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Abstract. With the ability to mimic human behaviour, humanoid robots have become
a topic of major interest among research fellows dealing with robotic investigation. The
current work is focused on the design of a novel navigation controller based on the logic
of the regression analysis to be used in the path planning and navigation of humanoid
robots. The current investigation focuses on static and dynamic path planning of humanoid
NAOs. The static path planning represents a single NAO navigating through random static
obstacles. The dynamic path planning represents multiple humanoid NAOs navigating
through random static obstacles and acting as dynamic obstacles for each other. A Petri-net
controller is designed to avoid the collision among multiple NAOs in dynamic path planning.
To reduce path length and time travel and provide the shortest possible path, an advanced
regression controller is implemented in the NAOs in both simulation and experimental
environments. Finally, a comparison has been performed between the simulation and
experimental results, and good agreement is observed between both of the results with
a minimal percentage of error. The proposed navigation controller is also tested against
other existing navigational technologies to validate better e�ciency.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

With the development of science and technology, robots
have become an integral part of human life. As its
basic de�nition states, a robot is a device or equipment
that can reduce and sometimes replace human e�orts.
Out of all the categories of robots, such as wheeled
mobile robots, biped robots, etc., humanoid robots
have gained immense popularity in almost all sectors
of the present-day technology. Their human-mimicking
behaviour and capability to use the same workplace
as used by humans make the humanoid form more
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advantageous than other forms. A humanoid robot
encounters a general problem of path planning and
obstacle avoidance in workplace. If a humanoid robot
is intended to be used in a cluttered environment, then
it should be able to detect potential obstacles present
in its path and reach the destination without colliding
with the obstacles. Hence, robot path planning and
navigation is considered as one of the most challenging
areas of research. Path planning problem can be
categorised as static path planning and dynamic path
planning. This categorisation is based on the presence
of obstacles types. As the name suggests, robot has
to deal with static obstacles in static path planning
and with dynamic obstacles in dynamic path planning.
Dynamic path planning is much more critical than
static path planning. To enable a robot to work in
a complex environment, it has to deal with moving
objects and human beings.

Path planning approaches are categorised as clas-
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sical techniques dealing with computational intelli-
gence. The path planning and navigation of humanoid
robots is very recent and modern, as compared to path
planning of wheeled mobile robots. In the current
work, regression analysis is chosen as the path planning
approach to a humanoid NAO. Regression analysis is
a classical technique and provides more convergent
results. Several researchers have discussed regression
analysis and the path planning approach of robots.
Some of them can be discussed herein. Atkinson [1]
applied regression analysis to three speci�c problems in
which the least-square estimation and basic regression
were in sharp contradiction. He concluded that the
e�ciency of the regression analysis is largely dependent
on the linear model that represents the problem. Asano
et al. [2] discussed a method for constructing any spe-
ci�c design by the use of disjoint polygons. Takahashi
and Schilling [3] designed an algorithm to generate a
collision-free path in a rectangular workspace cluttered
with polygon-shaped obstacles. Hwang and Ahuja [4]
presented a method of multi-level path planning. The
idea behind the use of a multi-level path planning is
to ensure higher accuracy of results. Lazaro et al. [5]
used the sensory data to be implemented in a path-
planning algorithm. By collecting sensory data, the
information regarding the presence of any obstacle can
be con�rmed. Bai and Low [6] proposed a method
for linking the body trajectory planning to the terrain
evaluation to make the path-planning problem easy and
less time consuming. They constructed a potential �eld
based on the terrain evaluation for a graphical search
method. Lee and Bien [7] encountered the problem of
path planning for a quadruped robot by means of an
arti�cial thermal �eld. In their analysis, parameters
such as obstacle avoidance, goal seeking and stable gait
trajectory were considered. Minguez and Montano [8]
proposed a divide-and-conquer strategy for path plan-
ning. They performed the path planning by the use of
nearness diagram in troubleshoot scenarios. Benamati
et al. [9] introduced a at potential �eld approach to
the navigation of mobile robots in a static environment.
Liang et al. [10] studied a non-holonomic path planning
method by considering both the constraints available in
the path and optimisation of the path. Papadopoulos
et al. [11] developed a nonholonomic path planning
technique for mobile manipulators. Their approach
was based on polynomial calculations. Masehian and
Sedighizadeh [12] contributed almost 35 years of devel-
opment in the path planning approach in a review form
based on concept of Zero Moment Point (ZMP). Qi
et al. [13] redesigned the previously followed potential
�eld approach and named it an arti�cial potential �eld
method for path planning of mobile robots. Jolly et
al. [14] introduced the Bezier curve technique in path
planning. They applied the technique to a multi-agent
robot soccer system. Keshmiri and Payandeh [15]

designed a regression route for a multi-robot and multi-
recharging station problem. Their main objective was
to enable robots to use the nearest recharging station
without sticking to a particular recharging station and
avoiding disturbance to each other. Shi and Zhao [16]
improved the potential �eld method by overcoming the
problem of trapping at local minima and reaching the
destination safely. Singh et al. [17-19] discussed the use
of computational intelligence for smooth and collision-
free path generation for wheeled mobile robots. Raz-
zazi and Sepahvand [20] proposed an idea regarding
time complexity of two disjoint simple paths. Their
study is primarily applicable to path planning of mobile
robots. Mohammadi et al. [21] proposed a wearable
exoskeleton model for a disabled human arm to facil-
itate various operations. They considered kinematic
constraint data to design their model. Kala et al. [22]
applied a hierarchical evolutionary algorithm to both
static and dynamic path planning of a robot. They
used two hierarchies, i.e., coarse and �ner hierarchies,
for the path planning to enable the robot to cross both
static as well as dynamic obstacles. Kashmiri and
Payandeh [23] proposed a kernel regression technique
for the navigation of a robotic agent in both static
and dynamic environments. Sheng et al. [24] further
contributed to the arti�cial potential �eld approach by
adding a feature of path planning of a virtual human.
Hong et al. [25] attempted dynamic path planning of a
mobile robot by the use of the arti�cial potential �eld
approach. Mohanty et al. [26-28] developed several
navigational techniques for path planning of mobile
robots using arti�cial intelligence. They discussed
modi�cation of controlling parameters of basic intel-
ligent algorithms for performance improvement. Pham
and Parhi [29] discussed the navigation of multiple
mobile robots using a neural network and a Petri-
net model. Chen and Ko [30] designed a vision-
based approach to the self-localization of soccer playing
robots. They altered the intensity of the lighting
system to test the e�ectiveness of the design. Korayem
et al. [31] proposed a graphical user interface for a
cable suspended robot using LabVIEW software. They
considered both kinematic and control parameters in
their analysis. Sayyaadi and Babaee [32] designed a
control scheme for a mobile manipulator to perform ob-
ject transportation tasks. They tested the manipulator
for approaching and grasping objects in a simulation
environment. Ohki et al. [33] proposed a local path
planner based on the distance time transform method
for mobile robot navigation in dynamic environments.
They applied the technique based on the current and
future possible positions of dynamic obstacle so that
the robot can reach its destination without colliding
with the obstacles. Li et al. [34] applied the regression
technique to the path planning of mobile robot con-
sidering prior information about environmental con-
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ditions. Hong and Park [35] designed a navigation
strategy for mobile robots based on a turning point
search. They considered an obstacle avoidance strategy
and path optimization in their technique. Keshmiri
and Payandeh [36] applied regression technique to a
multi-robot and multi-recharging optimisation prob-
lem. Tingbin and Qisong [37] performed robot path
planning using a stable and mature arti�cial potential
�eld approach. Clever and Mombaur [38] introduced an
inverse optimal control to transfer motion from humans
to humanoids. They prepared a 3D template model to
extract motion constraints from a human walking and
used the extracted parameters in humanoid walking.
Mirjalili et al. [39] developed an online path planning
approach to SURENA III humanoid robot based on
control schemes.

Based on the extensive discussion on the available
literatures, it has been observed that many researchers
have tried path planning of wheeled mobile robots,
yet path planning of humanoid robots is very rare to
�nd. Although path planning in static environments
is available, work on dynamic environments has not
been reported signi�cantly. A humanoid is subjected
to both static and dynamic environments while working
in a real life environment. Based on the shortcomings
of the available literatures, the current work is aimed
at static and dynamic path planning of humanoid
NAO using a regression navigational controller. The
primary objective of the work is to design a novel
navigation controller that can navigate single and
multiple humanoids in complex environments. Since
humanoid navigation is relatively new in its own kind,
the present work needs to be treated as a pioneering
art in the �eld of humanoid robotics.

2. Humanoid NAO25

Several humanoid robots were developed in the past
with varying features. In 2004, Aldebaran group of
France came up with NAO, which is a small-sized
and programmable humanoid robot. Starting from
the introduction in market to replacing quadruped
robot AIBO of Sony in 2007, NAO has been modi�ed
through several versions [40]. Humanoid NAO, version
V3.3, has been used in the current analysis. The
current version of NAO has 25 degrees of freedom.
The performance of NAO is largely dependent on its
sensor network. The sensor network of NAO includes
eight pressure sensors, nine tactile sensors, one inertial
board, two infrared receivers and emitters, two sonar
range �nders, four microphones, and two cameras.
NAO has a weight of about 5 kg and a height of about
58 cm. The e�cient sensory network of NAO enables
it to gather information about environmental condi-
tions and act accordingly. Since the path-planning
problem includes sensory data as the input parameters,

Figure 1. A typical humanoid NAO.

humanoid NAO can be very handy in path optimisation
problem. Figure 1 represents a humanoid NAO.

3. Outline of basic regression analysis

The path-planning problem can be tackled by the
use of either classical approaches or computational
intelligence approaches. These two approaches can
also be stated as deterministic and non-deterministic
approaches, respectively. Classical approaches are
popular due to their deterministic nature, and the
results converge based on their ability within limited
time. Regression analysis is one of the popular
classical techniques used for optimisation problems.
Considering that the path planning of the humanoid
robot is very new in its own kind, Regression Analysis
(RA) is chosen in the current work as the method
to be implemented in the humanoid NAO to enable
it to reach the goal position without colliding with
the obstacles present in the path. Regression analysis
is also a statistical approach that can relate some
variables used in a system. It can be used to formulate
a relation among dependent and independent variables.
If the independent variable is kept �xed in a system,
then the change in the dependent variables can be
observed with respect to the independent variable. Re-
gression technique can also be called a data forecasting
technique. In basic regression, the dependent variables
are not exactly linear to the independent variables;
rather, they are linear to some parameters concerned
with the independent variables. A simple equation of
regression can be represented as follows:

yi = �1 + �2xi + er i = 1; 2; 3; � � � ; n: (1)

In Eq. (1), yi is dependent upon xi with �1 and �2 as



378 P.B. Kumar et al./Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 375{393

Figure 2. Description of a linear regression.

the parameters relating the dependent parameters to
the independent ones. Factor er is a term associated
with any error factor. The most signi�cant feature
of regression analysis is the accumulation of scattered
data in the equation form to a straight line so that the
results can converge to a common solution. Figure 2
represents a basic regression data accumulation.

In Figure 2, the independent parameter is repre-
sented in the horizontal axis, and a dependent param-
eter in the vertical axis. The values from -20 to 60
in the x-axis represent ranges of independent variable,
and the values from 0 to 15 in the y-axis represent
ranges of the dependent variable with respect to the
independent variable. For each value on the x-axis,
there are corresponding data on the y-axis. Finally, all
the scattered data are brought together in the equation
form to a straight line, representing the solution to the
problem.

4. Control architecture of humanoid path
planning using regression analysis

The primary objective of any path planning and navi-
gation problem is to avoid the obstacles present in the
path and reach the target position in the shortest route
consuming less possible time. The optimisation of
the navigational problem depends on the optimisation
of the parameters that inuence the path-planning
problem signi�cantly. In the navigation of a humanoid
NAO, four parameters are considered. Those are
Front Obstacle Distance (FOD), Left Obstacle Dis-
tance (LOD), Right Obstacle Distance (ROD), and
Turning Angle (TA). Out of the above four parameters,
FOD, LOD, and ROD act as the input parameters,
and TA acts as the output parameter. The input
parameters are based on the sensory data fed to the
controller, and the output parameter is the result of
computation done by the controller. To have a better
understanding regarding these navigational parame-
ters, Figure 3 can be considered. In Figure 3, X1, X2,
and X3 represent LOD, ROD, and FOD, respectively.

Figure 3. Navigational parameters of the humanoid
NAO.

The input parameters are the distances of the obstacles
present near the humanoid NAO. NAO is equipped
with di�erent types of sensors. The sensors attached
with the NAO record the presence of obstacles in the
suitable range and feed the data to the microcontroller
of the humanoid.

Depending upon the feeding of environmental
conditions to a robot, the path planning can be
categorised as global path planning and local path
planning. In global path planning, the robot has prior
information regarding the environmental conditions;
in local path planning, the robot is unaware of the
environmental condition. In the current work, the
robot is aware of the start position and goal position.
The primary objective of path planning is that the
robot is always headed towards the goal position.
Unless the humanoid encounters any obstacle in the
path, it moves without activation of the controller
towards the speci�ed goal position. Once the sensors
detect any obstacle, the path planning algorithm works
as per the designed method. In regression analysis,
some training data are fed to the system so that the
controller can be e�cient in choosing any possible
case of the obstacle avoidance problem. Based on the
environmental conditions provided to the humanoid
NAO, some training patterns of about 1000 data are
fed to the controller. Table 1 illustrates some of the
training pattern data.

In Table 1, the input parameters of FOD, LOD,
and ROD are measured in centimetres of distance of
robot from the obstacle, and the output parameter
TA is measured as the degrees of turning. By taking
one example of the training data, the navigational
parameters can be understood. By taking the 54th
data from Table 1, it is observed that FOD, LOD,
and ROD are 42 cm, 32 cm, and 48 cm, respectively.
A threshold distance is set for the sensors of the
humanoid to detect the obstacles. In the current
study, the threshold distance is set to 30 cm. In the
above example, the value of left obstacle distance is
minimum which signi�es that the robot is near to an
obstacle, which is present in the left side. To avoid
the obstacle, the robot must take a right turn, so the
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Table 1. Examples of some training pattern data for RA navigation controller.

Sl.
no

FOD
(cm)

LOD
(cm)

ROD
(cm)

TA
(degree)

Sl.
no

FOD
(cm)

LOD
(cm)

ROD
(cm)

TA
(degree)

1 60 30 50 0 31 50 60 30 -14

2 30 40 60 10 32 60 30 40 16

3 35 70 50 20 33 50 35 70 12

4 30 55 30 -15 34 30 30 55 15

5 70 30 40 0 35 40 70 30 -17

6 40 40 30 -25 36 30 40 40 -25

7 45 35 50 20 37 50 45 35 -18

8 35 55 40 -15 38 40 35 55 20

9 80 45 55 0 39 55 80 45 -22

10 38 59 42 10 40 42 38 59 18

11 36 39 48 12 41 48 36 39 15

12 65 46 58 0 42 58 65 46 -11

13 46 66 52 -19 43 52 46 66 14

14 51 65 33 0 44 33 51 65 -12

15 41 53 62 16 45 62 41 53 18

16 32 61 55 -18 46 55 32 61 16

17 48 85 65 0 47 65 48 85 12

18 34 38 42 26 48 42 34 38 15

19 34 42 38 -25 49 38 34 42 16

20 38 42 34 -24 50 34 38 42 -18

21 39 55 45 -18 51 45 39 55 -21

22 36 61 71 14 52 71 36 61 0

23 53 36 38 0 53 38 53 36 -16

24 32 48 42 -20 54 42 32 48 18

25 35 45 52 18 55 52 35 45 20

26 45 53 62 19 56 62 45 53 25

27 70 58 36 0 57 36 70 58 12

28 42 45 48 22 58 48 42 45 28

29 45 56 49 -15 59 49 45 56 19

30 35 65 20 -18 60 20 35 65 -26

turning angle is set to 18 degrees. It can be noticed
that, in Table 1, a negative sign is attached with some
turning angles. It is not to be confused that the
negative sign represents any type of a negative turning
angle. It only symbolises that the robot is taking a
left turn. A speci�c set of sign conventions is chosen
for the humanoid robot to encounter the path-planning
problem. The sign conventions can be understood
perfectly through Figure 4.

It can be noticed from Figure 4 that a positive
turning angle represents a right turn for the humanoid.
A negative turning angle represents a left turn, and
a zero turning angle represents that the humanoid is
moving in a straight path without any turning.

After deciding the speci�c sign conventions and
training patterns for the regression navigational con-
troller, the training data are fed to the regression
toolbox of Minitab software. The primary aim of using
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Figure 4. Sign conventions used in RA navigation
controller.

the Minitab software is to formulate a solution in an
equation format that can be used in the output of the
system. The Minitab software generated the equation
that can be represented as follows:

K4 =� 23:0228� 0:006183K1 � 0:28508K2

+ 0:78636K3; (2)

where K1 is front obstacle distance, K2 is left obstacle
distance, K3 is right obstacle distance, and K4 is
turning angle.

Based on Eq. (2), the regression navigational con-
troller is designed and implemented in the humanoid
NAO. The path-planning problem of the humanoid
NAO is considered as the global path-planning problem

in which the humanoid has the prior information
on the start and goal positions. The humanoid is
always headed towards the goal position obeying the
goal following behaviour. Unless there is an obstacle
present in the path, the humanoid moves towards
the goal without using any control algorithm. Once
any obstacle is detected by the sensory network of
the humanoid, the input parameters are calculated as
described earlier. By considering the input parameters,
the navigation controller analyses the scenario and
generates the required turning angle to overcome the
obstacle. Following the obstacle avoidance, again
the humanoid obeys the goal following behaviour and
moves towards the target. The values of the constants
as generated by the Minitab software, i.e., �23:0228,
�0:006183, �0:28508, and 0.786367, are dependent
upon the training pattern data. In the current analysis,
a total of 1000 data are used. These values can also be
more converged by using some more training pattern
data, re�ning the results up to some extent.

A humanoid NAO follows various types of reactive
behaviours such as obstacle avoidance behaviour, goal
seeking behaviour, and barrier following behaviour.
These three reactive behaviours are very signi�cant in
the context of path planning problem formulation. The
obstacle avoidance behaviour deals with the setting
of turning angle to avoid the obstacle if present in
the path as sensed by the sensory network of the
humanoid. The goal seeking behaviour states that
the humanoid should always head towards the goal
if there is the absence of any obstacle in the path.
In the absence of any obstacle, the turning angle of
the robot is set to zero and is directed towards the
target. While the obstacle avoidance and goal seeking
behaviours are compulsory behaviours for the naviga-
tion of the humanoid, the barrier following behaviour
is a complimentary one. The third behaviour states
that if a long series of obstacles or barriers are present
in the path of the humanoid and the target is close
to the end of the long barrier, then the robot just
follows the barrier without activation of the navigation
controller. In this scenario, the microcontroller is
not activated; low amount of energy is utilised in the
navigation, which in turn increases the e�cacy of the
algorithm. Table 2 summarises the reactive behaviours
followed by a humanoid robot during path planning
and navigation.

Figure 5 represents di�erent reactive behaviours
followed in the humanoid navigation. These reac-
tive behaviours are based on the above-discussed be-
haviours.

While designing the control algorithm for the
navigation of the humanoid robots, all the logics of
regression analysis and di�erent reactive behaviours are
considered into account. Figure 6 represents the pseudo
code for the proposed RA navigation controller, and
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Table 2. Reactive behaviours followed in path planning of a humanoid NAO.

Types of reactive
behaviors

Explanation of the
reactive behaviors

Activity of the robot

Obstacle Avoidance (OA)
To avoid the obstacles present
in the path when sensed by the
sensors of a robot.

Turning angle is set
accordingly to avoid
the obstacles.

Target Seeking (TS)
To seek the target when there
are no obstacles present in
the path.

Turning angle is adjusted
accordingly to reach the
goal position.

Barrier Following (BF)
To follow a barrier when searching
for a target if a series of obstacles
are present near the robot.

Robot moves in parallel to
the barrier keeping a �xed
turning angle.

Figure 5. Reactive behaviours of RA navigation controller.
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Figure 6. Pseudo code for the proposed RA navigation controller.

Figure 7 represents the owchart for the control scheme
of the proposed algorithm.

5. Design of a Petri-net controller for avoiding
inter-collision among multiple humanoids

In the current investigation, both static and dynamic
path planning problems of humanoid NAO are dealt
with. In the static path-planning problem, inter-
collision is not encountered since only a single hu-
manoid is navigated through some random obstacles.
In the dynamic path-planning problem, multiple hu-
manoid NAOs are navigated through random static ob-
stacles. As all the humanoids navigate simultaneously
in a common environment, it is quite evident that there
may be a problem of inter-collision among themselves.
To avoid the inter-collision among the humanoids, a
Petri-net controller has been designed.

Peterson [41] thoroughly discussed the develop-
ment of a Petri-net controller used to deal with a dy-
namic environment. A Petri-net controller is required
to prevent the inter-collision between two dynamic
obstacles. In the current investigation, dynamic path
planning is also considered along with the static path
planning approach. When multiple humanoid NAOs
navigate in a common environment or platform, they
act as dynamic obstacles for each other. The basic
structure and function of a Petri-net controller as used

in the current work can be discussed as follows. Fig-
ure 8 represents the structure of a Petri-net controller
used in the current problem.

The position of a robot is represented as a circle,
symbolising an event. The bar symbol represents
transition from one state to another. The red elliptical
symbol represents the current position of the robot or
the token location. In our navigational problem, three
humanoid NAOs navigate simultaneously in a common
environment. Hence, two humanoids always act as
dynamic obstacles for the �rst one. In the developed
Petri-net model, six positions are represented. In the
initial stage, it is assumed that all the humanoids are
unaware of each other's location in the environment
and are standing in random positions. This is the
start of their journey, and the token is at Position 1.
Position 1 also signi�es that all the humanoids are
waiting for any command to execute and start their
journey to their respective targets. The second position
in the model represents tracing each other's location
by the sensory network. The idea behind tracing
each other is to avoid any obstacle if present in the
path. While Position 2 represents the detection of
static obstacles, the next position, Position 3, comes
to picture when there is detection of any dynamic
obstacle. When two humanoids are acting as a dynamic
obstacle to each other (Position 3), they have to set
a priority regarding which humanoid to move further
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Figure 7. Flowchart of the proposed RA algorithm for navigation of humanoids.

and which one to wait until the other one moves.
As per a general rule, the humanoid with minimum
distance to reach the target is given more priority than
the one with more distance to reach the goal. The
robot with less priority would stop acting as a static
obstacle until the robot with more priority leaves for
forward motion. Position 4 represents this negotiating
situation between two humanoids regarding setting of

the priority. After encountering a negotiating situation
such as Position 3, the next task is to check any
further conicting situations. In the absence of any
further negotiating situations, the humanoid would
move forward which is represented as Position 5 in
the model. The last position, Position 6, is de�ned
as a waiting condition. If any humanoid encounters
a situation where two other humanoids are already
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Figure 8. Developed Petri-net controller used in the
navigational approach.

in a negotiating mode, it has to stop there acting
as a static obstacle by giving them a higher priority.
After the two negotiating humanoids move forward,
the one in Position 6 would take Position 2 and
proceed towards its respective target. Considering
all these positions in the developed model, multiple
humanoids can navigate in a common platform without
encountering any collision with each other and reach
their respective goals safely. The design of the proposed
Petri-net model works in a simpler way, which in turn
optimises the path travelled and reduces the time taken
to reach the target.

6. Navigation of a single humanoid NAO in a
complex environment

After the design of the control architecture for the path
planning of the humanoid robots and the Petri-net con-
troller for avoiding inter-collision among multiple hu-
manoids, the proposed navigation controller was tested
for both simulated and experimental environments. It
is to be noted that the Petri-net controller is required
when multiple humanoids navigate simultaneously in
a common platform. For the navigation of a single
humanoid NAO, it is not required. The purpose of this
section is to check the regression navigational controller
for a simulation as well as experimental platform.
Finally, following the execution of the controller in
both of the platforms, a comparison is aimed for the
validation between the simulated and experimental
results.

6.1. Simulation and experiment in the static
environment

Several simulation software products have been devel-
oped over the past years. In the current work, V-REP is
chosen as the simulation software, because it is an easy
and suitable software product for humanoid navigation.
V-REP follows the programming language LUA based
on the ANSI C language. Speci�c unique properties,
such as collision detection, better motion planning,
and calculation of the shortest path, make V-REP a

more potential candidate than other software products.
To analyse the e�ectiveness of regression navigational
controller, a static environment has been created in the
V-REP software. It has to be kept in mind that the
performance of the navigation controller must be based
on the reactive behaviours such as obstacle avoidance,
goal following, and barrier following. The environment
size was chosen as 200 � 250 units with �ve numbers
of static obstacles. By considering the reactive be-
haviours and logic of regression analysis, a program has
been written and implemented in the NAO humanoid.
After implementing necessary rules and regulations,
obstacle avoidance and goal following behaviours were
tested. The main objective of navigational analysis
is to observe the shortest path calculation and time
taken to reach the desired target. Figure 9 represents
the simulation results as obtained from the V-REP
software.

It can be observed from Figure 9(a) that, initially,
the NAO was set at a source point, and a speci�c
destination point was provided. The two blue boxes
represent the source and target points. Five obstacles
were set at random positions. It was observed that
NAO was able to avoid all the obstacles if present in
the path and reach the desired target safely by using
the proposed regression navigation controller. During
the journey from Figure 9(a) to 9(g), it can be observed
that the humanoid has followed the shortest possible
path. The distance covered by the humanoid to reach
the destination and the time consumed to reach the
target were noted from the V-REP simulation window
itself and recorded.

To validate the e�ectiveness of the proposed
regression navigational controller, it is important to
repeat the simulation results in an actual environ-
ment. By creating an exactly similar environment
under laboratory setup, the simulation results can be
compared for practical implementation. To maintain
the same environment size, the actual platform to
conduct the experiment was chosen as 200 � 250
centimetres. Five static obstacles were selected at
the same positions as those of the simulation envi-
ronment. Initial and �nal points of the experiment
were established. By using the logic of the reactive
behaviours and regression analysis, a program was
written and implemented in the humanoid NAO. In
the actual environment, the NAO was operated by
a Wi-Fi control. After the environment was set up,
the navigation of NAO was observed and analysed.
Figure 10 represents the actual experiment performed
in our laboratory.

The two blue boxes represent the source and
target positions in Figure 10(a). Five static obstacles as
represented by white boxes were set at the exact similar
positions as were in case of simulation. Following
the establishment of the environment, the NAO was
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Figure 9. Simulation result for the navigation of a single NAO using RA navigation controller.

started for its navigation. It was observed that the
humanoid NAO was able to avoid all the obstacles
that were present in the path and reach the desired
target safely. It can be observed from Figure 10(a)
to 10(f) that the humanoid has followed the short-
est possible route. In the actual environment, the
path length from source to target as travelled by the
humanoid was measured by using a measuring tape,
and a stopwatch measured the time taken to reach
the target. The path length and time taken were
noted and recorded for the comparison between the
simulated and experimental results. As stated earlier,
the e�ectiveness of the proposed navigation controller
can only be checked by the proper comparison between
the simulated and experimental results regarding the

navigational parameters, which are the path length and
time taken. Tables 3 and 4 represent the comparison
between the simulated and experimental results for
path length and time taken, respectively. It can be
noted that quite a large number of experiments were
performed for the navigational control of humanoid
NAO using regression analysis, and only a few have
been analysed herein.

From Tables 3 and 4, it can be noticed that the
navigational parameters for the experiments always
show higher values than the simulation results. The
simulation results are ideal where there are no errors
such as loss of data transmission, e�ects of friction,
etc. When the humanoid navigates in a practical
environment, it is inuenced by several external factors
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Figure 10. Experimental result for the navigation of single NAO using RA navigation controller.

Table 3. Comparison between simulation and experimental results for path travelled by a single NAO using RA
navigation controller.

No. of
scenario

Path length covered
during simulation

(cm)

Path length covered
during the experiment

(cm)

Error
(%)

1 269.88 286.2 5.70
2 380.53 404.9 6.02
3 337.39 360.3 6.36

Table 4. Comparison between simulation and experimental results for time taken by a single NAO using RA navigation
controller.

No. of
scenario

Time taken
during simulation

(sec)

Time taken
during experiment

(sec)

Error
(%)

1 33.90 36.11 6.12
2 47.79 51.08 6.44
3 42.45 45.58 6.86

such as loss in Wi-Fi data transmission, the presence
of friction, slipping e�ects at the contact point between
the foot of the humanoid and oor, etc. These factors
increase the navigational parameters to some extent.
After recording both the simulated and experimental
results, the percentage of errors were calculated. It
was observed that, in all cases, the error percentage was
around 7%, which is well below the acceptable limit.

7. Navigation of multiple humanoids in a
complex environment

Path planning and navigation of multiple humanoids
can be excessively challenging than the navigation of a
single humanoid. The reason behind the above case is
that, in a single humanoid problem, the environment
is static, and when multiple humanoids navigate, it
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becomes a dynamic one. In a dynamic environment,
each humanoid has to avoid the static obstacles that are
present in the path and the dynamic fellow humanoids,
which are navigating, simultaneously, in the same
platform.

7.1. Simulation and experiment in dynamic
environment

For the simulation of multiple humanoids, V-REP was
again selected as the simulation software. In the cur-
rent work of navigation of multiple humanoid robots,
three humanoid NAOs have been considered in a single
environment. The environment size is kept exactly the
same as that for static environment analysis. Four
static obstacles are considered in the analysis at ran-
dom positions. Each humanoid has its own pre-de�ned
source and goal position. It has to be kept in mind
that the rules of regression navigational controller can
avoid the obstacles, but not decide anything regarding
the priorities if a conicting situation arises. Therefore,
along with the regression navigational control, the
logic of the Petri-net controller is also considered in
the current problem. The working pattern of the
Petri-net controller has been already described in the
previous sections. The environment size for navigation
of multiple humanoids is kept as 200 � 250 units with
four numbers of static obstacles. Along with the static
obstacles, each humanoid acts as a dynamic obstacle
to the other two. The three humanoid NAOs (denoted
as N1, N2, and N3) have their prede�ned sources or
start positions (denoted as S1, S2, and S3) and goals
or target positions (T1, T2, and T3). A program has
been written in the LUA language using the combined
logic and rules of the regression navigational controller
and Petri-net controller; it has been implemented in all
the humanoids. After the setting of the environment,
the three humanoids started their journey to reach

their respective goal positions. Figure 11 illustrates
the simulation environmental setup for the navigation
of multiple humanoids and the navigation of each
humanoid to their respective goals.

It can be observed from Figure 11(a) that each
humanoid has been marked with their start and goal
positions. Then, they started their journey to their
respective goals. Based on Figure 11(a) to (g), all the
humanoids have avoided both the static and dynamic
obstacles and reached their targets safely.

To validate the results of simulation analysis,
a practical experimental setup was developed in the
laboratory conditions as that in the case of navigation
of a single humanoid robot. The platform size was
chosen as 200 � 250 cm. Four numbers of static
obstacles were set at similar positions. A program was
written by using the logic of regression navigational
control and Petri-net controller and implemented in all
the humanoid NAOs. After the practical platform was
ready, all the humanoids started their journey towards
their respective targets. Figure 12 represents the actual
setup that has been used for the experiments and the
navigational pattern followed by the multiple humanoid
robots.

Based on Figure 12(a), all the three humanoids
are marked with their corresponding start and goal
positions. After the start signal, all of them moved
forward towards their respective goal positions. Based
on Figure 12(a) to (h), all the humanoids have avoided
the static obstacles and the inter-collision between
them. The navigational parameters, such as path
length and time taken, are measured in a similar way
as were done in the case of a single humanoid robot,
i.e., by measuring tape and stopwatch, respectively.
Finally, a comparison was done among the simulated
and experimental results, and the data are presented
in Tables 5 and 6. Table 5 represents a comparison of

Table 5. Comparison between simulation and experimental results for path travelled by multiple NAOs using RA
navigation controller.

Sl. no
Simulation results Experimental results Errors (%)

Path travelled (cm)
N1 N2 N3 N1 N2 N3 N1 N2 N3

1 285.5 243.5 267.7 298.6 257.6 283.7 4.39 5.47 5.64
2 314.1 269.8 298.6 325.8 285.5 320.2 3.59 5.5 6.74
3 244.7 295.6 230.9 258.9 309.8 246.7 5.48 4.58 6.4

Table 6. Comparison between simulation and experimental results for time taken by multiple NAOs using RA navigation
controller.

Sl. no
Simulation results Experimental results Errors (%)

Time required (sec)
N1 N2 N3 N1 N2 N3 N1 N2 N3

1 35.67 29.43 32.5 38.1 31.43 34.5 6.38 6.36 5.8
2 39.54 34.67 36.12 41.6 36.9 38.6 4.95 6.04 6.42
3 29.71 25.19 27.95 31.3 26.8 29.5 5.08 6.01 5.25
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Figure 11. Simulation result for the navigation of multiple NAOs using RA navigation controller and Petri-net model.

path length between the simulated and experimental
environments, and Table 6 represents the comparison
for time taken between simulated and experimental
environments.

It can be observed that the navigational param-
eters show a higher value in experimental results than
that in the simulation results. The percentage of errors
for all the comparisons is around 7%, which is well
under the acceptable limit.

8. Comparison of the proposed regression
navigational controller with other existing
techniques

From the above sections, it was observed that the

proposed regression navigation controller is successfully
implemented in both single and multiple humanoid
robots. The humanoids were perfectly able to avoid
both static and dynamic obstacles and reach their
goal positions safely. However, to have a detailed
investigation regarding the e�ciency of the proposed
navigation controller, it is required to compare it with
other existing techniques. To do so, a Co-Evolutionary
improved Genetic Algorithm (CEGA) and an improved
Genetic Algorithm (IGA) are chosen. CEGA and IGA
are heuristic methods as compared to the regression
analysis, which is a statistical method. CEGA and IGA
work on the basis of a prede�ned objective function,
while regression analysis is based on statistical formula
and training data. Qu et al. [42] developed two
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Figure 12. Experimental result for the navigation of multiple NAOs using RA navigation controller and Petri-net model.

methods, named as Improved Genetic Algorithm and
CEGA. In the current analysis, navigation of single
and multiple robots was compared with IGA and
CEGA algorithms, respectively. Figures 13 and 14
demonstrate a comparison between IGA and proposed
technique to navigate a single robot.

Figures 15 and 16 demonstrate the comparison
between CEGA and the proposed navigation controller
to navigate multiple robots.

The navigational parameters, such as the path
length and time taken, are calculated for the respective
existing and proposed techniques, and a comparison
is done between them. Tables 7 and 8 represent the
comparison for path length between the existing and

proposed methods for the navigation of single and
multiple robots, respectively.

From the obtained results, it is quite evident
that the proposed navigation controller has served as a
better alternative than the existing techniques. Hence,
the e�ciency of the proposed regression navigational
controller is on an enhanced mode than the existing
methods.

9. Conclusions

Robots have become a non-separable part of human
life as they contribute to all the sectors where human
e�orts are concerned. With an increasing demand of
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humanoid robots in several sectors such as automobile,
manufacturing, medical assistance, etc., the path plan-
ning and navigation of humanoid robots in their respec-
tive workspace have emerged as a challenging area in
the robotics research. Considering the above objective,
the current investigation was aimed at designing a
regression navigational controller that can navigate the
humanoid robot both in static and dynamic environ-

Figure 13. Simulation result for a single robot using IGA
algorithm [42].

Figure 14. Simulation result for a single robot using RA
navigation controller.

ments. As humanoid path planning is very new in
its own kind, regression technique was chosen as the
path planning approach to humanoid NAO. To enable
the multiple humanoids to navigate in a dynamic

Figure 15. Simulation result for multiple robots using
CEGA approach [42].

Figure 16. Simulation result for multiple robots using
RA navigation controller.

Table 7. Comparison of the results obtained from [42] and proposed RA navigation controller for a single robot navigation.

Technique used Path length (cm) Deviation (%)
Qu et al. [42] (Figure 13) 25.89 5.83
Proposed RA technique (Figure 14) 24.38

Table 8. Comparison of the results obtained from [30] and the proposed regression navigation controller for multiple
robots navigation.

Technique used Path length (cm) Deviation (%)
Qu et al. [42] (Figure 15) 28.19 5.77
Proposed RA Technique(Figure 16) 26.65
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environment, a Petri-net controller was designed to
avoid the inter-collision among the humanoids. Based
on the logic and rules of regression analysis and Petr-
net controller, the humanoid NAOs were tested for
both simulated and experimental environments. A
comparison between the results of simulated and exper-
imental environments revealed that all the humanoids
were successful in avoiding the obstacles present in
their path and reaching their respective goal positions
safely.

The workplace where a humanoid is supposed to
work is full of uncertainties when dealing with both
static and dynamic obstacles. The use of a navigation
controller was tested in both static and dynamic envi-
ronments, leading to satisfactory results. To validate
the e�ciency of the proposed navigation controller,
it was also compared with the existing techniques as
available in the literature. The comparison showed that
the proposed navigation controller serves as a better
technique than the existing ones. Robotic research
is the brightest future of the developing science and
technology. The path planning and navigation of the
humanoid robots would de�nitely add an entire new
dimension to all aspects of robotic technology in its
advanced form.
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