RBF, the goal is to de�ne a function like
f( ~X) shown in Eq. (1).

Figure 4. Schematic view of the RBF neural network.
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f( ~Xp) = tp 8p = 1; 2; :::; P; (1)

where ~Xp is the pattern number p and tp is its
corresponding desired value. This can be done by
mapping the D-dimensional input vectors ~Xp = fXp

i :
i = 1; :::; Dg onto the output tp. The RBF de�nesm1 �
P basis functions based on the form �

�


 ~X � ~Xp



�

where � is a nonlinear function. Therefore, the output
function can be generally formulated via Eq. (2).

f( ~X) =
PX
p=1

wp�
�


 ~X � ~Xp




� : (2)

Now, the problem is to �nd the weights wp such that
the function can be �tted to the data. Combining
both Eqs. (1) and (2) yields Eq. (3), which is useful
to evaluate the weights:

f( ~Xq) =
PX
p=1

wp�
�


 ~Xq � ~Xp




� = tq: (3)

Introducing the matrix notations t = ftpg, w = fwpg,
and � = f�pq = �(




 ~Xq � ~Xp



), Eq. (3) can be

written as Eq. (4):

�w = t: (4)

Now, having the inverse of matrix �, one can simply
attain the weight matrix via Eq. (5).

w = ��1t: (5)

When the weights are available, a function f( ~X) exists
that can be �tted to the point data. The most common
basis function is Gaussian function (Eq. (6)):

�(r) = exp
�
� r2

2�2

�
(� > 0): (6)

In Eq. (6), the value of � is known as the spread.
To achieve the best performance of the RBF network,
this parameter together with the maximum number of
neurons added to the hidden layer must be carefully
determined. Thus, an optimization procedure using the
Simulated Annealing (SA) algorithm is utilized in the
following for optimal determining of these parameters.

3.2. RBF optimization procedure
The RBF is employed to predict the welding induced
distortion. To get the best performance of the RBF,
its parameters should be optimally selected. Therefore,
the simulated annealing optimization algorithm is em-
ployed to determine the best combination for the values
of the RBF parameters.

Determining the best combination of variables
which yields the best process performance is the goal of

an optimization process [24]. Simulated annealing is an
optimization algorithm �rst introduced by Kirkpatrick
et al. to solve hard optimization problems [25]. It was
inspired by the process of physical annealing of solids.

In the annealing process, a solid is heated to a
high temperature until all molecules can move freely.
Annealing (slow cooling) would result in a perfect
crystalline in which all atoms are arranged in low-level
energy lattice.

In the SA algorithm, slow cooling of the metallur-
gical annealing is simulated by the parameter T and the
rate of its reduction (called cooling schedule). Starting
from a high temperature and slowly reducing it, to
some extent, prevents being trapped in local optima.

Therefore, in early iterations, the value of T
should be high enough to make sure of escaping from
local optima. In the beginning, when T is high, non-
improving solutions are more likely to be accepted.
When the algorithm proceeds, the value of temperature
is gradually reduced and, hence, only the improving
solutions are accepted.

The main idea of this technique is to generate
a random solution. Then, a new solution is created
in the neighborhood of the current solution. If the
new point is better, it is accepted; but if it is worse,
the new solution can be accepted or rejected based
on probability. For minimizing an objective, the
pseudocode of the SA algorithm can be written as:

1. Select a random initial point ~X0, call the RBF, and
evaluate the objective function f( ~X0);

2. Generate a new point ~X in the neighborhood of ~X0,
call the RBF, and evaluate the objective function
f( ~X);

3. Calculate �f = f( ~X)� f( ~X0) and p = e
��f
T ;

4. If �f < 0, set ~X0 = ~X and go to step 5. Otherwise,
generate a random number � 2 (0 1); if � < p, set
~X0 = ~X and go to step 5. Else, go to step 2;

5. Reduce the value of T by some linear or logarithmic
approach (for example, T = kT where 0 < k < 1);

6. If the stopping criterion of the algorithm is not sat-
is�ed, go to step 2 as the next iteration; otherwise,
go to step 6;

7. Stop the algorithm and present the optimal point.

At each iteration, to generate a new solution vector
( ~X) in step 2 of the SA algorithm, an element of
the current solution vector ( ~X0) is selected randomly.
Then, the element is changed to a random value
within its permitted range. For example, assume that
X0 = (0:11; 4) and the �rst element of ~X0 (i.e. 0.11)
is randomly selected to change. It is supposed that
the permitted range of the selected element is [0.1,10].
Therefore, a random value is generated in this range
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(e.g. 0.80). Now, the new generated neighbor solution
to be evaluated is ~X = (0:80; 4).

The two main parameters of the RBF which
should be optimally tuned are the spread (Sp) and
the maximum number of neurons (N). The objective
function of the problem can be stated by Eq. (7):

min f( ~X) = MRE( ~X) + abs(1=Cr);

0:1 � Sp � 10;

1 � N � 15: (7)

In Eq. (7), ~X = (Sp;N) is the solution vector
containing the optimization variables, the MRE is the
mean relative error computed for test dataset, and
Cr is the correlation coe�cient between the target
values (values obtained from the experiments) and the
network outputs computed for the test dataset. After
the process of determining the optimum values of the
RBF parameters, the results of the optimized RBF will
be presented.

4. Experimental procedure

4.1. Materials and equipment
An air-cooled PSQ 250 AC/DC (GAAM ELECTRIC-
Co, Iran) semi-automatic welding machine with
250 ampere capacity and high pulse frequency (up
to 500 Hz) was used to perform experiments on the
St12 steel sheets. The relative motion between the
weldments and the torch was carried out using an
automatic table with controllable linear motion. A new
�xture was designed, which was suitably able to apply
the N-2-1 locating scheme. When the plate is placed
between the upper and lower parts of the �xture, the
locators �x the plate in z-direction, which is normal to
the plate, and avoid the rotation in x- and y-directions.
The welding machine, automated table, the GTAW
air-cooled torch with ceramic nozzle, and the designed
�xture are exhibited in Figure 5.

Because of good welding performance and rela-
tively high dimensional accuracy, the St12 steel has
widely been employed to manufacture various automo-
tive parts. The chemical composition and mechanical
properties of St12 steels are respectively presented in
Tables 1 and 2. The shielding gas was pure argon
and because the plate was thin, the welding was done
without any �ller metal.

Table 1. Chemical composition of St12 steel (wt%).

Element C Mn P S

Amount 0.12 0.6 0.045 0.04

Figure 5. The equipment used in experiments: (a) The
PSQ 250 AC/DC welding machine, (b) the table with
controllable linear motion, and (c) the welding torch and
the designed �xture.

Figure 6. The predetermined sub-regions in which the
locators could move.

Table 2. Mechanical properties of St12 steel.

Property
Tensile

strength
Yield

strength
Total

elongation
Value 270-410 MPa 140-280 MPa � 28%

4.2. Welding experiments and measurements
After setting up the required equipment, the specimens
were welded together. Since the independent variables
were the locations of three locators, as can be seen
in Figure 6, the plate region was divided into three
sub-regions and the locators could be moved to some
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Table 3. The values of welding parameters.

Parameter Current (I) Voltage (V) Speed (S) Torch height (h) Gas 
ow rate (Q)

Value 100 A 14 V 160 mm/min 2 mm 8 L/min

Figure 7. The method of distortion measuring.

Figure 8. A sample of the welded plates.

predetermined locations.Thus, as can be seen in Figure
6, each design variable had four levels.

The other welding parameters (current, voltage,
speed, gas 
ow rate, torch height with respect to the
plate surface) shown in Table 3 were constant during
the welding operation.

Before welding, three points on the plate were
marked to measure the welding distortion. After
welding, the displacement of the three points with
respect to the surface underneath was measured using a
simple method, which is illustrated in Figure 7. Then,
the obtained values were averaged and the distortion
value of the welded plate was recorded.

Based on the design assumption, 21 experiments
were conducted. The locators' (x; y) coordinates along
with their resultant distortion are reported in Table 4.
A sample of the welded plates is demonstrated in
Figure 8.

The procedure for conducting the welding exper-
iments, when the 3-2-1 locating scheme is applied to
control the welding distortion, is very time consuming
and expensive. Thus, it is necessary to introduce a
novel approach to predict the welding induced distor-
tion when the 3-2-1 locating scheme is applied. In

the next section, an RBF arti�cial neural network is
constructed to solve the problem.

5. Results and discussion

The experimental data were employed to train an RBF
model. For this purpose, each predetermined position
of locators shown in Figure 6 was coded by a number.
For instance, in region 1, the �rst, second, third, and
fourth locations were respectively coded by 1, 2, 3, and
4. This coding method was also used for the other two
regions. With this coding method, the �rst experiment
had the inputs (1, 1, 1) and so on. Among all data
reported in Table 4, six data were set o� from the rest
as the test data, which were not used in the training
process. These data were presented to the network
after �nishing the network training to examine the
network capability in predicting new data. The other
15 data were employed as the training data.

The algorithm was written using MATLAB
R2014b and run for 5000 iterations. The range of Sp
was selected to be between [0.1,10] with the step of
10�2. Likewise, N was set to vary between [1,15] with
the step of 1. The convergence plot of the SA algorithm
is illustrated in Figure 9.

It can be seen that due to the random nature of
the SA, in the early iterations, the objective function
values are very large. Furthermore, the behavior of the
objective function values is strongly oscillating, and it
cannot be con�dently concluded that the best answer
has been found. The minimum value of the objective

Figure 9. The SA convergence procedure for optimizing
the RBF parameters.
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Table 4. The performed experiments (dimensions are in millimeter).

Experiment
no.

Position of
locator 1

Position of
locator 2

Position of
locator 3

Distortion

1 (0,0) (0,66) (0,132) 18.81

2 (0,0) (41,66) (41,132) 18.64

3 (0,0) (82,66) (82,132) 19.82

4 (0,0) (123,66) (123,132) 17.95

5 (41,0) (0,66) (41,132) 14.66

6 (41,0) (41,66) (0,132) 16.47

7 (41,0) (82,66) (123,132) 20.89

8 (41,0) (123,66) (82,132) 18.80

9 (82,0) (0,66) (82,132) 16.88

10 (82,0) (41,66) (123,132) 20.70

11 (82,0) (82,66) (0,132) 14.34

12 (82,0) (123,66) (41,132) 18.54

13 (123,0) (0,66) (123,132) 15.65

14 (123,0) (41,66) (82,132) 16.33

15 (123,0) (82,66) (41,132) 21.23

16 (123,0) (123,66) (0,132) 17.25

17 (123,0) (0,66) (82,132) 17.16

18 (82,0) (0,66) (41,132) 16.09

19 (82,0) (41,66) (82,132) 18.71

20 (0,0) (123,66) (0,132) 16.37

21 (82,0) (0,66) (0,132) 17.06

function is 1.065 and it occurs at ~X = (0:86; 9). By
considering the computational cost, the number of
iterations is set to 5000. It is clear that approximately
after 3500 iterations, no improvement can be observed
in the objective function value; but, to ensure that the
algorithm will converge on the optimum value, more
iterations are needed. To better realize the behavior
of the objective function, it is noteworthy to check the
standard deviation of the objective function for every
200 iterations (see Figure 10). The function shown in
Figure 10 is a decreasing function. It can be seen that,
in the initial iterations, the standard deviations are
high. When the number of iterations increases, the
standard deviation of the objective function decreases.
In the �nal iterations, the standard deviation of the
objective function approximately tends to zero. This
is because the algorithm converges on the optimum
point.

The optimal parameters obtained from the SA
lead to �nding the best outcomes for the radial basis
function network. Using the attained RBF parameters,
the network outputs against the targets and the corre-
lation plot for the train data are presented in Figures 11

and 12, respectively. The �gures show that the training
procedure has successfully been performed.

Now, to examine the performance of the network
against the data not used in the training, the test
dataset is presented to the trained network.

The relative error, which is hereafter brie
y called

Figure 10. The standard deviation of the objective
function for every 200 iterations.
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Figure 11. Predicted outputs versus the targets for the
train dataset.

Figure 12. The correlation between the predicted values
by the RBF and the targets for the train data.

the error, is a suitable criterion to evaluate the per-
formance of an ANN. It is computed via Eq. (8). In
Eq. (8), T and O are respectively the targets and the
network outputs.

RE =
jT �Oj
T

� 100: (8)

The network outputs versus the targets and the plot of
correlation between the targets and the network output
have been illustrated in Figures 13 and 14, respectively.
The �gures prove that the targets and the predicted
values are very close and the correlation between both
datasets is high.

Furthermore, the target values, the network out-
puts, and errors calculated for each of the test data
have been displayed collectively in Figure 15. It can

Figure 13. Predicted outputs versus the targets for the
test dataset.

Figure 14. The correlation between the predicted values
by the RBF and the targets for the test data.

Figure 15. The errors calculated for the test data
together with the targets and network outputs.

be seen that the relative errors are all acceptable.
Especially, the maximum error (5.30%) corresponds
to datum number 16 and the minimum one (0.43%)
corresponds to datum number 7.
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As it is shown, the optimized radial basis function
has a high capability in predicting the welding induced
distortion. Since the welding distortions have a high
degree of nonlinearity and the process of preparing
welding setup and test samples is very expensive and
time consuming, proposing such an approach that can
accurately model the process is very crucial.

6. Conclusion

Welding induced distortion is a very complicated and
nonlinear phenomenon. Also, purely experimental
approach to measure distortions under various settings
is very time consuming and expensive, and it needs
skillful operators. In this research, it was shown that
the RBF was a powerful tool for modeling the GTAW
process and predicting the resultant distortions using
a limited number of experimental data. In this way,
an accurate distortion prediction could be achieved
under a given arrangement of the locators in 3-2-1
locating method. The experiments were conducted
on the St12 steel plates widely used in automotive
industry and other consumer products. To apply the
3-2-1 locating scheme to the sheet metals, a suitable
�xture was designed.

In the modeling process, the performance of
the RBF model was further improved using the SA
algorithm. The RBF outputs obtained for both the
training and test datasets were very close to the
actual values. The average error computed for the
test dataset was 2.43% with maximum error value
of 5.30% and the minimum value less than 1%.
Furthermore, the correlation coe�cient between the
targets and the outputs of the network when the
test data were presented to the network was 0.9617.
This shows that both sets of the data were highly
correlated.

These �ndings illustrate that the proposed ap-
proach can e�ectively be employed to evaluate any
given arrangement of the locators in terms of the out-
of-plane distortions. In this way, the best possible
arrangement of the locators may be identi�ed and
implemented. This part is an ongoing research.
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