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Abstract. The present study numerically investigated the mixed convection ow of
nanouid in a lid-driven parallelogramic porous enclosure subjected to a magnetic �eld.
The induced magnetic �eld was also considered in terms of the magnetic potential to
solve the magnetohydrodynamic (MHD) ow and temperature equations. The Darcy-
Brinkman-Forchheimer model with the Boussinesq approximation was adopted, and the
�nite volume method based on SIMPLE algorithm was utilized to solve the governing
equations with appropriate boundary conditions in an orthogonal computational domain.
The governing equations in a non-orthogonal physical domain were transformed into a
computational domain in an orthogonal co-ordinate by co-ordinate transformations. It
was shown that the ow �eld and heat transfer were greatly sensible for the skew angle
variation. Magnetic potential circulated through the parallelogramic porous enclosure with
either a high magnetic Reynolds number or magnetic permeability of the nanouid. Results
also indicated that the inuence of the external magnetic �eld on uid characteristics
and heat transfer manifested various fashions, mainly depending on the e�ective area of
the parallelogramic enclosure. Besides, the variations of heat transfer rates while adding
nanoparticles or applying magnetic �eld were a�ected to some extent by porous medium
permeability and Richardson number.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The study of MHD mixed convection ow in porous
enclosures has been met with great interest by re-
searchers due to its numerous important applications
such as optimization of solidi�cation processes, waste
nuclear processing, magnetohydrodynamic accelerators
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and generators, and thermal insulation systems [1-4].
Magnetohydrodynamics usually involves the interac-
tion of electrically conducting uid and electromagnetic
�elds, whereby a magnetic �eld can be used to control
uid motion and heat transfer [5-7].

The addition of a minor volume fraction of high
thermal conducting nano-scale particles (< 100 nm) to
the base uid is an innovative technique for improving
heat transfer of such thermal systems. Firstly, Choi [8]
called the product nanouid. Due to the size and minor
volume fraction of suspended nanoparticles, nanouids
usually form very stable colloidal systems, which will
prevent rapid settling and reduce clogging in the wall
of heat transfer devices [9-11]. In recent years, the
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problem of MHD mixed convection of nanouids in the
porous media has received a great deal of interest due
to its importance in numerous engineering applications
such as microelectronics, microuids, transportation,
biomedical, etc. [12]. Considerable research works on
this problem have been reported in the literature. For
instance, Murthy et al. [13] investigated the e�ect
of magnetic �eld on ow, heat and mass transfer
characteristics in the free convection along a vertical
plate immersed in the porous medium saturated by
a thermally strati�ed nanouid. Pekmen and Tezer-
Sezgin [14] utilized the Dual Reciprocity Boundary
Element Method (DRBEM) to study steady free con-
vection in special shape enclosures �lled with a uid
saturated porous medium under the inuence of a
magnetic �eld. Results showed that the motion of the
uid was suppressed as the strength of the magnetic
�eld increased. Fersadou et al. [9] numerically studied
MHD mixed convection ow of nanouid in a vertical
rectangular duct. Results showed the heat transfer
enhancement by using a porous medium, a nanouid,
and a magnetic �eld when assisting mixed convection.

Shermet et al. [15] conducted a numerical study
to investigate free convection of nanouid in a square
porous cavity. They observed that the reduction of the
thermal conductivity of the solid matrix reduced heat
transfer inside the porous cavity. Mabood et al. [16]
numerically analyzed the heat and mass transfer of
MHD stagnation point ow of nanouid in a porous
medium. Their study considered the e�ects of thermal
radiation, viscous dissipation, and chemical reaction.
Numerical results indicated that increasing the volume
fraction of nanoparticles led to the enhancement of
convective heat transfer.

It should be noted that all of the studies above
did not take the induced magnetic into consideration
and they were restricted to small values of magnetic
Reynolds number. The primary bene�t of this hypoth-
esis, which is known as the low-Rem approximation,
is a signi�cant reduction of the number of equations
required to be solved [17]. The magnetic Reynolds
number (Rem) represents the characteristics ratio be-
tween advection and magnetic di�usion. However, Rem
deals with both of magnetic permeability and electrical
conductivity of the uid, and the probable interaction
between the uid velocity and external magnetic �eld
results in an induced magnetic �eld inside the uid.
The induced magnetic �eld strongly a�ects the uid
ow and heat transfer characteristics. In addition,
it can control the ow formation more accurately
and have many applications in the experimental and
theoretical studies of MHD ow due to its utilization
in many industrial and technological phenomena [18].

Among the literature published on this subject,
Singh et al. [19] numerically studied the free convection
in an electrically conducting uid in a vertical channel,

where the induced magnetic �eld was included in the
ow analyses. Later on, Costa et al. [20] investigated
natural convection in a porous cavity under the inu-
ence of an induced magnetic �eld. As shown, the e�ect
of the induced magnetic �eld is always a reduction of
the natural convection taking place inside the enclo-
sure. Kumar and Singh [21] considered the e�ect of
an induced magnetic �eld on unsteady hydro-magnetic
free convection ow. Results showed that the induced
magnetic �eld slowed down the uid ow. Akbar et al.
[22,23] examined the interaction of nanoparticle copper
with the base uid water in an asymmetric channel in
the presence of an induced magnetic �eld. Pekmen &
Tezer-Sezgin [24] used DRBEM with Houbolt's time-
integration scheme to investigate mixed convection
ow in a lid-driven square cavity �lled with a porous
medium under the inuence of a magnetic �eld, where
the induced magnetic �eld was not neglected. Results
illustrated that the ow was slowed down by either a
decrease in the permeability of porous media or an
increase in the strength of external magnetic �eld.
Seth & Sarkar [25] numerically investigated the hydro-
magnetic natural convection ow in the presence of
the induced magnetic �eld. Results showed that the
external applied magnetic �eld tended to decrease the
induced magnetic �eld. Kumar [26] analyzed the
inuence of the induced magnetic �eld on transient
natural convection of the vertical cone. He inferred that
the induced magnetic �eld slowed down the convection
processes.

Most of the existing studies in the literature
are mainly concentrated on rectangular or square
enclosures. However, the heat transfer behavior in
the parallelogramic porous and non-porous enclosures
is more interesting, compared to the square and
rectangular cavities, due to the presence of inclined
walls. The parallelogramic enclosure is a geometry with
interesting features and potentials in what concerns
heat transfer performance. It has di�erent heat transfer
performances for di�erent skew angles and can even
present very di�erent heat transfer behaviors for either
positive or negative skew angles, being referred to as
a heat transfer diode. It has a strong potential to
be utilized as the basic structure which leads to a
high-performance heat transfer element used in many
various areas such as building applications, solar col-
lectors, electronic thermal control geothermal applica-
tions, etc. [27-30]. The parallelogramic enclosure is
a form that designates also a strong potential to a
variable geometry structure, whereby the skew angle is
changed by rotating the inclined walls of the enclosure
to achieve the desired thermal performance each time.
It also presents a special potential to act as a heat
transfer inhibitor [31].

Among researchers investigating the convection
in the parallelogramic enclosures, Al-Farhany and
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Turan [32] performed numerical simulations to study
double di�usive natural convection inside an inclined
rectangular cavity �lled with a porous medium. Results
showed that there was an inverse relation between
the heat transfer and inclination angle. Chamkha at
al. [33] numerically studied the natural convection of
air in a di�erentially heated lid-driven parallelogramic
enclosure. Their results indicate that Richardson
number and inclination angle a�ect, to some extent,
the convective current of heat transfer across the en-
closure. Jagadeesha et al. [34] numerically investigated
the double di�usive natural convection in an inclined
parallelogramic porous enclosure. It was found that
the inclination angle had signi�cant e�ect on both of
heat and mass transfer characteristics. Le Dez and
Sadat [35] exhibited an exact analytical description of
the internal radiative �eld inside the parallelogramic
cavity.

Despite some available contents on natural con-
vection in inclined enclosures, only a few research works
have explored the natural convection of nanouids in
those geometries. Hussein & Hussain [36] utilized
numerical methods to study natural convection of
copper-water nanouid in a parallelogramic enclosure.
Later, Nayak et al. [37] numerically studied the mixed
convection of Cu-water nanouid in a skewed cavity.
Results showed that the ow �eld was sensible, to
some extent, for the skew angle variation, while heat
transfer rate improved greatly by the addition of
nanoparticles. All of the studies above were conducted
in the absence of an external magnetic �eld. Recently,
Gha�arpasand [38] utilized an accurate �nite volume
method to study MHD mixed convection of nanouids
in a skewed porous cavity and in the presence of
internal Joule heating and the absence of induced
magnetic �eld. Results indicated that the permeability
of porous media as well as the skew angle of skewed
cavity inuenced, to some extent, the heat transfer
characteristics.

Based on a meticulous survey of the existing
literature, less attention has been paid to convection of
nanouids in the presence of induced magnetic �eld. In
particular, to the authors' best knowledge, the problem
of MHD mixed convection inside a parallelogramic
porous enclosure �lled with nanouid and in the pres-
ence of the induced magnetic �eld has not been anal-
ysed yet. Hence, the main objective of this work is to
numerically examine MHD mixed convection and heat
transfer of nanouid inside a parallelogramic porous

enclosure and exactly when the induced magnetic �eld
is not neglected. For this purpose, the current paper
studies the inuence of permeability of the porous
medium, magnetic permeability of nanouid, external
magnetic �eld, and Richardson number on the ow
�eld, heat transfer, and magnetic potential of the ow
in the various parallelogramic porous enclosures. In
addition, it investigates the role of metallic nanopar-
ticles in heat transfer enhancement in di�erent ow
con�gurations. To the authors' best knowledge, no
such study has been reported to date in the literature.

2. Problem de�nition and mathematical model

The problem con�guration, illustrated in Figure 1,
is a parallelogramic porous enclosure whose bottom
wall is along the x-axis, and sidewalls form angle �
with x-axis. The left and right walls are assumed
adiabatic, while the bottom wall of the enclosure is
set at higher temperature Th as compared to top wall
Tc. The top wall also moves with uniform velocity U0
towards the right. Besides, the porous media of the
cavity are saturated by Cu-water nanouid, whereby
both the uid phase and the nanoparticles are in
thermal equilibrium and have the same velocity. The
nanouid is Newtonian, incompressible, and laminar;
moreover, the porous medium is hydrodynamically,
thermally, and electrically isotropic in the local thermal
equilibrium with the nanouid. The thermo-physical
properties of the utilized nanouid are given in Table 1.
It is assumed that nanoparticles suspended in nanouid
are smaller than matrix pores, and agglomeration
and deposition of those nanoparticles on the porous

Figure 1. Problem con�guration.

Table 1. Thermo-physical properties of pure water and copper nanoparticles [?].

Physical
properties

�
(kgm�3)

Cp
(Jkg�1K�1)

k
(Wm�1K�1)

� � 10�5

(K�1)
�

(Sm�1)
Water 997.1 4179 0.613 21 0.05
Copper 8933 385 401 1.67 5.96�107
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matrix are negligible. The thermo-physical properties
of the porous medium, base uid, and nanoparticles
are assumed to be constant except the density in
the buoyancy term, which follows the Boussinesq ap-
proximation. Meanwhile, the radiated heat transfer
and the chemical reaction between the base uid and
nanoparticles are neglected. The viscous dissipation,
pressure work, joule heating, and Hall e�ect are all
assumed negligible. An external magnetic �eld is
applied in +y-direction. Besides, it is assumed that
there is no any applied voltage implying the absence of
an electric �eld.

The governing equations for this problem are
based on the conservation of mass, momentum, and
energy equation taking into account the presence of
porous medium saturated by nanouid, magnetic ef-
fect, and shear and buoyancy forces. Based on the
above assumptions and by adopting nanouid model
proposed by Tiwari and Das [39] associated with the
extended Brinkman-Forchheimer Darcy model to in-
corporate the viscous and inertia e�ects, the equations
are given in the vector form as follows [9]:

r � u = 0; (1)

�eff
"
r2u =

�nf
"2

�
@u
@t

+ (u � r) u
�

+rp+
�nf
K

u

+ �nf
Cp
K
juju + (��)nf (T � Tc) g

� J�B; (2)

keffr2T = (�CP )nf

�
(u � r)T +

@T
@t

�
: (3)

It should be noted that the vectors are written in bold.
The current density vector J is related to electrical and
magnetic �elds by the Ohm's law as follows:

J = �nf (E + u�B); (4)

where �nf is the electrical conductivity of the
nanouid. The low-frequency Ampere's law neglects
the displacement current and is given by �0J=r�B.
By neglecting displacement current, using solenoidal
nature of B, and Faraday's law r � E = �@B

@t , the
magnetic induction equation can be derived as follows:

1
�nf�m

r2B =
@B
@t
�r� (u�B) : (5)

Magnetic induction relates to magnetic potential (B =
r�A), whereby the above equation can be reduced to
the same equation for the magnetic potential as follows:

1
�nf�m

r2A =
@A
@t

+ u
@A
@x

+ v
@A
@y

; (6)

where �m is the magnetic permeability. Therefore, the
main governing equations in the non-dimensional form
can be expressed as follows:

@u
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+
@v
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= 0; (7)
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+
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�
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@�
@�

+
@(u�)
@x

+
@(v�)
@y

=
Rk

"Re Pr
knf
kf

(�CP )f
(�CP )nf

�
@2�
@x2 +

@2�
@y2

�
; (10)

@A
@�

+
@(uA)
@x

+
@(vA)
@y

=
1

"Rem

�
@2A
@x2 +

@2A
@y2

�
;
(11)

where Bx = @A
@y , and By = �@A@x . The following vari-

ables are used for non-dimensionalizing the governing
equations [38]:

(x; y) =
(x0; y0)
L

; (u; v) =
(u0; v0)
"U0

; � =
T � Tc
Th � Tc ;

A =
A0
B0L

; � =
"tU0

L
; P =

p
�nfU2

0
:

Superscript 0 is utilized for dimensional parameters.
The e�ective density at the reference temperature,
thermal di�usivity, heat capacitance, and thermal ex-
pansion coe�cient of the nanouids based on classical
models can be written as follows [22]:

�nf = (1� �)�f + ��s; (12)

�nf =
knf

(�Cp)nf
; (13)
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(�Cp)nf = (1� �)(�Cp)f + �(�CP )s; (14)

(��)nf = (1� �)(��)f + �(��)s; (15)

where � is the solid volume fraction of the nanoparti-
cles. The e�ective thermal conductivity of nanouid is
approximated by the Maxwell self-consistent approxi-
mation model, whereby, for the two-component entity
of spherical-particle suspension, knf can be expressed
as follows [22,40]:

knf
kf

=
ks + 2kf � 2�(kf � ks)
ks + 2kf + �(kf � ks) : (16)

The viscosity of the nanouid is calculated using the
Brinkman model as follows:

�nf =
�f

(1� �)2:5 : (17)

The electrical conductivity of the nanouid is calcu-
lated by Maxwell model as follows:

�nf
�f

= 1 +
3(� � 1)�

(� + 2)� (� � 1)�
; (18)

where � = �s
�f . The boundary conditions associated

with the problem in physical domain are as follows:

u = 1; v = 0; � = 0

for y=sin�; and cos��x�cos�+1 (Top wall)

u = v = 0; � = 1

for y = 0; and 0 � x � 1 (Bottom wall)

u = v = 0;
@�
@n

= 0;

for x=y cos�(0�y�1); 0�y�sin� (Left wall)

u = v = 0;
@�
@n

= 0;

for x=1+y cos�(0�y�1) 0�y�sin� (Right wall):

Herein, n is the normal displacement with respect
to the left and right sided walls. Related boundary
conditions are allowed to take zero stream function
on the walls. However, the external magnetic �eld
is applied in the +y-direction so that A = �x + C�
on the boundaries, where C� is a constant. Constant
C� is assumed zero with a similar idea in obtaining
constant stream function values as zero on the walls.
Therefore, A = �x at y = 0; 1, and A = �y cos� and
�1 � y cos� at the left and right walls, respectively,
where 0 � y � 1. The problem of MHD convection

is characterized herein by the following dimensionless
parameters:

Ri =
Gr
Re2 =

g��TL3=�2
f

U0L=�f
; Pr =

�f
�f
;

Ha = B0

s
�fL
�f

; Rem = �m�nfU0L;

R� =
�eff
�nf

; Rk =
keff
knf

where Ri, Gr, Re, Rem, Pr, and Ha are Richardson,
Grashof, Reynolds, magnetic Reynolds, Prandtl, and
Hartman numbers, respectively, and R� and Rk are
the thermal conductivity and viscous ratio porous-
nanouid, respectively. In this study, a co-ordinate
transformation is utilized to transform physical domain
in x, y plane into an orthogonal system in the computa-
tional domain. Nayak et al. [37] introduced this method
before. For this purpose, independent variables, x, y,
in the physical domain are transformed into the inde-
pendent variables, �; �, in the computational domain
by the following relations:

� = x� y cot�; � = y= sin�: (19)

Under this transformation, the non-dimensional trans-
formed governing equations in the orthogonal compu-
tational domain can be written as follows:

@
@�

(u� v cot�) +
@
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� v
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�
= 0; (20)
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�f
�nf

a
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Da
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"
ReDa
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�
;

(21)
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��v
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Re Rem
�
B�(�r2

��A)
�
; (22)
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@�
@�

+
@
@�

�(u� v cot�) +
@
@�

�
� v

sin�

�
=

Rk
"Re Pr

knf
kf

(�Cp)f
(�Cp)nf

a
�r2

���
�
; (23)

@A
@�

+
@
@�
A(u� v cot�) +

@
@�
A
� v

sin�

�
=

1
"Rem

a
�r2

��A
�
: (24)

Here:

B� = � cot�
@A
@�

+
1

sin�
@A
@�

;

B� = �@A
@�

;

r2
�� = a

�
@2

@�2 +
@2

@�2 � 2c
@2

@�@�

�
;

where a = cosec2�, and c = cos�. The boundary
conditions in the computational domain are:

u = 1; v = 0; � = 0; A = ��; at � = 1;

u = v = 0; � = 1; A = ��; at � = 0;

u = v = 0;
@�
@�

= cos�
@�
@�

; A = �� cos�;

at � = 0;

u = v = 0;
@�
@�

= cos�
@�
@�

; A = �1� � cos�;

at � = 1:

It should be noted that the governing equations are
solved in an orthogonal computational domain by
a method explained in detail in the next section.
Average Nusselt number Nu on the bottom heated
wall is investigated to examine heat transfer across
the parallelogramic enclosure, whereby the local and
average Nusselt numbers are calculated as follows:

Nu = �knf
kf

@�
@�

; Nu =
1Z

0

Nud�: (25)

In order to quantify the e�ect of nanoparticles volume
fraction and the external magnetic �eld on convective
heat transfer, the following average Nusselt numbers
are also de�ned and calculated:

Nu� =
Nu(�)

Nu(� = 0)
Nu�� =

Nu(Ha)
Nu(Ha = 0)

: (26)

3. Numerical solution

The transformed Navier-Stokes and energy equations
are numerically solved using the control volume ap-
proach in a staggered grid arrangement. A second-
order upwind scheme is used for the discretization
of the convective terms, and a second-order central
di�erence is used for the discretization of the di�usion
terms. The SIMPLE algorithm is then implemented for
pressure and velocity coupling. During the SIMPLE
iteration process, the pressure correction method is
established to obtain the real velocity �eld. The set of
resulting algebraic equations is solved iteratively and
is performed by a coupling manner through the block
elimination algorithm. Considering the convergence of
the numerical results, the under-relaxation method is
utilized, whereby the following criterion is adopted to
secure steady conditions:X

i;j

���m+1
i;j � �mi;j

�� � 10�6; (27)

where generic variable � represents the set of four
variables, u, v, A, or �. In the above inequality,
superscripts m indicate the iteration index, and the
subscript sequence (i; j) denotes the iteration index.
The grid independence study is also carried out for the
three di�erent grids, namely 90 � 90, 125 � 125, and
150�150 for a di�erentially heated parallelogramic en-
closure with a skew angle � = 45� at Ri = 10, � = 0:05,
and Ha = 25. Considering simulated accuracy and
CPU time in the range of variables, the uniform grid
of 125� 125 is found su�ciently �ne to ensure the grid
independent solution and is utilized for all subsequent
simulations. The inuence of Darcy number, magnetic
Reynolds number, Hartman number, and Richardson
number is analyzed and discussed through this study.
All computations are carried out for a time step close
to �� = 0:25. Only for cases with Ha = 50 and
100, a relaxation parameter 0 <  < 1 is utilized for
convergence of velocity components where (u; v)m+1 !
(u; v)m+1 + (1 � )(u; v)m. The used  and �� for
cases with Ha = 50 and 100 are  = 0:5;�� = 0:2, and
 = 0:1;�� = 0:1, respectively. It is also worthwhile
to note that all simulation results are reported in the
steady-state conditions.

To ensure the credibility of the numerical method,
the developed code is validated based on some former
published results in the literature. The case of lid-
driven skewed cavity ow due to pure uid (� =
0:0) is tested �rst. Considering that vertical velocity
along the horizontal central line is obtained by the
method developed in this study, �ndings of Demirdciz
et al. [27] and Nayak et al. [37] are compared in
Figure 2(a). As one can remark, excellent agreement is
observed. A second test for the local Nusselt number
along the hot wall for a lid-driven square cavity �lled
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Figure 2. (a) The comparison of the present results for v-velocity pro�le with the numerical results due to Demirdzic et
al. [27] and Nayak et al. [37], when Re = 100, and � = 45� for pure uid (� = 0). (b) The comparison of the local Nusselt
number along the hot wall with former results of Abu-Nada and Chamkha [41], and Nayak et al. [37], when Ri = 1,
� = 90�, and � = 10%.

with nanouid � = 10%, Ri = 1, and Re = 100
has been conducted. As shown in Figure 2(b), the
computed Nusselt numbers exhibit good agreement
with �ndings of Abu-Nada and Chamkha [41] and
Nayak et al. [37]. These favorable comparisons lend
con�dence and validity to the numerical results, to be
reported subsequently.

4. Results and discussions

A numerical investigation is carried out to study
MHD mixed convection within a di�erentially heated
parallelogramic porous lid-driven enclosure saturated
by nanouid for a wide range of key parameters
such as skew angle (�), nanoparticle volume fraction
(�), Darcy number (Da), magnetic Reynolds num-
ber (Rem), Hartman number (Ha), and Richardson
number (Ri). Due to the great number of control
parameters, all computations are performed by keeping
�xed the enclosure length (L = 1), the type of nanouid
(copper-water), the Reynolds number (Re = 100),
the Prandtl number of the base uid (Pr = 6:8),
the porosity (" = 0:9), the inertial coe�cient (C =
0:1), the viscosity ratio (R� = 1), and the thermal
conductivity ratio (Rk = 1). A similar trend has
been carried out before in the study of Fersadou et
al. [9]. The range of skew angle, solid volume fraction,
Darcy number, magnetic Reynolds number, Hartman
number, and Richardson number varies between 30� �
� � 150�, 0 � � � 0:2, 10�4 � Da � 1,
1 � Rem � 100, 0 � Ha � 100, and 0:01 �
Ri � 10, respectively. The induced magnetic �eld is
considered in this study and analyzed in terms of the
magnetic potential. The ow, thermal and magnetic
potential �elds are analyzed through the streamline,
isotherm, and isopotential contours, respectively, and
are presented just in parallelogramic enclosures with

� = 30�, 90�, and 120� for the sake of visibility.
The heat transfer is characterized by calculating the
average Nusselt number at the heated bottom wall.
The variation of the absolute value of stream function
at the centre of the primary vortex j Maxj is also
studied to examine the inuence of key parameters on
the uid intensity.

4.1. E�ect of porous medium permeability
(Darcy number, Da)

The e�ect of porous medium permeability on the
uid characteristics and heat transfer phenomena is
conducted by analyzing wide cases with di�erent Darcy
numbers. For this purpose, the streamlines, isotherms,
and magnetic isopotentials for Ha = 5, Ri = 0:01,
Da = 10�4, 10�3, 10�2, and 1, and two values of solid
volume fractions, i.e. solid lines for nanouid (� = 6%)
and dotted lines for pure uid (� = 0), are illustrated in
Figure 3(a), (b), and (c), respectively. It is worthwhile
to note that the magnetic induction e�ect is also taken
into account here, whereby Rem = 100. Due to
the thermal buoyancy and the imposed temperature
gradient between the horizontal walls, the hot uid
rises up from the heated bottom wall and the cold
uid goes down along the cold cross wall. This feature
leads to the formation of a clockwise unicellular ow
pattern which occupies the almost whole enclosure as
can be observed in Figure 3(a). According to the
Richardson number value (Ri = 0:01), the ow is
dominated here by forced convection provoked by the
lid's movement. Hence, shear forces a�ect the ow �eld
greatly due to which the streamlines stretch rightwards
near the moving top lid. However, shear forces tend to
push the ow towards the bottom half of the cavity.
With decreasing Darcy number, the e�ect of shear
forces is diminished and the center of the streamlines
clusters through the top wall. This fact resembles the
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Figure 3. (a) Streamlines, (b) isotherms, and (c) magnetic isopotentials of MHD forced convection (Re = Gr = 100,
Ri = 0:01) of nanouid in the parallelogramic porous enclosures with � = 60� (�rst column), � = 90� (second column), and
� = 120� (third column), when Rem = 100 and Ha = 5. Dotted lines are for the pure uid (� = 0) and solid lines are for
the nanouid (� = 6%).

results of Pekmen and Tezer-Sezgin [24] for MHD ow
of pure air (Pr = 1) in a lid-driven square porous
enclosure.

It is well known that the porous medium with
small Darcy number has a small permeability. Hence,
the uid ow through the porous medium with small
Darcy number faces high ow resistance within the
porous bed. In other words, the uid resistance against
uid ow in porous media is increased with decreasing
Darcy number. This is the main reason for clustering
the primary vortex near the top wall in cases with small
Darcy numbers. On the other hand, it can be seen
that the nanouid ow inside a square porous cavity
(� = 90�) has the largest primary vortex with respect
to the nanouid ow inside the other parallelogramic
porous enclosures. This fact attributes to the e�ec-
tive area of the parallelogramic enclosures. As the

skew angle of parallelogramic enclosures increases to
90�, the e�ective area enhances its maximum value,
whereas it is reduced with further increasing of �.
The convection current of heat is developed greatly in
parallelogramic enclosures with larger e�ective areas;
therefore, nanouid ow in the square enclosure has a
larger primary vortex with respect to the ow in the
other parallelogramic enclosures.

The e�ect of Darcy number on the temperature
distribution, isotherm lines, of MHD ow of nanouid
in parallelogramic porous enclosures is illustrated in
Figure 3(b). With a decrease of Darcy number, the
concentration of isotherm lines near the heated wall
is reduced, and they are nearly perpendicular to the
sided walls. This feature is brought about by the
uid friction within the porous enclosure. The uid
resistance against convective current of heat across
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the enclosure is increased by reducing Darcy number,
whereby the parallelogramic porous enclosure becomes
a quasi-conductive domain as Darcy number decreases.
The inuence of Darcy number on magnetic isopoten-
tial contours is depicted in Figure 3(c). It can be seen
that the distortions observed in isopotential contours
are reduced with decreasing Darcy number. This fact
represents that the di�usion and advection e�ects of
magnetic �eld on isopotential contours increase and
decrease with a further reduction of porous medium
permeability, respectively. Figure 3(c) also shows that
the inuence of Darcy number on magnetic isopotential
contours is augmented by adding metallic nanopar-
ticles, whereby nanouids (solid lines) have almost
larger distortions with respect to the pure uids (dotted
lines).

The variation of absolute value of stream function
at primary vortex j Maxj, as a function of skew angle,
is illustrated in Figure 4(a) for various Darcy numbers.
First, it can be seen that the value of j Maxj reduces
with increasing � from 30� to 90� and, then, increases
with a further increase of the skew angle. In other
words, the cases with � = 90� have the smallest j Maxj
values. The square parallelogramic cavities have the

largest e�ective areas and, consequently, deal with the
largest uid resistance within the porous bed. Hence,
the uid ow in those enclosures faces the largest uid
resistance and, consequently, has the smallest stream
functions with respect to the other parallelogramic
enclosures. The variation of the average Nusselt
number as a function of the skew angle for various
Darcy numbers is depicted in Figure 4(b). It can
be seen that Nu pro�le is almost symmetric around
� = 90�. The average Nusselt number is increased
with the enhancement of the skew angle for � � 90�,
and, then, it is reduced with a further increase of �
values. This result which resembles the result of Nayak
et al. [37] and Hussein and Hussain [36] for mixed
convection of nanouid in a skewed lid-driven enclosure
is due to the e�ective area of the porous parallelogramic
cavity. With the increase of skew angle from 30� to
90�, the e�ective area of the parallelogramic porous
enclosure and, further, the convection heat transfer
are increased, while the inverse occurs with a further
increase of � value.

However, the cases with lower Darcy numbers
have smaller Nu and j Maxj values. Increasing the
ow resistance in porous media with lower and moder-

Figure 4. The variation of (a) absolute value of stream function of primary vortex and (b) average Nusselt number as a
function of skew angle for di�erent Darcy numbers. The variation of Nu� as a function of (c) skew angle and (d) Darcy
number for various solid volume fractions. In all of �gures Ha = 5, Rem = 100, Re = Gr = 100, and Ri = 0:01.
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ate permeabilities reduces greatly the convective heat
transfer and uid velocity in parallelogramic porous
enclosure; thus, the cases with larger Darcy numbers
have larger j Maxj and Nu values. The reduction
e�ect of Darcy number against convective heat transfer
has been also observed before by Shermet et al. [3]
and Fersadou et al. [9] in rectangular and square
enclosures. The variations in rates of the average
Nusselt number as a function of the skew angle and
Darcy number are illustrated in Figure 4(c) and (d),
respectively. It should be noted that Figure 4(c)
presents a porous medium with moderate permeability
(Da = 0:01) because the similar case is observed in
the other porous media. As shown in Figure 4(c),
the value of Nu� is reduced with the increasing skew
angle from 30� to 90�; then, it is increased with
the further enhancement of � value. In other words,
the role of metallic nanoparticles in the heat transfer
enhancement rate depends mainly on the skew angle
value of parallelogramic porous enclosure. Figure 4(d)
shows that the enhancement in rate of heat transfer
is increased with Darcy number. Both of Figure 4(c)
and (d) demonstrate that heat transfer enhancement of
nanouid due to the addition of metallic nanoparticles
is increased by raising the volume fraction of nanopar-
ticles.

4.2. E�ect of magnetic �eld induction
(magnetic Reynolds number, Rem)

The isopotential contours for cases with various mag-
netic Reynolds numbers (Rem = 1 � 100) are repre-
sented in Figure 5, where solid and dotted lines are for
nanouid (� = 6%) and pure uid (� = 0), respectively.
It should be noted that the streamlines and isotherms
have insigni�cant variations with magnetic Reynolds
number and, thus, are not presented here for the sake
of brevity. The magnetic Reynolds number gives an
estimate of the relative e�ects of advection or induction
of a magnetic �eld by the motion of a conducting
uid to magnetic di�usion. As mentioned before, the
magnetic Reynolds number is assumed small enough
and magnetic advection is ignored in most of the
available studies reported in the literature. However,
Figure 5 shows that with the increase of magnetic
Reynolds number, the advection e�ect of external
magnetic �eld is enhanced, whereby isopotential lines
circulate through the center of the cavity and follow
the movement of the lid. It can be also seen that
the distortions caused by magnetic Reynolds number
enhancement in non-square parallelogramic enclosures
are stronger than those in square enclosures. This
fact indicates that the advection e�ect in non-square
parallelogramic porous enclosures is stronger than that
in the square porous enclosures and can be attributed
to the uid friction applied against the advection e�ect
of external magnetic �eld. Square porous enclosures

Figure 5. Magnetic isopotentials of MHD forced
convection (Re = Gr = 100, Ri = 0:01) of nanouid in the
parallelogramic porous enclosures with � = 60� (�rst
column), � = 90� (second column), and � = 120� (third
column), when Da = 0:1 and Ha = 5. Dotted lines are for
the pure uid (� = 0) and solid lines are for the nanouid
(� = 6%).

have a larger e�ective area than the other parallelo-
gramic porous enclosures; therefore, uid friction in
those enclosures is larger than that in the others.
The variations of pure uid isopotentials (dotted lines)
in square porous enclosure are similar to the results
of Pekmen and Tezer-Sezgin [14] who investigated
numerically MHD convection of pure air in a lid-driven
square porous cavity in the presence of magnetic �eld
induction.

Figure 5 also denotes that nanouid and pure
uid behave similarly with magnetic Reynolds number
variation. Nevertheless, it can be seen that the partial
di�erence of nanouid and pure uid is increased
with increasing Rem value. The variations of j Maxj
values as a function of magnetic Reynolds number for
three parallelogramic porous enclosures are depicted in
Figure 6(a). It can be seen that the stream function
value is reduced slightly with further increasing of Rem
in parallelogramic porous cavities. This phenomenon
has been also observed before in the study of Kumar
and Singh [21], in which the studied the MHD free
convection ow past a semi-in�nite vertical wall in the
presence of an induced magnetic �eld. The variation
of Nu as a function of skew angle for di�erent mag-
netic Reynolds numbers is illustrated in Figure 6(b).
Although a partial reduction is observed in the convec-
tion heat transfer, the inuence of magnetic Reynolds
number on the average Nusselt number seems to be
insigni�cant.
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Figure 6. (a) The variation of the absolute value of stream function of primary vortex as a function of Rem for three
parallelogarmic porous enclosures. (b) The variation of the average Nusselt number as a function of skew angle for
di�erent magnetic Reynolds numbers, when Ha = 5, Da = 0:1, Re = Gr = 100, and Ri = 0:01.

4.3. E�ect of magnetic �eld strength
(Hartman number, Ha)

The e�ect of applied magnetic �eld is studied here
by varying the Hartman number from zero to 100,
while Da = 0:1 and Ri = 1. Figure 7 represents the
streamlines, isotherms, and magnetic isopotentials of
nanouid mixed convection in parallelogramic porous
enclosures with various Hartman numbers. As can be
observed in Figure 7(a), the parallelogramic porous
enclosures are still occupied by a unicellular clockwise
vortex. Nanouid and pure uid have similar ows,
while the nanouid ow forms smaller vortices with
respect to the pure uid ow. Increasing inertial forces
and nanouid viscosity through the addition of solid
volume fraction of nanoparticles is the main reason
of this fact, which has been observed before in the
study of Nayak et al. [37]. In porous enclosures with
� < 90�, the primary vortex expands and moves
towards the right side as Hartman number increases.
In square porous enclosures, the space occupied by
the primary vortex improves with increasing Hartman
number. However, in parallelogramic porous enclosures
with � > 90�, the primary vortex is compressed and
the occupied space is enhanced as Hartman number
increases. These phenomena are caused by increasing
suppression e�ect of applied magnetic �eld against
the thermal buoyancy forces and the covering area of
skew angle of parallelogramic enclosures. In a mixed
convection regime and when natural and forced con-
vections have equivalent importance, applying external
magnetic �eld attenuates thermal buoyancy forces and,
thus, causes the enhancement in shear e�ects. Moving
primary vortex towards the right side and increasing
occupied space with increasing Hartman number are
result of suppression e�ect of external magnetic �eld
against the thermal buoyancy force exerted from bot-
tom heated wall. Many previous investigators, e.g.
Mahmoud et al. [42], and Seth and Sarkar [25], reported

the suppression e�ect of the applied magnetic �eld
against thermal buoyancy forces.

The covering area of the skew angle of parallelo-
gramic enclosure is another factor that a�ects on the
uid ow pattern when Hartman number increases. In
the porous enclosures with � > 90� which have larger
covering area with respect to the others, increasing
Hartman number causes a reduction in the size of
the primary vortex. The inuence of covering area is
also observed in Figure 7(b), where isotherm patterns
for di�erent Hartman numbers are illustrated. In
porous enclosures with � < 90�, which have a smaller
covering area with respect to the other enclosures,
thermal eddies are formed on the left-hand side of
the parallelogramic enclosure due to the competition
between thermal buoyancy and shear forces in that re-
gion. The thermal eddies move toward the bottom with
increasing Hartman number due to the suppression
e�ect of the magnetic �eld. Moreover, the intensi�ed
forced ow forms a concentrated thermal boundary
layer in the bottom right corner of enclosure. The
same trend is observed in parallelogramic enclosures
with � > 90�. In contract, a di�erent behaviour
is observed in the square parallelogramic enclosures.
It can be seen that the concentration of thermal
boundary layers in the near heated wall is reduced
and the isotherms become parallel to the horizontal
wall with increasing Hartman number, whereby the
enclosure becomes a quasi-conductive domain at the
highest values of Hartman number. It seems that
the e�ect of applied magnetic �eld on the isotherm
patterns manifests various fashions mainly depending
on the skew angle of the parallelogramic porous cavity.
The various e�ects of the external magnetic �eld
on isotherm patterns can be examined as the dual
e�ect of Hartman number on convective heat transfer
parallelogramic porous enclosures. A similar dual e�ect
of magnetic �eld has been also observed before in the
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Figure 7. (a) Streamlines, (b) isotherms, and (c) magnetic isopotentials of MHD mixed convection (Ri = 1) of nanouid in
the parallelogramic porous enclosures with � = 60� (�rst column), � = 90� (second column), and � = 120� (third column),
when Rem = 100, and Da = 0:1. Dotted lines are for the pure uid (� = 0) and solid lines are for the nanouid (� = 6%).

study of Mehrez et al. [43]. They studied the e�ect of
an oriented external magnetic �eld on the heat transfer
of nanouid ow in an open cavity heated from below.
Results show that the external magnetic �eld has a dual
e�ect on convective heat transfer in according to its
inclination angle. In particular, they observed that the
increase of Hartman number causes the enhancement
of convective heat transfer when magnetic �eld is not
applied in the direction of characteristic velocity.

Figure 7(c) shows the magnetic isopotential pat-
terns of nanouid in a parallelogramic porous enclosure
for various Hartman numbers. As can be observed in
the cases with � = 90�, the intensi�ed magnetic �eld
reduces distortions and makes the magnetic potential
lines parallel to each other, representing that the exter-
nal applied magnetic �eld tends to reduce the induced
magnetic �eld. The advection e�ect of the magnetic

�eld by the motion of the conducting pure uid reduces
as the strength of external magnetic �eld, Hartman
number value, increases. This phenomenon has been
also observed before by Pekmen and Tezer-Sezgin [14]
and Seth and Sarkar [25]. Moreover, it can be seen
that nanouid behaves similarly to the pure uid. Nev-
ertheless, the presence of nanoparticles increases uid
friction and, thus, reduces the advection e�ect of the
magnetic �eld. The behaviour of magnetic isopotential
contours with Hartman number variation in non-square
parallelogramic enclosures deals with the dual e�ect of
external magnetic �eld, as explained before. As the
Hartman number increases, forced ow pushes to pen-
etrate much deeper into the non-square parallelogramic
enclosures. In accordance with the value of Rem, the
advection distortion through the non-square enclosures
increases as the Hartman number improves.
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Figure 8. (a) The variation of the absolute value of stream function of primary vortex as a function of Hartman number.
(b) The variation of the average Nusselt number as a function of skew angle for di�erent Hartman numbers. The variation
of the average Nusselt number as a function of Hartman number for various solid volume fractions when (c) � = 90�, and
(d) � = 60�. The variation of Nu�� as a function of Hartman number for various solid volume fractions when (e) � = 90�
and (f) � = 60�. The variation of Nu� as a function of Hartman number for various solid volume fractions when (g)
� = 90�, and (h) � = 60�. In all �gures Da = 0:1, Rem = 100, and Ri = 1.

The variations of the absolute value of stream
function at the primary vortex as a function of Hart-
man number are presented in Figure 8(a). The
dual e�ect of Hartman number is also observed here,
whereby j Maxj is decreased and increased with in-

creasing Hartman number in square and non-square
parallelogramic enclosures, respectively. Increasing
Hartman number attenuates thermal buoyancy forces
and, thus, reduces j Maxj values in square enclosures,
while it has an aiding e�ect on forced ow and increases
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j Maxj in non-square parallelogramic enclosures. To
highlight the inuence of Hartman number on the heat
transfer, the evolution of the average Nusselt number
as a function of skew angle for di�erent Hartman
numbers is elucidated in Figure 8(b). The average
Nusselt number is reduced by increasing Hartman
number in the square enclosures, while the opposite is
observed in the other parallelogramic enclosures. This
fact refers again to the dual e�ect of Lorenz force in
parallelogramic enclosures. The evolution of Nu for
parallelogramic enclosures with � = 90� and 60� is
represented in Figure 8(c) and (d), respectively. It
should be noticed that a similar behaviour is observed
for Nu, Nu�, and Nu�� in the other parallelogramic
enclosures with � 6= 90�; therefore, the variations
of those parameters are reported here in the cases
of � = 60� for the sake of brevity. When � =
90� (Figure 8(c)), as the intensity of magnetic �eld
increases, the convection mechanism into the cavity is
suppressed and, thus, Nu is reduced. Moreover, heat
transfer is improved by increasing solid volume fraction
of nanoparticles. This fact attributes to an increase in
the thermal conductivity of the nanouid because of
the existence of high electrical conductive nanoparticles
in the nanouid. Figure 8(d) shows that Nu in non-
square porous enclosures increases as Hartman number
increases. When � 6= 90�, the produced Lorentz
force allows the cold uid to penetrate into the cavity
without the recirculation, improving the heat transfer.
On the other hand, increasing solid volume fraction,
which results in increasing uid friction, decreases a
dominant forced convection mode and, thus, reduces
Nu values.

The inuence of the magnetic �eld on Nu�� values
in the parallelogramic porous enclosures with � = 90�
and 60� is displayed in Figure 8(e) and (f), respectively.

It can be seen that for � = 90�, Nu�� is decreased
by increasing Hartman number, while the opposite is
observed for � = 60�. Figure 8(g) and (h) present
the variation of Nu� versus Ha for various solid volume
fractions and for two parallelogramic porous enclosures
with � = 90� and 60�, respectively. Results show
that, with an increase in Hartman number, only minor
enhancement of Nu� is achieved as a result of the
presence of nanoparticles. Nevertheless, adding more
volume fraction of nanoparticles in the presence of a
strong external magnetic �eld (Ha = 100) and in non-
square parallelogramic porous enclosures (Figure 8(h))
increases uid viscosity/friction and, thus, reduces heat
transfer of nanouid with respect to the base uid.

4.4. E�ect of buoyancy force intensity
(Richardson number, Ri)

In what follows, the e�ect of Richardson number on
the uid ow, magnetic potential, and heat transfer
characteristics in the presence of magnetic �eld in-
duction (Rem = 100) will be discussed. In fact, the
Richardson number value identi�es the importance of
natural convection relative to the forced convection
in the thermal convection problems. The streamlines
and isopotential patterns of MHD mixed convection
of nanouid in three parallelogramic porous enclosures
for three convection regimes, i.e., forced (Ri = 0:01),
mixed (Ri = 1), and natural convections (Ri = 10),
are depicted in Figure 9(a) and (b), respectively. It
is worthwhile to note that Richardson number varies
here by increasing Grashof number, when Reynolds
number is kept constant (Re = 100). Figure 9(a)
elucidates that the primary vortex occupying the whole
cavity moves downwards and also expands vertically
as Richardson number improves. The increasing con-
vective current of heat due to the enhancement of

Figure 9. (a) Streamlines and (b) magnetic isopotentials of MHD convection of nanouid in the parallelogramic porous
enclosures with � = 60� (�rst column), � = 90� (second column), and � = 120� (third column), when Rem = 100,
Da = 0:1, and Ha = 5.
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Richardson number can be recognized as the main
reason of this phenomenon. It can also be seen that the
secondary vortices are formed in the left bottom corner
of enclosure when Richardson number has its highest
value (Ri = 10). Meanwhile, the size of secondary
vortices improves as the skew angle of parallelogramic
enclosure increase. This may be due to the covering
area of skew angle at that region, enhancing as skew
angle increases. With increasing Richardson number,
the importance of thermal buoyancy forces imposed
by bottom heated wall increases. The competition
between the buoyancy and shear forces forms secondary
vortices in the left bottom corner of enclosure. In-
creasing covering area, due to increasing skew angle
of parallelogramic enclosure, highlights the importance
of thermal buoyancy forces and, thus, forms larger
secondary vortices.

The inuence of Richardson number on isopoten-
tial contours is shown in Figure 9(b). As mentioned
before, the advection e�ect of the magnetic �eld on the
electrical conductive medium becomes important when
magnetic Reynolds number is a large value (Rem �
1). It can be seen that the isopotential contours
are a�ected greatly by lid's movement when ow is
dominated by forced convection. However, isopotential

counters are a�ected greatly by shear forces in non-
square parallelogramic enclosures because the e�ective
area and uid friction in those enclosures are smaller
than those in square enclosures. The advection e�ect of
magnetic �eld is attenuated by increasing Richardson
number. Nevertheless, the inuence of shear forces
near the moving lid and thermal buoyancy forces in
the vicinity of the bottom heated wall on isopotential
counters is well observed in cases with the largest
Richardson number.

The variations of absolute value of stream func-
tion of primary vortex and average Nusselt number
as a function of Richardson number are shown in
Figure 10(a) and (b), respectively. It should be noted
that the variations are just presented here in a square
porous enclosure because a similar case is observed in
the other enclosures. It can be seen that both of j Maxj
and Nu values are enhanced with further increasing
of Richardson number. This fact can be attributed
to an increase in thermal buoyancy forces because of
the Richardson number augmentation. The similar was
observed before in the study of Mahmoud et al. [42].
However, j Maxj values are reduced with the further
enhancement of solid volume fraction. This fact is due
to the increase of viscosity and uid friction because of

Figure 10. The variation of (a) absolute value of stream function of primary vortex, (b) average Nusselt number, (c)
Nu��, and (d) Nu� in the cases of � = 90� as a function of Richardson number for various solid volume fractions, when
Da = 0:1, Rem = 100, Re = 100, and Ha = 5.
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nanoparticles addition. This scenario is not repeated
completely in the variation of average Nusselt number.
As can be observed in Figure 10(b), Nu decreases
as � improves in the cases of large and moderate
Richardson numbers, while the opposite is observed
in the cases of the smallest Richardson number (Ri =
0:01).

In the porous media and in the case of an increase
in Richardson number, the enhancement of � allows for
an increase in uid friction and local viscosity, while,
at the same time, it does not lead to temperature
di�erences. Hence, an increase in � leads to conserving
the main convective cell with upward ows along the
bottom heated wall and downward ows close to the
top cold wall. Hence, the average Nusselt number
is a decreasing function of solid volume fraction of
nanoparticles when Ri � 1. The variations of Nu��
and Nu� as functions of Richardson number for various
solid volume fractions of nanoparticles are illustrated
in Figure 10(c) and (d), respectively. It can be seen
that the inuence of applying external magnetic �eld
and adding nanoparticles to the base uid on the
heat transfer variations of the nanouid is reduced
with Richardson number, whereby both of Nu�� and
Nu� are decreasing functions of Ri. Moreover, the
cases with larger � values have smaller Nu�� values.
In other words, adding metallic nanoparticles in the
presence of magnetic �eld induction reduces greatly
the convective heat transfer within the enclosure. On
the other hand, adding nanoparticles in the porous
media enhances viscosity and uid friction, whereby
it attenuates the convective current of energy across
the enclosure. Hence, the cases of smaller solid volume
fraction have larger Nu� values.

5. Conclusion

This study investigated numerically the ow �eld and
heat transfer of mixed convection ow in a di�erentially
heated lid-driven parallelogramic porous enclosure sat-
urated with a water-based nanouid and subjected
to an external applied magnetic �eld. The induced
magnetic �eld was also taken into account and was
considered in terms of magnetic potential. The ow,
thermal and magnetic potential �elds were illustrated
by the streamlines, isotherm, and isopotential contours,
respectively. Particulate e�orts were focused on the
e�ects of the skew angle, solid volume fraction pa-
rameter of nanoparticles, Darcy, magnetic Reynolds,
Hartman, and Richardson numbers on the ow, ther-
mal, magnetic potential �elds as well as the average
Nusselt number. The main �ndings of this study can
be highlighted as follows:

1. It was found that the reduction of porous perme-
ability caused a slow-down in the nanouid motion

within the porous media and made a reduction in
the heat transfer across the parallelogramic porous
enclosure;

2. The e�ect of magnetic Reynolds number on the heat
transfer and uid ow was found to be insigni�cant.
Nevertheless, some partial e�ects were detected in
the non-square parallelogramic porous enclosures;

3. Fluid intensity and heat transfer in parallelogramic
porous enclosures under the small external mag-
netic �elds were found sensitive enough to the skew
angle and e�ective area. The absolute value of
stream function at primary vortex, which deals with
uid intensity, was minimum for square parallel-
ogramic porous enclosures, while average Nusselt
number had its maximum value for those porous
enclosures;

4. The inuence of magnetic �eld on both of heat
transfer and uid ow depends mainly on the skew
angle of parallelogramic porous enclosure, whereby
a dual e�ect of Lorenz force was observed during
data results. For square enclosures, the intensity
of recirculation into the cavity was attenuated and
the thermal boundary layers in the vicinity of the
bottom heated wall became less concentrated by
increasing Hartman number. However, when � 6=
90�, the augmentation of Hartman number led to
the suppression of the recirculation and helped force
convection dominancy;

5. The heat transfer enhancement rate because of
existing metallic nanoparticles also depends mainly
on skew angle value of parallelogramic porous en-
closure;

6. At a �xed skew angle, the variation in rate of heat
transfer by adding nanoparticles to the base uid
was reduced with the enhancement of Richardson
number. The enhancement rate also decreased with
the increase of solid volume fraction.

Nomenclature

Nu Average Nusselt number
B0 Magnetic �eld intensity (Wbm�2)
C Forchheimer coe�cient
Da Darcy number (KH�2)

g Acceleration due to gravity (ms�2)
Gr Grashof number
K Permeability of porous medium (m2)
L Enclosure length (m)
Nu Local Nusselt number
P Non-dimensional
p Fluid pressure (Nm�2)
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Pr Prandtl number
Rk Thermal conductivity ratio porous-

nano
R� Viscosity ratio porous-nano
Re Reynolds number
Ri Richardson number
T Fluid temperature (K)
U; V Non-dimensional velocity components
u; v Velocity components (ms�1)
U0 Absolute lid velocity
X;Y Non-dimensional Cartesian coordinate
x; y Cartesian coordinate (m)

Greek
� Thermal di�usivity (m2s)
� Thermal expansion coe�cient (K�1)
� Transformed coordinate in y-direction
� Dynamic viscosity (kgm�1s�1)
� Kinematic viscosity (m2s�1)
� Volume fraction of the nanoparticles
� Density (kgm�3)
� Electrical conductivity (Sm�1)
� Dimensionless temperature
" Porosity
� Transformed coordinate in x-direction

Superscript
h High temperature
l Low temperature
s Solid particles
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