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Abstract. Discrete Phase-Type (DPH) distributions have one property that is not shared
by Continuous Phase-Type (CPH) distributions, i.e., representing a deterministic value as
a DPH random variable. This property distinguishes the application of DPH in stochastic
modeling of real-life problems, such as stochastic scheduling, in which service time random
variables should be compared with a deadline that is usually a constant value. In this
paper, we consider a restricted class of DPH distributions, called Mixed Shifted Negative
Binomial (MSNB), and show its exibility in producing a wide range of variances as well as
its adequacy in �tting fat-tailed distributions. These properties render MSNB applicable
to represent data on certain types of service time. Therefore, we adapt an Expectation-
Maximization (EM) algorithm to estimate the parameters of MSNB distributions that
accurately �t trace data. To present the applicability of the proposed algorithm, we use it
to �t real operating room times and a set of benchmark traces generated from continuous
distributions as case studies. Finally, we illustrate the e�ciency of the proposed algorithm
by comparing its results with those of two existing algorithms in the literature. We conclude
that our proposed algorithm outperforms other DPH algorithms in �tting trace data and
distributions.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Phase-type (PH) distributions, introduced by
Neuts [1,2], are a family of discrete and continuous
probability distributions constructed by mixtures of
geometric or exponential phases. Special properties
and characteristics of PH distributions make them
attractive for approximating a variety of random
variables and modeling real-world stochastic arrival or
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service times [3]. The common property to Discrete
PH (DPH) and Continuous PH (CPH) distributions
is that the convolution, minimum, maximum, and
convex mixtures of PH random variables yield new PH
random variables. However, representing deterministic
values by a PH random variable (deterministic values
property) is restricted to the DPH distributions [2].

With regards to the property of deterministic
values, shifting (adding a constant to) the DPH random
variables results in a new DPH structure [2]. Using
this property, we can derive the distribution function
of the convolution or maximum/minimum of the DPH
random variables with constant values. One important
application of this derivation is in stochastic scheduling
problems. In such problems, random processing times
should be combined with constant durations (e.g., set
up times) or the maximum/minimum of random times
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should be compared with constant deadline values in
order to compute the objective function.

Shifted Negative Binomial (SNB) distribution is
a subclass of DPH distributions and the discrete anal-
ogous to the Erlang distribution in the CPH class. The
Mixed Shifted Negative Binomial (MSNB) distribution
is a mixture of independent SNB distributions and a
subclass of DPH. The MSNB family is the discrete
equivalent of Hyper-Erlang Distribution (HErD) in the
CPH family. Similar to the HErD, which can approx-
imate any distribution on R [4,5], the MSNB subclass
models distributions that are de�ned on N. Moreover,
the Coe�cient of Variation (CoV) of MSNB distribu-
tion can be tuned to less than, equal to, or greater
than unity. Also, it provides good approximations to
fat-tailed distributions. These properties render MSNB
desirable for �tting data on high variance service times
or when the tail of service time distribution is heavier
than the exponential distribution [6]. Therefore, in this
research, our goal is to estimate the parameters of the
MSNB distribution in order to �t empirical service time
data with such characteristics.

In the previous research, some approaches to
�tting the parameters of a general DPH distribution
have been provided. Horv�ath and Telek [7] presented
a tool called Ph�t, which estimated the parameters
of Acyclic DPH (ADPH) and Acyclic CPH (ACP)
distributions to minimize a distance measure by using a
non-linear optimization method. The purpose of their
algorithm was optimization by iterative linearization to
numerically compute the partial derivatives.

The �rst detailed study on DPH and ADPH
distributions and their �tting methods by Maximum
Likelihood (ML) estimation was conducted by Bobbio
et al. [8]. They also proved several properties of ADPH
distributions and showed that the ADPH distribu-
tions had a unique minimal representation, named the
canonical form.

Callut and Dupont [9] studied the Expectation-
Maximization (EM) algorithm to �t the general DPH
distributions. Their algorithm was an adapted version
of the EM algorithm proposed by Asmussen et al. [10],
which applied to continuous PH distributions. Three
di�erent methods, namely an EM algorithm, a Gibbs
sampler algorithm, and a Quasi-Newton method, were
applied for maximum likelihood estimation of general
DPH distributions by Bladt et al. [11].

New results on the canonical representation of
DPH with 2 and 3 phases (DPH (2) and DPH (3))
as well as Discrete Markov Arrival Processes (DMAP)
with 2 phases (DMAP (2)) were presented by Mesz�aros
et al. [12]. They presented explicit formulae to match
parameters applying canonical forms (DPH (2), DPH
(3), and DMAP (2)) and gave moments and corre-
lation bounds. They showed the e�ciency of �tting
procedures with numerical examples. The Canonical

Representation of DPH (CRDPH) distributions with
3 phases (CRDPH (3)) was investigated by Horv�ath
et al. [13]. They demonstrated that the problem of
CRDPH (3) was far more complicated than the one of
CPH distribution with 3 phases. They also needed to
de�ne 8 di�erent subclasses of DPH distribution with
3 phases for their canonical representation.

In this research, we present an EM algorithm to
estimate the parameters of MSNB distributions. The
advantages of the EM algorithm over other alternatives
such as non-linear programming have been explored by
Springer and Urban [14]. The most signi�cant property
of the EM algorithm is guaranteeing the increase in the
likelihood at each iteration. The other reason is that
the EM algorithm needs neither the analytic expression
nor the gradient of the log-likelihood function, and
it does not even require being di�erentiable. It also
estimates the parameters of the distribution from a
given data trace when the data has some missing values
or is incomplete. The time complexity of the EM
algorithm is linear, only depending on the number
of SNB branches, and independent of the number of
states. The number of SNB branches might be remark-
ably lower than the number of states in most cases.
Therefore, the �tting algorithm by EM algorithm is
rather stable because of the speci�c structure of the
ADPH distribution, which provides a reliable and fast
convergence of the EM algorithm.

In Section 2, we de�ne the MSNB distribution
by PH representation and prove some of its properties
for approximating fat-tailed trace data. In Section 3,
we propose a specialized EM algorithm to �t the
parameters of the MSNB distribution and use this
modi�ed EM algorithm to �t continuous distributions.
In Section 4, we showcase the applicability of the
proposed algorithm to �t real-world operating room
service time data as well as a set of benchmark
traces generated from conventional distributions. We
compare the accuracy of our results with two other
algorithms designed by Th�ummler et al. [4] and Bladt
et al. [11]. In Section 5, we provide the conclusions and
show directions for future research.

2. Mixed shifted negative binomial
distribution and its properties

The DPH distributions are constructed by a system of
one or a group of inter-related geometric distributions
occurring in sequence or phases (see Appendix A for
detailed description and properties).

Shifted Geometric (SG) distribution is another
nonequivalent de�nition of the geometric distribution,
which describes the number of failures before the �rst
success (as opposed to the number of trials until suc-
cess) in an in�nite sequence of independent Bernoulli
trials. Shifted Negative Binomial (SNB) distribution is
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the convolution of a number of SG random variables,
de�ned as the number of failures before reaching a �xed
number of successes in a sequence of Bernoulli trials. In
Appendix B, we present the de�nition and properties
of SG and SNB distributions in PH representation.
In the rest of this section, we present the de�nition
and properties of the Mixed Shifted Negative Binomial
(MSNB) distribution.

A mixed shifted negative binomial distribution
(X � MSNB(m;ni; pi; �i)) is considered as a mix-
ture of m mutually independent SNB random vari-
ables, weighted by the probability vector � =
[�1; �2; � � � ; �m], in which �i � 0 and the vector � is
stochastic, i.e.,

Pm
i=1 �i = 1. Let ni de�ne the number

of phases of the ith SNB distribution. Then, the MSNB
probability mass function is given by Eq. (1) [29]:

Pr(X = x) =
mX
i=1

�i
�
x+ ni � 1
ni � 1

�
(1� pi)xpnii ;

for x = 0; 1; � � � (1)

The state space includes one absorbing state andPm
i=1 ni transient states. The DPH representation of

the MSNB distribution can be described by Eq. (2) and
is illustrated in Figure 1.

�MSNB = (�MSNB1 ;�MSNB2 ; � � � ;�MSNBm);

�MSNBi =
�
�i1; �

i
2; � � � ; �ini

�
;

�ij = �i
�

ni
j � 1

�
(1� pi)ni�(j�1)pj�1

i ;

for j = 1; � � � ; ni; i = 1; � � � ;m;

TMNB =

0BBB@
T1 0 � � � 0
0 T2 � � � 0
...

... � � � ...
0 0 0 Tm

1CCCA ; (2)

where Ti is a matrix shown in Eq. (3):

Ti=

0BBBBB@
1�pi pi 0 � � � 0 0

0 1�pi pi � � � 0 0

� � � � � � � � � . . . � � � � � �
0 0 0 � � � 1�pi pi
0 0 0 � � � 0 1�pi

1CCCCCA ;

i = 1; � � � ;m: (3)

The kth factorial moment of the MSNB distribution is
calculated by Eq. (4):

Figure 1. The DPH representation of MSNB
(m;ni; pi; �i).

fk = E[X(X � 1) � � � (X � k + 1)]

=
mX
i=1

�i
�(ni + k)

�(ni)
(1� pi)k

pki
;

for k = 1; 2; � � � : (4)

Let H be a set of all MSNB distributions with n
states, i.e.:

H =

(
Pr(X) : Pr(X = x)

=
mX
i=1

�i
�
x+ ni � 1
ni � 1

�
(1� pi)xpnii ;

x = 0; 1; � � � ;
mX
i=1

�i = 1;
mX
i=1

ni = n

)
: (5)

Note that set H contains all MSNB distributions
including at most n states and the MSNB with less
than n states can be acquired by setting some �i values
to zero. We present the following theorem to show
the versatility of the MSNB in approximating general
distributions on N.

Theorem 1. The set H has the following properties:

1. Let F denote the set of all discrete distributions
with �nite support on N. Then, H is a dense set in
F , i.e., any distribution on N can be approximated
by MSNB distribution;

2. Let h denote an MSNB distribution and be out of
the set H, with n � 2. The parameters of h (MSNB
distribution) can be tuned such that the Coe�cient
of Variation (CoV) takes an arbitrary value less
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than, equal to, or greater than unity. It can also
be tuned such that its CoV takes value as large as
or as small as desired.

Proof. (1) is proven by weak convergence rule as
shown by Verbelen [15]. We concentrate on the proof
of (2). The �rst and the second moments of MSNB
distribution are given by Eqs. (1) and (4):

E[X] =
mX
i=1

�i
niqi
pi

; (qi = 1� pi);

E[X2] =
mX
i=1

�i
niqi(1 + niqi)

p2
i

: (6)

We calculate the coe�cient of variation by Eq. (7):

CoV2 =
E[X2]� E[X]2

E[X]2
=

mP
i=1

�i niqi(1+niqi)
p2
i�

mP
i=1

�i niqipi

�2 � 1: (7)

Let us choose m = 2 and de�ne:

h(�)=
�
h
n1q1(1+n1q1)

p2
1

i
+(1��)

h
n2q2(1+n2q2)

p2
2

ih
�n1q1

p1
+ (1� �)n2q2

p2

i2 �1:
(8)

It is clear that h(0) = 1
n2q2 and h(1) = 1

n1q1 . Since h(�)
is continuous in [0; 1] and we assume that n1q1 � n2q2,
h(�) can take any value in [ 1

n2q2 ; 1]. If we select n1q1 =
1 and assume that n2q2 varies in the interval [1;1),
then we can demonstrate that h(�) can take any value
in (0; 1]. Then, the coe�cient of variation for MSNB
distribution can be tuned to take an arbitrary value in
(0; 1].

Next, we demonstrate that h(�) can also take an
arbitrary value in [1;1). We consider n1q1 = n2q2 = 1;
then:

g(�; p1; p2) =
2
h
�
p2

1

i
+ 2

h
(1��)
p2

2

ih
�
p1

+ (1��)
p2

i2 � 1

=
2�+ 2(1� �)

h
p1
p2

i2h
�+ (1� �)p1

p2

i2 � 1;

! 2
�
� 1

�
p1

p2
! 0

�
; (9)

from which we reach the conclusion that when we
select � and p1

p2
su�ciently small, g(�; p1; p2) can take

value as large as desired. In addition, g(0:5; p; p) = 1.
Since g(�; p1; p2) is continuous in [0; 1] � [0; 1] � [0; 1],

g(�; p1; p2) can take any value in [1;1). Thus, the
coe�cient of variation can also be tuned to take value
in [1;1). This ends the proof of (2). �

Notably, Theorem 1 states that any probability
mass function with its domain in the natural numbers
can be approximated arbitrarily closely by the proper
selection of MSNB parameters. Then, for every point of
a general probability mass function f 2 F , choosing a
sequence of MSNB distributions with m SNB branches
with each one having scale parameter, p, is possible.

Next, we show that the MSNB distribution can
also approximate the fat-tailed distributions properly.
Let F (x) be a cumulative MSNB distribution function
given in Eq. (1), and �F (x) = 1�F (x) be a complemen-
tary cumulative MSNB distribution function calculated
by:

�F (x) =
mX
i=1

�i
1X

k=x+1

�
k + ni � 1
ni � 1

�
(1� pi)kpnii : (10)

The distribution is called fat-tailed if Complementary
Cumulative Distribution Function (CCDF) ( �F (x)) is
in the order of 1

xr , where x is su�ciently large for
r > 0. Intuitively, a fat-tailed distribution has a
\fat tail" compared to the exponential distribution.
Based on the de�nition of fat-tailed distribution, we
study the property of �F (x). In order to determine
whether a distribution is a fat-tailed distribution, we
observe the probability mass functions on the log-linear
graphs. We consider MSNB distribution with MSNB
(m = 4, ni = [2; 3; 4; 5], pi = [0:2; 0:3; 0:5; 0:7], and
�i = [0:1; 0:2; 0:3; 0:4]) as an example and compare
it with the exponential distribution as illustrated in
Figure 2. In fact, the MSNB distribution does provide
the fat-tailed property in the time range of interest.

The in�nite variance is another speci�cation of
the fat-tailed distribution. We show that the MSNB

Figure 2. Comparing the fat-tailed property for MSNB
and exponential distributions.
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distributions can be tuned to take a �nite bounded ex-
pectation with a su�ciently large variance. In Eq. (6),
we show that we can select �i and pi appropriately;
then, E[x] is �nite while E[x2] is su�ciently large. For
example, when we select m = 2, r > 1, �1 = 1p

r ,
p1 = 1p

r , and p2 = 1:

E[x] = n1

�
1� 1p

r

�
< n1;

E[x2] = n1
p
r
�

1� 1p
r

��
1 + n1

�
1� 1p

r

��
� n1

p
r !1 (r !1): (11)

In this section, we demonstrated the PH repre-
sentation of MSNB distribution and its properties such
as approximating any distribution on N, wide range of
CoV, and fat-tailed property.

In the next section, we introduce an EM algorithm
to estimate the parameters of the MSNB distribution
by �tting high variance or fat-tailed service time
data.

3. An EM algorithm to �t mixed shifted
negative binomial distributions

The EM algorithm is an iterative approach to derive
maximum likelihood for estimating the parameters of
stochastic models, which are dependent on unobserved
latent variables. Each iteration of EM algorithm
consists of two steps: an expectation (E) step and a
maximization (M) step. In the E step, a function is
created for the expectation of the log-likelihood and
evaluated using the current estimate of the parameters.
In the M step, the parameters are computed while
maximizing the expected log-likelihood determined in
the E step. These estimated parameters are then
applied to �nd the distribution of the latent variables
in the next E step.

In the rest of this section, we �rst explain �tting
a mixture-density with the EM algorithm and present
its application to the MSNB distributions. Then,
we discuss the implementation of the EM algorithm
over the weighted discrete sample to �t continuous
distributions by the MSNB distribution.

3.1. MSNB parameter estimation via an EM
algorithm

One of the most common issues related to EM al-
gorithm is the mixture-density parameter estimation
method [16,17]. The probabilistic model of this method
is assumed as follows:

Pr (x j�) =
mX
i=1

�iPri (x j�i ) ; (12)

where the parameters are � = (�1; � � � ; �m; �1; � � � ;
�m), in which

Pm
i=1 �i = 1 and each Pri is a probability

mass function parameterized by �i. In other words, m-
component probability mass functions are mixed using
m mixing coe�cients: �i, i = 1; � � � ;m. Generally,
�i is a vector of parameters for each probability mass
function, Pri, while it is a single value in the proposed
EM algorithm.

Let X = fx1; � � � ; xNg be an incomplete dataset
and Y = fyjgNj=1 be the existence of unobserved
data items, where the values inform which component
function \generates" each data item of X . Therefore,
assume that yj 2 f1; � � � ;mg, for j = 1; � � � ; N , and
yj = i if the jth sample (xj) is generated by the ith
mixture component. If the value of Y is known, the
likelihood expression can be calculated by Eq. (13):

logL (� jX ;Y ) = log (Pr (X ;Y j�))

=
NX
j=1

log (Pr (xj jyj) Pr(y) )

=
NX
j=1

log
�
�yjPryj

�
xj
���yj �� : (13)

The dilemma in dealing with Eq. (13) is that the
values of yj are usually unknown. If yj is consid-
ered as random values drawn from a random variable
Y, the derivation of expression for the probability
mass function of unobserved data, shown by q(y),
is possible. At �rst, the parameters for probabil-
ity mass function are guessed, i.e., the parameters
�̂ = (�̂1; � � � ; �̂m; �̂1; � � � ; �̂m) are guessed as proper
parameters for likelihood L(�̂jX ;Y). Given �̂, the
probability Pri(xj j�̂i) can be easily computed for each
i and j. Moreover, the mixing parameters, denoted
by �i, are considered as prior probabilities of each
mixture component or the probability of selecting
the ith mixture component. Thus, the probability
mass function of the unobserved data calculated by
the observed data X and the estimates �̂ are com-
puted by applying Bayes's rule in Eqs. (14) and
(15).

q
�
yj
���xj ; �̂� =

q
�
yj
����̂�Pr

�
xj
���yj�̂�

Pr
�
xj
����̂�

=
�̂yj :Pryj

�
xj
����̂yj �

mP
i=1

�̂i:Pri(xj
����̂i ) ; (14)

q
�
y
���X ; �̂� =

NY
j=1

q
�
yj jxj ; �̂

�
; (15)
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where y = fy1; � � � ; yNg is a sample of the unobserved
data independently drawn from Y. The expectation
value of the complete-data log-likelihood is given by
Eq. (16) by considering the unknown random variable
Y, the observed data X , and the current parameter
estimates �̂:

Q
�

�; �̂
�

=E
h
logL (� jX ;y ) jX ; �̂

i
=
X
y2�

NX
i=1

log (�yipyi (xi j�yi ))
NY
j=1

q
�
yj jxj; �̂

�
:
(16)

Integrating Eqs. (13) and (15) into Eq. (16) produces
Eq. (17) according to Bilmes [18].

Q
�

�; �̂
�

=
mX
l=1

NX
i=1

log(�l):q
�
l
���xi; �̂�

+
mX
l=1

NX
i=1

log (pl (xi j�l )) :q
�
l
���xi; �̂� :

(17)

The computation of the expectation in Eq. (17)
includes the E step of the EM algorithm. Generally,
the main problem in calculating this expectation
is to �nd an expression for the distribution of the
unobserved data, although the distribution of the
unobserved data can be easily calculated by Eqs. (14)
and (15). The purpose of M step in EM algorithm
is to maximize the expectation determined in the E
step by considering �. To maximize Eq. (17), we
can independently maximize the term including �i
(�rst sum in Eq. (17)) and the term including �i
(second sum in Eq. (17)), because both terms are not
relevant. According to Bilmes [15] and McLachlan
and Krishnan [16], a Lagrange multiplier can be used
to obtain the expression for �i, resulting in:

�i =
1
N

NX
j=1

q
�
i
���xj ; �̂� : (18)

In order to estimate the parameters of MSNB
distributions, we apply the proposed EM algorithm.
The ith mixture component of MSNB distributions
is an SNB distribution with a �xed number of phases
shown in Eq. (19).

Pri (xj jpi ) =
�
xj + ni � 1
ni � 1

�
(1� pi)xjpnii : (19)

The mixture distribution is de�ned by the vector
of �. The parameters �i and pi, i = 1; � � � ;m, are
determined according to Eqs. (18) and (21). The value
of pi can be calculated by Eq. (21) and integrating
Eq. (19) into Eq. (20) and applying logarithm-rules:

NX
j=1

q
�
i
���xj ; �̂� @

@pi
log (Pri(xj jpi )) = 0; (20)

pi =
ni

NP
j=1

q
�
i
���xj ; �̂�

NP
j=1

(xj + ni)q
�
i
���xj ; �̂� : (21)

Note that the value of pi is always no more than one and
the condition of probability is satis�ed by this equation.

3.1.1. Implementation and time complexity of the EM
algorithm

The EM algorithm starts with estimating the initial
parameters � = (�1; � � � ; �m; p1; � � � ; pm) and iterates
between the E step and the M step by using three
Eqs. (14), (18), and (21) to reach the stopping crite-
ria. The owchart of this algorithm is presented in
Figure 3. Each iteration is guaranteed to increase the

Figure 3. Flowchart of the EM algorithm tailored to mixed shifted negative binomial distribution.
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log-likelihood value and the algorithm is guaranteed to
converge to a local maximum of the likelihood func-
tion [19]. To check whether convergence is achieved,
the relative di�erence of the log-likelihood values of
successive iterations is computed and the algorithm
stops when the computed di�erence is less than a
prede�ned value of ", e.g., " = 10�6.

By a given number of branches (m) and a number
of phases of each branch (ni), the EM algorithm
determines the best setting of parameter vectors �
and p. However, in order to �nd the \best" distri-
bution, all MSNB distributions have to be considered
as candidates. Th�ummler et al. [4] presented the dis-
crete parameter setting for Hyper-Erlang Distribution
(HErD) and used the recursive formula to consider all
possible settings in an algorithmic fashion. In this
paper, Th�ummler's recursive formula [4] is applied to
�nd the best MSNB distribution according to Eq. (22).

'i(n; j) =
bn=icX
r=j

'i�1(n� r; r);

where:

'1(n; j) =

(
0; if j > n
1; if j � n (22)

Direct computation of the SNB distribution (Eq. (19))
can reveal numerical di�culties because large factorials
must be computed for a high number of phases (e.g.,
n > 50). As a solution to this di�culty, the logarithmic
form is proposed and shown in Eq. (23):

Pri(xj jpi )
= eni ln(pi)+xj ln(1�pi)+ln(ni+xj�1)!�ln(xj)!�ln(ni�1)!:

(23)

Also, the logarithms of the factorial values are com-
puted by Eq. (24) before the EM algorithm starts:

ln r! =
rX
i=1

ln i: (24)

The time complexity of the proposed EM algorithm
depends on its two main steps (E and M). The
complexity of the E step is O(m:N) in computing the
numerator and denominator of the unobserved data
based on Eq. (14). The complexity of the M step is
also O(m:N). The overall complexity of each iteration
in the EM algorithm is O(m:N).

3.2. Fitting MSNB distributions to continuous
distributions

In this section, we apply the proposed algorithm to
�t the data generated from continuous distributions.
To approximate a continuous distribution by MSNB,
a discretization method should be considered. The
following steps are required to this end.

Step 1: Apply the discretization method and gener-
ate discrete samples;
Step 2: Implement the EM algorithm by using
MSNB over the discrete sample provided in Step 1.

3.2.1. Discretization method
Bobbio et al. [8] introduced a discretization method
based on the Cumulative Distribution Function (CDF).
In this method, �nite (ordered) set S = fx1; x2; x3; � � � g
(with x1 < x2 < x3 < � � � ) is de�ned by multiplying
an integer with discretization interval (�), i.e., xi = i�.
Then, a probability mass is assigned to each element of
S by Eq. (25):

wi = FX
�
xi + xi+1

2

�
� FX

�
xi�1 + xi

2

�
;

i > 1 and w1 = FX
�
x1 + x2

2

�
; (25)

where FX(x) is the cdf of x and wi is the probability
associated with xi.

Dougherty et al. [20] proposed the \equal with
interval binning" method for the case of using the
generated traces instead of probability distribution
function. It involves sorting the value bounded by xmin
and xmax, and dividing the range of values by k equally
sized bins by Eq. (26), in which k is a parameter given
by the user:

� =
�
xmax � xmin

k

�
: (26)

The bin thresholds are computed by xmin + i�, where
i = 1; � � � ; k. The probability mass (wi) is de�ned by
Eq. (27):

wi =
mi
kP
j=1

mj

; for i = 1; � � � ; k: (27)

In this equation, mi is the number of values that fall
into each of the bins.

3.2.2. Implementation of the EM algorithm over the
weighted discrete sample

In Section 3.1, the proposed EM algorithm is based on
the incomplete dataset, X = fx1; � � � ; xNg, with weight
one. When the discretization method is considered
as an approximation of continuous distributions, the
incomplete dataset, X = fx1; � � � ; xNg, with weight
one is substituted by incomplete dataset, X � =
fx�1; � � � ; x�N�g, with weight wi (Eq. (25) or (27)). The
modi�ed set includes N� elements with di�erent values.
Thus, Eqs. (18) and (21) can be e�ciently calculated
by Eqs. (28) and (29), respectively:

�i =
1

N�P
k=1

wj

X
lim itsN

�
j=1wj :q

�
i
���x�j ; �̂� ; (28)
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Figure 4. Flowchart of the modi�ed EM algorithm tailored to mixed shifted negative binomial distribution.

pi =
ni

NP
j=1

wj :q
�
i
���x�j ; �̂�

NP
j=1

wj :(x�j + ni):q
�
i
���x�j ; �̂� : (29)

The owchart of the modi�ed EM algorithm is shown
in Figure 4. Similar to the proposed algorithm in
Section 3, the modi�ed EM algorithm based on Eq. (22)
determines the best setting of the parameter vectors �
and p by a given number of branches (m) and number
of phases of each branch (ni). The computational
complexity of the E and M steps is O(m:N�). Thus,
the overall time complexity of one iteration for the EM
algorithm is O(m:N�).

4. Results

In this section, we apply the proposed EM algorithm to
�t real-world operating room service times as well as six
synthetically generated trace datasets from continuous
distributions. The algorithm is coded in MATLAB
2014a [21] and performed on a personal computer with
Intel(R) Core(TM) i3-2120, running at 3.30 GHz with
8 GB RAM.

4.1. Fitting MSNB distributions to real
operating room data

To study an example with real data, the proposed
EM algorithm is applied to �t three di�erent datasets
of Start Anesthesia to Start Operation (SASO), Op-
erating Room (OR), and Post-Anesthesia Care Unit
(PACU) times. SASO time is de�ned as the duration of
time from starting anesthesia procedure until starting
the operation. OR time is the time of operation
and PACU time is the recovery time of patients from
anesthesia after the operation. The three datasets
are collected from orthopedic operating theatre in the
Scottish NHS hospital from 1998 to 1999, and are used
in other studies [22].

Figure 5. Original dataset of SASO and the
approximating distributions.

We compare the �tting quality of the proposed
EM algorithm (EM-MSNBD) with the quality of an
EM algorithm designed for general DPH distributions
(EM-DPH) presented by Bladt et al. [11] and the
EM algorithm for the continuous HErD (EM-HErD)
developed by Th�ummler et al. [4]. This algorithm
is one of the best-performing algorithms in �tting
CPH [23]. The �tting quality is measured by four
di�erent criteria, i.e., the �rst three moments and the
chi-square statistic (�2 = (trace data�result of algorithm)2

trace data ).
The stopping criterion for all algorithms is convergence
with " = 10�6.

In Figures 5 to 7, the empirical distributions
of SASO, OR, and PACU traces as well as the
probability mass and density functions for the �tted
MSNB, general DPH, and HErD with 10 states are
illustrated. The curve �tting of MSNB shows that
the proposed algorithm �ts adequately to the fat-tailed
data traces and con�rms the fat-tailed property of
MSNB distributions discussed in Section 2.

The results of �tting quality are presented in
Table 1. Relative errors of the �rst three moments
and the chi-square measure are represented in Table 2.
According to Table 2, the relative errors of the �rst
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Table 1. Quality indices for �tted MSNBD, DPH distribution, and HErD for three datasets.

Trace EM-MSNBD EM-DPH EM-HErD

SASO

First moment 19.75 19.75 19.75 19.75
Second moment 557.56 560.11 538.59 556.99
Third moment 22600.79 23487.23 19186.93 22935.57
CPU time (sec) 4.18 190.05 4.60
Number of phases 2,2,6 | 2,2,2,4
�i 0.04; 0.34; 0.62 | 0.06; 0.04; 0.05; 0.85
pi or �i 0.04; 0.10; 0.24 | 0.05; 0.10; 0.48; 0.21

OR

First moment 51.44 51.44 51.44 51.44
Second moment 4321.42 4372.55 4373.14 4331.21
Third moment 495266.84 515595.72 542221.03 497585.35
CPU time (sec) 2.81 1002.07 3.46
Number of phases 1,3,6 | 2,4,4
�i 0.00; 0.57; 0.43 | 0.00;0.47;0.53
pi or �i 0.33; 0.04; 0.21 | 1.48; 0.05; 0.16

PACU

First moment 9.49 9.49 9.49 9.49
Second moment 1559.53 1575.99 1946.51 1606.13
Third moment 684423.87 854044.08 1445876.41 893073.27
CPU time (sec) 2.12 378.70 2.29
Number of phases 1,3,6 | 1,2,3,4
�i 0.02; 0.13; 0.85 | 0.02; 0.11; 0.75; 0.12
pi or �i 0.00; 0.20; 0.57 | 0.00; 0.15; 0.58; 2.82

Figure 6. Original dataset of OR and the approximating
distributions .

moment for all algorithms in each dataset are zero.
The relative errors of the second and third moments
and the chi-square measure for EM-MSNBD and EM-
HErD algorithms are nearly equal in all datasets, while
these measures are relatively high for the EM-DPH
algorithm. Therefore, we conclude that the �tting
quality of our proposed EM-MSNBD algorithm is as
adequate as the �tting quality of EM-HErD.

Figure 7. Original dataset of PACU and the
approximating distributions.

A single-factor (algorithm e�ect) experiment with
three levels (number of algorithms) is performed in
order to statistically compare the performance of the
three mentioned algorithms [24]. The hypothesis to be
tested is as follows:

H0 : EM-MSNBD = EM-DPH = EM-HErD;

H1 : Otherwise: (30)
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Table 2. Relative errors of �rst three moments and chi-square measure for three datasets.

EM-MSNBD EM-DPH EM-HErD

SASO

First moment 0.00% 0.00% 0.00%
Second moment 0.46% 3.40% 0.10%
Third moment 3.92% 15.11% 1.48%
Chi-square 0.08 0.20 0.08

OR

First moment 0.00% 0.00% 0.00%
Second moment 1.18% 1.19% 0.23%
Third moment 4.10% 9.48 % 0.46%
Chi-square 0.19 0.22 0.20

PACU

First moment 0.00% 0.00% 0.00%
Second moment 1.05% 24.81% 2.98%
Third moment 24.78% 111.25% 30.48%
Chi-square 0.65 0.63 0.65

Table 3. The ANOVA table for real OR problem.

Source DF Sum of squares Mean square F -value Pr > F

Dependent variable: Y

Model 7 0.85237222 0.12176746 3.73 0.0298

Error 10 0.32612222 0.03261222

Corrected total 17 1.17849444

R-square Coe� Var Root MSE Objective mean

0.723272 138.3231 0.180589 0.130556

Source DF Type I SS Mean square F -value Pr > F

Method 2 0.19214444 0.09607222 2.95 0.0987

Block 5 0.66022778 0.13204556 4.05 0.0286

The single factor experiment is conducted as follows:

Yab = �+ methoda + blockb + "ab; (31)

with the following characteristics:
Yab The response variable (relative errors);
� The overall mean;
methoda The algorithm (e�ect factor),

a = 1; 2; 3;
blockb The second and third moments of each

dataset, b = 1; � � � ; 6;
"ab The error term.

The three algorithms are considered as the e�ect
factor and the second and third moments of each
dataset are considered as blocks. The experimental de-
sign is coded in the Statistical Analysis System (SAS)
software package, release 9.1 [25], with a signi�cance

level of 10%. The ANOVA tables are provided in
Table 3. Based on the results of ANOVA, there is a
statistically signi�cant di�erence among the algorithms
(the p-values are less than 0.1).

In order to �nd the algorithm with the best
performance, we also perform the Tukey test (Table 4).
The results show that there is a signi�cant di�erence
among the EM-DPH and the two other algorithms,
and the EM-MSNBD and EM-HErD algorithms are not
statistically di�erent. Throughout all experiments, the
EM-MSNBD and EM-HErD algorithms outperform
EM-DPH in terms of �tting quality and CPU time
requirements.

4.2. Fitting MSNB distributions to continuous
distributions

Th�ummler et al. [4] generated six groups of samples
by applying partial peak function of Weibull (1.0,
5.0), value function of uniform (0.5, 1.5), a fat-
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Table 4. Tukey test for real OR problem; di�erences of
least squares means.

Algorithms
comparison�

Di�erence
between
means

90%
Con�dence

limits

2-1 0.2183 [0.0294, 0.4073] ***

2-3 0.2200 [0.0310, 0.4090] ***

1-2 -0.2183 [-0.4073, -0.0294] ***

1-3 0.0017 [-0.1873, 0.1906]

3-2 -0.2200 [-0.4090, -0.0310] ***

3-1 -0.0017 [-0.1906, 0.1873]
�1 is the EM-MSNBD algorithm; 2 is the EM-DPH algorithm;

and 3 is the EM-HErD algorithm.

tailed distribution function of Weibull (1.0, 0.5), step
function with shifted exponent, heavy-tailed distri-
bution function of Pareto-II (1.5, 2.0), and multi-
peak function with Matrix Exponential, which are all
representative theoretical distributions. Each sample
size is 104. The six groups of samples are chosen for
the following reasons. Weibull distributions are often
applied in the interpretation of experimental data in
engineering such as reliability, queuing, transmission,
etc. [26]. Uniform and shifted exponential distributions
are di�cult to closely approximate with a PH distri-
bution [26]. Pareto-II distribution is an example of a
heavy-tailed distribution, which is not monotonically
decreasing [4]. The matrix exponential distribution
has a matrix exponential representation, while it is not
PH [26].

In this part, we test the three algorithms, namely
the modi�ed EM algorithm proposed in Section 3.2
(M-EM-MSNBD), the EM-DPH, and the EM-HErD,
using the six groups of samples used by Th�ummler et
al. [4]. The �tting e�ects of the six groups of samples
with three algorithms are illustrated in Figure 8 and
the detailed records of �tting quality measures are
presented in Tables 5 and 6.

In order to compare our proposed algorithm with
the two other algorithms, we draw conclusions based
on Table 6 for each algorithm. The results of relative
errors of the moments and the chi-square measure show
that the M-EM-MSNBD algorithm can be considerably
more e�cient than the other two algorithms in �tting
the fat-tailed distributions such as Weibull (1.0, 0.5),
as seen in Figure 8(a), and in the matrix exponential
distributions, as shown in Figure 8(f). The results
indicate that EM-DPH algorithm yields the lowest
relative errors of moments and chi-square measure
in symmetric distributions such as Weibull (1.0, 5.0)
and uniform (0.5, 1.5) distributions as illustrated in
Figure 8(b) and (c).

The results of EM-HErD algorithm show that
the �tting quality of the EM-HErD in Pareto-II (1.5,
2.0) and shifted exponent distributions (Figure 8(d)
and (e)) is as good as the �tting quality for EM-
MSNBD. Based on six groups of samples, we �rstly
conclude that the results of relative errors of moments
and the chi-square measure for the proposed algorithm
and EM-HErD are nearly close to each other and
di�erent from the third one. Secondly, our proposed
algorithm �ts adequately to the fat-tailed distribu-
tion.

To statistically compare the performance of the
three mentioned algorithms, we perform a single-factor
(algorithm e�ect) experiment with three levels (number
of algorithms), as in Section 4.1 and Eqs. (30) and (31).
The �rst, second, and third moments of each function
are considered as blocks.

The experimental design is coded in SAS, release
9.1 [25], with a signi�cance level of 10%. The ANOVA
tables and the results of Tukey test are provided in
Tables 7 and 8. These results show that there is
a signi�cant di�erence among the EM-DPH and the
two other algorithms, and the M-EM-MSNBD and
EM-HErD algorithms are not statistically di�erent.
Throughout all experiments, M-EM-MSNBD and EM-
HErD algorithms perform better than EM-DPH in
terms of CPU time requirement, as seen in Table 5.
Also, in the majority of cases, M-EM-MSNBD and
EM-HErD algorithms outperform EM-DPH in terms
of �tting quality, as seen in Table 6.

5. Conclusions and suggestions for future
research

Discrete phase-type distributions have several advan-
tages over their continuous equivalents. In this re-
search, we considered the problem of �tting a restricted
class of DPH distributions, namely Mixed Shifted Neg-
ative Binomial (MSNB) distributions, to trace data.
We proved some properties of MSNB distribution to
�t trace data and developed a �tting algorithm based
on Expectation Maximization (EM) to estimate its
parameters.

We measured the e�ectiveness of this algorithm
by comparing it with two existing methods in the
literature, EM-HErD (for continuous data) and EM-
DPH, using the operating room data and six bench-
mark traces. To evaluate their goodness of �t, we
considered the �rst three moments and the chi-square
(�2) measure and devised a single-factor (algorithm
e�ect) experiment with three levels (number of algo-
rithms).

The results of the experiment showed that (M-)
EM-MSNBD and EM-HErD algorithms were not sta-
tistically di�erent, but they both outperformed the
EM-DPH algorithm. Given that the EM-HErD algo-
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Table 5. Quality indices for �tted MSNBD, HErD, and DPH for synthetically generated traces.

Trace M-EM-MSNBD EM-DPH EM-HErD

W
ei

b
u
ll

(1
.0

,
0.

5) First moment 1.99 2.01 1.94 1.99
Second moment 25.61 25.81 17.65 23.78
Third moment 995.13 1163.30 276.20 638.03
CPU time (sec) 10.99 404.52 83.36
Number of phases 2,2,2,2,2 | 1,1,1,1,1,1,1,1,1,1

�i 0.00;0.05;0.17;0.27;0.51 | 0.07; 0.27; 0.16; 0.11; 0.09;
0.08; 0.08; 0.09; 0.04; 0.01;

pi or �i 0.00; 0.01; 0.04; 0.12; 0.47 | 0.09; 0.31; 0.89; 1.69; 2.24;
5.68; 8.69; 54.02; 642.27; 29520.07

M
at

ri
x

ex
p

on
en

ti
al First moment 1.06 1.06 1.06 1.06

Second moment 2.12 2.15 1.90 2.16
Third moment 6.57 7.16 4.59 7.24
CPU time (sec) 5.15 378.70 23.99
Number of phases 1,4,5 | 1,4,5
�i 0.01, 0.38, 0.61 | 0.06, 0.38, 0.56
pi or �i 0.03, 0.18, 0.49 | 0.48, 2.23, 10.82

W
ei

b
u
ll

(1
.0

,
5.

0) First moment 0.92 0.92 0.92 0.92
Second moment 0.89 0.96 0.92 0.93
Third moment 0.90 1.12 1.01 1.03
CPU time (sec) 1.99 33.97 8.61
Number of phases 10 | 10
�i 1 | 1
pi or �i 0.26 | 10.85

U
n
if

or
m

(0
.5

,
1.

5) First moment 0.99 0.99 0.99 0.99
Second moment 1.08 1.12 1.08 1.09
Third moment 1.24 1.41 1.29 1.30
CPU time (sec) 2.77 16.78 9.78
Number of phases 10 | 10
�i 1 | 1
pi or �i 0.25 | 10.04

P
ar

et
o-

II
(1

.5
,

2.
0) First moment 4.34 3.80 3.29 4.33

Second moment 1057.61 88.78 24.69 340.67
Third moment 1768568.21 5974.58 300.25 114715.85
CPU time (sec) 3.55 429.82 23.69
Number of phases 3,3,3 | 1,2,3,4
�i 0.02; 0.20; 0.78 | 0.01; 0.11; 0.36; 0.52
pi or �i 0.01; 0.04; 0.16 | 0.01; 0.18; 0.96; 3.34

S
h
if

te
d

ex
p

on
en

ti
al First moment 1.51 1.51 1.51 1.51

Second moment 3.57 3.61 3.29 3.61
Third moment 11.55 11.81 9.31 11.79
CPU time (sec) 11.58 107.41 46.83
Number of phases 3,3,4 | 1,3,6
�i 0.10, 0.15, 0.75 | 0.25,0.27,0.48
pi or �i 0.10, 0.54, 0.20 | 2.38, 1.22, 3.89
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Table 6. Relative errors of the �rst three moments and chi-square measure for synthetically generated Traces.

M-EM-MSNBD EM-DPH EM-HErD

W
ei

b
u
ll

(1
.0

,
0.

5)

First moment 0. 91% 2.15% 0.00%

Second moment 0.79% 31.06% 7.12%

Third moment 16.89% 72.24% 35.88%

Chi-square 0.31 0.70 0.61

M
at

ri
x

ex
p

on
en

ti
al First moment 0.00% 0.00% 0.00%

Second moment 1.39% 10.01% 1.93%

Third moment 8.91% 30.17% 10.20%

Chi-square 2.77 4.24 1.39

W
ei

b
u
ll

(1
.0

,
5.

0)

First moment 0.00% 0.00% 0.00%

Second moment 8.02% 3.54% 4.55%

Third moment 24.96% 11.52% 14.43%

Chi-square 0.3 0.15 0.18

U
n
if

or
m

(0
.5

,
1.

5)

First moment 0.00% 0.00% 0.00%

Second moment 4.49% 1.08% 1.40%

Third moment 14.09% 4.31% 5.18%

Chi-square 0.28 0.29 0.28

P
ar

et
o-

II
(1

.5
,

2.
0)

First moment 12.33% 24.11% 0.00%

Second moment 91.60% 97.66 67.78%

Third moment 99.66% 99.98% 93.51%

Chi-square 0.04 0.05 0.01

S
h
if

te
d

ex
p

on
en

ti
al First moment 0.11% 0.11% 0.00%

Second moment 0.92% 8.05% 0.76%

Third moment 2.18% 19.37% 2.07%

Chi-square 0.07 0.12 0.02

Table 7. The ANOVA table for continuous distributions.

Source DF Sum of squares Mean square F -value Pr > F

Dependent variable: Y

Model 19 42867.01607 2256.15874 26.79 < :0001

Error 33 2779.51994 84.22788

Corrected total 52 45646.53601

R-square Coe� Var Root MSE Objective mean

0.939108 51.01674 9.177575 17.98934

Source DF Type I SS Mean square F-value Pr > F

Method 2 1069.98712 534.99356 6.35 0.0046

Block 17 41797.02895 2458.64876 29.19 < :0001
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Figure 8. Densities of �tted MSNB, HErD, and DPH for synthetically generated traces: (a) Distribution of Weibull (1.0,
0.5), (b) distribution of Weibull (1.0, 5.0), (c) distribution of uniform (0.5, 1.5), (d) distribution of Pareto-II (1.5, 2.0), (e)
distribution of shifted exponential, and (f) distribution of matrix exponential.

rithm is known as one of the most appropriate ones
to �t continuous PH distributions, we consider our
proposed (M-)EM-MSNBD algorithm as equivalently
appropriate to �t discrete PH.

For further research, applying the result of the
proposed EM algorithm in operating room scheduling

and developing a suitable method to solve this kind of
problem are suggested.
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Table 8. Tukey test for continuous distributions;
di�erences of least squares means.

Algorithms
comparison�

Di�erence
between
means

90%
con�dence

limits

2-1 7.892 [1.483 14.301] ***

2-3 10.707 [4.298 17.116] ***

1-2 -7.892 [-14.301 -1.483] ***

1-3 2.815 [-3.502 9.132]

3-2 -10.707 [-17.116 -4.298] ***

3-1 -2.815 [-9.132 3.502]
�1 is the M-EM-MSNBD algorithm; 2 is the EM-DPH

algorithm; and 3 is the EM-HErD algorithm.

information of Scottish NHS Hospital from 1998 to
1999 by Professor John Bowers.
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Appendix A. Discrete phase-type distribution
and its properties

De�nition and notation
DPH distributions have been introduced and formal-
ized by Neuts [1,2], as the distribution of time until
absorption in a discrete-state Discrete-Time Markov
Chain (DTMC) with n transient states and one ab-
sorbing state. More precisely, assume that fX(n)gn�0
denotes the DTMC with �nite state space S =
f0; 1; 2; � � � ; ng, where the absorbing state is numbered
0 and the transient states are numbered 1; 2; � � � ; n.
DPH distribution is de�ned by Z = inf(i 2 N :
Xi = 0) with representation (�;T) and is shown by
Z � PHd(�;T). The one-step transition probability
matrix of the corresponding DTMC can be partitioned
as:

P =
�
T t
0 1

�
; (A.1)

where T is a square matrix of dimension n, t is a
column vector, and 0 is a row vector of dimension
n. Since P is a transition probability matrix, we have
Tij � 0, ti � 0 8i, j 2 S, and T1 + t = 1, where 1 is
the column vector of 1s of the appropriate dimension
n. The probability distribution of the initial states is
denoted with the row vector (�; �0) and �0 = 1� �1.

The cumulative distribution function of the DPH
distribution Z � PHd(�;T) is calculated by:

FZ(x) = P (Z � x) = 1� �Tx1

for x = 0; 1; 2; � � � : (A.2)

The probability mass function is:

PZ(x)=Pr(Z=x)=�Tx�1t for x=1; 2; � � � ;
PZ(0) = Pr(Z = 0) = �0; (A.3)

and the factorial moments are:

fk=E[x(x�1) � � � (x�k+1)]=k!�(I�T)�kTk�11

for k = 1; 2; � � � (A.4)

Closure properties
One of the appealing features of PH distributions is
that the class is closed under a number of opera-
tions. The closure properties are the main contributing
factors to the popularity of these distributions in
stochastic modeling. In particular, it is shown that
the DPH distributions are closed under convolution,
�nite mixtures, minimum, maximum, and shifted and
deterministic time.

Assume that Zi � PHd(�(i);T(i)) for i = 1; 2 are
two independent DPH distributed random variables of
order ni.

The basic properties of DPH distribution are
presented as follows:

(i) Convolution of PHd: The sum of Z = Z1 + Z2 �
PHd(�;T) has a DPH distribution of order n =
n1 + n2 with representation:

� =
�
�(1); �(1)

0 �(2)
�
;

and:

T =
�

T(1) t(1)�(2)

0 T(2)

�
: (A.5)

Proof. See Latouche and Ramaswami [27],
Theorem 2.6.1.

(ii) Mixture of PHd: The convex mixture Z = �Z1 +
(1 � �)Z2 � PHd(�;T) has a DPH distribution
of order n = n1 + n2 with representation:

� = (��(1); (1� �)�(2));

and:

T =
�

T(1) 0
0 T(2)

�
: (A.6)

Proof. See Latouche and Ramaswami [27],
Theorem 2.6.2.

(iii) Minimum of PHd: The minimum Z =
min(Z1; Z2) � PHd(�;T) has a DPH distribution
of order n = n1:n2 with representation:

� = �(1) 
 �(2);

and:

T = T(1)
T(2); (A.7)

where 
 is the Kronecker product.

Proof. See Latouche and Ramaswami [27],
Theorem 2.6.4.

(iv) Maximum of PHd: The maximum Z =
max(Z1; Z2) � PHd(�;T) has a DPH distribu-
tion of order n = n1:n2 + n1 + n2 + 1 with the
representation shown in Box A.I.
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�=
�
�(1) 
 �(2);�(1)�(2)

0 ;�(1)
0 �(2); 0

�
; and T=

0BB@T(1) 
T(2) T(1) 
 t(2) t(1) 
T(2) t(1) 
 t(2)

0 T(1) 0 0
0 0 T(2) 0
0 0 0 0

1CCA : (A.8)

Box A.I

Proof. See Alfa [28], p. 40.
(v) Shift of PHd: The shifted Z = max(Z1 � r; 0) �

PHd(�;T) with r 2 N has a DPH distribution of
order n = n1 with representation:

� = �(1)
�
T(1)

�r
;

and:

T = T(1): (A.9)

Proof. See Neuts [2], p. 47.
(vi) Deterministic time: The constant number Z =

r � PHd(�;T) with r 2 N has a DPH distribu-
tion of order n = r with representation:

� = (
rz }| {

1; 0; � � � ; 0);

and:

T =

26664
0 1 0 0 � � � 0
0 0 1 0 � � � 0
...

...
...

...
...

0 0 0 0 � � � 0

37775 : (A.10)

Proof. See Neuts [2], p. 47.

Appendix B. Shifted geometric distribution
and shifted negative binomial distribution

Shifted geometric distribution (X � SG(p), with p 2
(0; 1)) is another nonequivalent de�nition of geometric
distribution, which describes the number of failures
before the �rst success in an in�nite sequence of
independent Bernoulli trials. The shifted geometric
distribution is completely characterized by its success
probability p and the probability mass function is
Pr(X = x) = (1 � p)xp, for x = 0; 1; 2; � � � . The DPH
representation of the shifted geometric distribution is
given by Eq. (B.1) and presented in Figure B.1.

�SG = [1� p]; TSG = [1� p]; tSG = [p]: (B.1)

Shifted negative binomial distribution (X �SNB(n; p))
is described as the number of failures before the nth
success in a Bernoulli process and de�ned as the sum
of n independent random variables SG(p)-distributed;
thus:

Figure B.1. The DPH representation of SG(p).

Figure B.2. The DPH representation of SNB(n; p).

Pr(X = x) =
�
x+ n� 1
n� 1

�
(1� p)xpn; for

x = 0; 1; � � � :
The DPH and diagrammatic representation of shifted
negative binomial distribution are presented in
Eq. (B.2) and Figure B.2, respectively.

�SNB = (�1; �2; � � � ; �n);

�j =
�

n
j � 1

�
(1� p)n�(j�1)pj�1;

TSNB =

0BBBBB@
1� p p 0 0 0 0

0 1� p p 0 0 0

0 0 0
. . . 0 0

0 0 0 0 1� p p
0 0 0 0 0 1� p

1CCCCCA ;

tSNB =

0BBBBB@
0
0
0
...
p

1CCCCCA : (B.2)

For more information about geometric and shifted ge-
ometric distributions, please see Varmazayr et al. [29].
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