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Abstract. This study investigated a production-inventory model with defective items
under a two-part trade credit, where the agreement of conditionally freight concession is
considered in an integrated supply chain. It is assumed here that the retailer conducts the
inspection process before selling incoming items. All the defective items are discovered,
stored, and sold as a single batch to a secondary market at a decreased price. Furthermore,
shortages are allowed and completely backlogged for the retailer. The purpose of this study
is to determine the optimal number of shipments per production cycle for the supplier and
the optimal length of time when there is no inventory shortage and replenishment cycle
for the retailer, such that the total pro�t function has a maximum value. In theoretical
analysis, the existence and uniqueness of the optimal solutions are shown, and an algorithm
is developed to �nd the optimal solutions. Furthermore, numerical examples are presented
to demonstrate the solution procedures, and a sensitivity analysis of the optimal solutions
regarding all parameters is also carried out.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

The traditional Economic Order Quantity (EOQ)
model does not investigate payment methods when
the retailer receives goods from the supplier, and it
is assumed that payment is made immediately upon
receiving the consignment. However, in real business
transactions, to attract new customers and increase
sales or market shares, the supplier typically allows the
retailer an extended period for making full payment.
This is a common business practice because it bene�ts
both the supplier and the retailer. For example,
Emery [1] indicated that the supplier often increases
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sales by o�ering trade credit. Moreover, the retailer
can accumulate revenue from sales and earn interest
on that revenue during this credit period. Petersen
and Rajan [2] further noted that trade credit was
the widely used and accepted short-term source of
funding. Goyal [3] initially incorporated the issue of
trade credit into EOQ model. Aggarwal and Jaggi [4]
extended Goyal's model [3] to consider deteriorating
items. Chang et al. [5] established an EOQ model
for deteriorating items where the supplier provides
a delay in payments to the purchaser if the order
quantity is greater than or equal to a predetermined
quantity, which is known as a conditionally permissible
delay in payments. Ouyang et al. [6] presented an
inventory model for non-instantaneous deteriorating
items with permissible delay in payments. Teng [7]
attempted to establish an EOQ model for the retailer,
wherein a distinct trade credit was o�ered to customers
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with di�erent types of credit. Ouyang et al. [8]
expanded on the model proposed by Goyal [3] to
consider deteriorating items and partially permissible
delays in payment associated with order quantity. Yang
et al. [9] investigated how the retailer determines
the optimal ordering and payment polices when the
supplier o�ers cash discounts or delayed payments
depending on the order quantity. Sarker et al. [10]
developed an inventory model for di�erent types of
time-varying demand, where di�erent discount rates for
di�erent delay periods are considered. Sarkar et al. [11]
considered a deteriorating inventory model with two-
level trade credits for �xed lifetime products. Recently,
Lashgari et al. [12] investigated an inventory control
problem for deteriorating items with two-level trade
credit linked to order quantity. Related articles include
studies by Sana [13], Khanra et al. [14], Sarkar [15],
Jaggi et al. [16], Khanra et al. [17], Ray [18], Khanra
et al. [19], and their references.

The aforementioned studies have assumed that
the items received are of perfect quality. However,
in actual production environments, product quality
is not consistently perfect because of imperfect man-
ufacturing and poor handling procedures. Retail-
ers frequently receive defective products, which af-
fect practical inventory levels and increase the risk
of shortages and frequency of purchases. Certain
studies on inventory models have accounted for this
complication. Rosenblatt and Lee [20] considered the
e�ect of imperfect production processes on the Eco-
nomic Production Quantity (EPQ) model. Porteus [21]
incorporated the e�ect of the defective items into
the EPQ model and considered investing capital in
production processes to improve product quality. Lee
and Rosenblatt [22] considered an economic manufac-
turing quantity model wherein production cycle length
and equipment maintenance intervals were treated as
decision variables. Lee and Rosenblatt [23] further
incorporated maintenance and recovery costs of the
machine into an EPQ model with imperfect production
processes. Zhang and Gerchak [24] developed an EOQ
model to determine the optimal order quantity and
inspection strategy, in which defective products are
randomly produced. Groenevelt et al. [25] established
an EPQ model by accounting for equipment damage
and related maintenance to determine optimal produc-
tion quantity. Kim and Hong [26] extended the model
proposed by Rosenblatt and Lee [20] to determine
the optimal length of production run in deteriorating
production processes. Wu et al. [27] investigated the
e�ects of quality-guaranteed strategies on the opti-
mal production quantity, wherein the manufacturer
o�ers free repairs for detective products. Tayyab and
Sarkar [28] revisited an EPQ model with an imperfect
multi-stage production system by considering a random
defective rate. Related articles include studies by Khan

et al. [29], Sarkar [30], Hsu and Hsu [31], Hsu et al. [32],
Yu and Lin [33], Moussawi-Haidar et al. [34], and
their references. Most of these studies have examined
how defective products a�ect optimal production and
ordering strategies. However, they have not considered
the treatment of defective items.

To ensure quality of goods and maintain a good
reputation, companies often make quality inspections
frequently and establish disposal processes for defective
items prior to sale. Salameh and Jaber [35] considered
an EPQ model wherein defective products are discov-
ered during inspection and, then, sold at discounted
prices in the secondary markets. Chan et al. [36]
incorporated product inspection of all goods into an
EPQ model, wherein defective goods are treated by
selling them at discounted prices, reworking them,
or rejecting them. Chiu [37] developed an EPQ
model that considered shortages, and assumed that
randomly produced defective products were reworked
or discarded. Related studies include those of Chiu [38],
Kulkarni [39], Sarker et al. [40], El Saadany and
Jaber [41], Sana [42], Sarkar et al. [43-44], Sarkar [45],
Ouyang and Chang [46], Tsao et al. [47], Sarkar et
al. [48-49], Sarkar and Moon [50], and so on.

When encountering a competitive market and
a changing business environment, companies must
enhance their operational e�ciency, respond to cus-
tomers' needs rapidly, attempt to reduce inventory
costs, and increase pro�ts through the integration
of the supply chain system. Therefore, the issues
of Supply Chain Management (SCM) about how to
integrate suppliers with retailers to establish appro-
priate production-inventory models and determine the
optimal production and ordering strategies that jointly
achieve cost minimization or pro�t maximization have
attracted much academic attention. Banerjee [51]
developed a joint economic-lot-size model wherein the
supplier produces to satisfy orders for a retailer on
a lot-for-lot basis. Goyal [52] adjusted Banerjee's
model, and noted that when the supplier's setup cost
is substantially larger than the retailer's ordering cost,
the lot-for-lot method is not optimal. Furthermore, he
relaxed the assumption of lit-for-lot policy, surmising
that his revised model provided a lower or equal joint
total relevant cost. Lu [53] further extended the
model proposed by Goyal [52] to consider an integrated
inventory model for a single supplier and multiple
retailers and relaxed the assumption that shipments
could not be arranged before the production batch
is completed. Recently, Pal et al. [54] considered a
two-echelon competitive supply chain with trade credit
policy. Alternative production-inventory models that
have investigated various aspects of the coordination
of supply chains are as follows: Goyal [55], Yao and
Chiou [56], Chung and Wee [57], Chang et al. [58], Lin
and Lin [59], C�ardenas-Barr�on et al. [60], Lin et al. [61],
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Su [62], Sana [63], Das et al. [64], Ouyang et al. [65],
Giri and Sharma [66], Ouyang et al. [67], Sana [68],
Sarkar [69], Mahata et al. [70], and their references.

To bring the production-inventory models of the
supply chain into concurrence with the actual business
environment and industrial demand, this paper exam-
ines the optimal production and order polices for an
integrated supply chain system including:

1. The retailer's arriving lot contains some defective
items that are assessed, stored, and then sold in a
single batch to a secondary market at a decreased
price;

2. Shortages are allowed for the retailer and com-
pletely backlogged;

3. If the order quantity of the retailer is greater than or
equal to the speci�ed threshold, the transportation
cost is paid by the supplier; otherwise, it is paid by
the retailer;

4. The supplier provides a two-part trade credit that
allows the retailer to make full payment at the time
or to pay at an earlier time with a cash discount.

First, the total pro�t functions for the supplier and
retailer are developed and, then, integrated appro-
priately to determine the joint total pro�t function
of the supply chain. The purpose of this study is
to determine the optimal number of shipments per
production cycle for the supplier, the optimal length
of time wherein there is no inventory shortage, and the
length of replenishment cycle for the retailer so as to
maximize the joint total pro�t function. Furthermore,
the existence and uniqueness of the optimal solutions
are shown, and an algorithm is developed to �nd the
optimal solutions. Finally, numerical examples are
presented to demonstrate the solution procedures, and
a sensitivity analysis of the optimal solutions with
respect to all parameters is described. Di�erent from
the previous literature, the major issues considered
in the above-mentioned studies compared with the
present paper are summarized in Table 1.

2. Problem description

In this model, a single supplier and a single retailer are
considered in a supply chain production-inventory sys-
tem. The operation of this production inventory sys-
tem is as follows: the retailer orders Q units per order
and the supplier produces nQ units per production run
and delivers them to the retailer in n shipments, where
n is a integer. Each shipment contains certain defective
items at a defect rate of �, and 100% inspection is
conducted by the retailer before selling them. All
defective items will be discovered, stored, and then sold

to the secondary market with a lower unit price in a
single batch after inspection. Further, to encourage the
retailer to order more, the supplier provides the retailer
with a conditionally freight concession. That is, when
the order quantity of retailer Q is greater than or equal
to a certain threshold, Qd, then the transportation
cost is absorbed by the supplier; otherwise, it is paid
by the retailer. On the other hand, to facilitate the
transaction and receive payment as soon as possible,
the supplier provides the retailer with a two-part trade
credit, which allows the retailer to make payments at
time M2 and, then, provides the retailer with a cash
discount and a discount rate �(0 < � < 1). If the
retailer pays earlier at time M1, where 0 � M1 < M2,
the entire process is repeated. To develop this model,
the notations and assumptions are used as follows.
P Supplier's production rate;
D Retailer's demand rate;
K Supplier's setup cost per setup;
A Retailer's ordering cost per order;
F Fixed transportation cost per

shipment;
r Variable transportation cost per unit;
hv Supplier's holding cost per unit per

unit time;
hb1 Retailer's holding cost per non-

defective item per unit time excluding
interest charge;

hb2 Retailer's holding cost per defective
item per unit time excluding interest
charge, where hb2 � hb1 ;

� Retailer's shortage cost per unit per
unit time;

c Supplier's production cost per unit;
v Retailer's wholesale price per unit,

where v > c;
p Retailer's unit selling price of

non-defective items, where p > v;
k Retailer's unit selling price of defective

items in the secondary market, where
0 < k < v;

� Defective rate, where � 2 d0; 1);
Mi Trade credit period o�ered by

the supplier, where i = 1; 2 and
0 �M1 < M2;

Iv Supplier's capital opportunity cost per
dollar per unit time due to o�ering
trade credit to the retailer;

Ie Retailer's interest earned per dollar
per unit time;
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Table 1. A brief literature review of related references.

Reference Trade credit
Individual

/supply chain
perspective

Defective
item

Shortage
Quantity

-dependent
freight

[1,2] No Individual No No No

[3,4,6,10]
[14-15,18]

Yes Individual (EOQ) No No No

[5] Conditionally Individual (EOQ) No No No

[7,8] Partially Individual (EOQ) No No No

[9] Two-part Individual (EOQ) No No No

[11] Two-levels Individual (EPQ) No No No

[12] Two-levels Individual (EOQ) No Completely backlogging No

[13] Yes Individual (EPQ) No No No

[16] Two-levels Individual (EOQ) No No No

[17,19] Yes Individual (EOQ) No Completely backlogging No

[20,21-23,25-26]
[29,35-36,40-45,49]

No Individual (EPQ) Yes No No

[24,28,32,50] No Individual (EOQ) Yes No No

[27] No Individual Yes No No

[30] Yes Individual (EOQ) Yes No No

[31,33-34] No Individual (EOQ) Yes Completely backlogging No

[37] No Individual (EPQ) Yes Partially backlogging No

[38-39] No Individual (EPQ) Yes Completely backlogging No

[46] Yes Individual (EPQ) Yes Completely backlogging No

[47] Yes Individual (EPQ) Yes No No

[48,61] Yes Supply chain Yes No No

[51-53,55-56]
[60,63,67-69]

No Supply chain No No No

[54; 58; 64] Yes Supply chain No No No

[57] No Supply chain No Completely backlogging No

[59] No Supply chain Yes No No

[62; 66] Yes Supply chain Yes Completely backlogging No

[65] Two-part Supply chain Yes No No

[70] Two-levels Supply chain No No No

Present paper Two-part Supply chain Yes Completely backlogging Yes

Ic Retailer's capital opportunity cost per
dollar in stocks per unit time;

Ip Supplier's interest earned per dollar
per unit time when the retailer pays at
early time M1;

� Price discount rate o�ered by the
supper when the retailer pays at time
M1, where 0 < � < 1;

Qd Retailer's order quantity threshold at
which shipping cost is absorbed by the
supplier;

Q Retailer's order quantity;
B Maximum backlogging level during the

stock-out period;
n Number of shipment from the supplier

to the retailer per production cycle;
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t Retailer's length of cycle time during
which the stock reaches zero;

T Retailer's length of the replenishment
cycle time.

Assumptions
1. Similar to the models of Sarkar et al. [48], Sana [63],

and Sarkar et al. [71], the production-inventory
system considers a single supplier, a single retailer,
and single commodity;

2. Shortages are allowed for the retailer and all cus-
tomers are willing to wait for the next delivery (see,
for example [31,46]);

3. Replenishment rate of the retailer is in�nite, and
the lead time is assumed to be negligible (this
assumption was used by Sarkar et al. [10], El
Saadany [41], Sana [68], Sett et al. [72], and so on);

4. The retailer orders Q units per order and the
supplier produces nQ units per production run and
delivers them to the retailer in n shipments, where
n is an integer;

5. To achieve economies of scale on transportation,
the supplier provides the retailer with a freight
concession. When the order quantity of retailer Q
is greater than or equal to Qd, then transportation
cost is absorbed by the supplier; otherwise, it is
paid by the retailer;

6. An arriving lot contains some defective items with
defective rate �, and the retailer may perform
a 100% inspection to check the product quality
before selling it. Defective items in each batch are
discovered, stored and then sold to the secondary
market in a single batch at the end of each cycle
(see, for example, [73]). Hence, the retailer's
holding cost includes two parts: non-defective items
and defective items;

7. To attract procurement from the retailer, the sup-
plier provides the retailer with a two-part trade
credit. That is, the supplier allows the retailer to
make the payment at time M2 and provides the
retailer with a cash discount and a discount rate
�(0 < � < 1) if the retailer pays earlier at time
M1, where 0 �M1 < M2;

8. During the time when the account has not been
settled, the generated sale revenue is deposited in
an interest-bearing account at a rate of Ie. At the
end of this period (Mi; i = 1; 2), the retailer pays
the purchasing cost to the supplier and incurs a
capital opportunity cost at a rate of Ic for the items
in stock;

9. When the retailer pays earlier at time M1, the
supplier may gain an interest earned at a rate of
Ip during the time interval M1;M2;

10. The retailer's inspection process is assumed fast,
error-free and non-destructive. That is, the inspec-
tion time is ignored.

3. Model formulation

Based on the notations and assumptions mentioned
above, this section �rst establishes the total pro�t
functions for the supplier and retailer and, then, makes
some appropriate combination of the two to obtain an
integrated total pro�t function.

3.1. Supplier's total pro�t function
The supplier's total pro�t per production cycle is the
gross pro�t on sale minus the total relevant cost,
which consists of the setup cost, transportation cost,
inventory holding cost, opportunity cost for o�ering
trade credit, and interest earned during the time
interval [M1;M2] if the retailer make the payment at
the time M1. These components are evaluated as
follows:

1. Gross pro�t on sale. When the retailer pays at time
Mi(i = 1; 2), the unit wholesale price is (1� �i�)v,
where �1 = 1; �2 = 0. Because the supplier's unit
production cost is c, the supplier's gross pro�t on
sale per production cycle is n(1� �i�)v � c]Q;

2. Setup cost. The supplier's setup cost in a produc-
tion cycle is K;

3. Transportation cost. The transportation cost in-
cludes �xed and variable costs (see, for exam-
ple, [74]). Further, if the retailer's order quantity
is larger than or equal to speci�ed threshold Qd,
then the transportation cost is absorbed by the
supplier; otherwise, the transportation cost is paid
by the retailer. Hence, the transportation cost is
given by I[Qd;1)(Q)(F + rQ), where I[Qd;1)(Q) is
an indicator function and de�ned as follows:

I[Qd;1)(Q) =

(
1 if Q � Qd
0 if Q < Qd:

Therefore, the supplier's transportation cost per
production cycle is nI[Qd;1)(Q)(F + rQ);

4. Holding cost. At the beginning, when a quantity
of products are produced, the supplier will deliver
them to the retailer immediately. After the �rst
shipment, the supplier will schedule successive de-
liveries in every (1 � �)Q=D unit of time until the
inventory level falls to zero. Consequently, the
supplier's total inventory quantity per production
cycle is equal to its cumulative inventory minus the
retailer's cumulative inventory (see Figure 1) and is
given by:
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Figure 1. The supplier's inventory system.
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With unit holding cost per unit time, hv, the
supplier's total holding cost per production cycle
is as follows:

hvnQ2
�

1
P

+
(n� 1)(1� �)

2D
� n

2P

�
:

Note that a similar derivation in the supplier's total
holding cost can be found in the study of Sarkar and
Majumder [75];

5. Opportunity cost. Because the supplier provides the
retailer with a two-part trade credit, which implies
that the retailer is allowed to make the payment at
time Mi(i = 1; 2) after receiving the order quantity,
there is an opportunity cost arising for the supplier
due to the trade credit. The supplier's opportunity
cost per production cycle is nIv(1 � �i�)vQMi,
where i=1; 2 and �1 =1; �2 =0;

6. Interest earned from sale revenue. If the retailer
pays earlier at time M1, then the supplier may use
sale revenue (1 � �)vQ to gain an interest earned
at a rate of IP during the time interval [M1;M2].
Hence, when the retailer makes payments at time
M1, the supplier's interest earned per replenishment
cycle during the time interval [M1;M2] is Ip(1 �
�)vQ(M2 �M1). Otherwise, if the retailer pays at
time M2, then the supplier's interest earned during
[M1;M2] is zero. Therefore, the supplier's interest
earned per production cycle is as follows:

n�iIp(1� �)vQ(M2 �M1);

where i = 1; 2 and �1 = 1; �2 = 0. Consequently,

the supplier's total pro�t per unit time (denoted by
TPVi(n)) is a function of n and can be expressed
as follows:

TPVi(n) =
1
nT
f gross pro�t - setup cost

� transportation cost - holding cost

� opportunity cost + interest earnedg

=
1
T

�
[(1� �i�)v � c]Q� K

n

� I[Qd;1)(Q)(F + rQ)� hvQ2�
1
P

+
(n� 1)(1� �)

2D
� n

2P

�
� Iv(1� �i�)vQMi

+ �iIp(1� �)vQ(M2 �M1)
�

=
[(1� �i�)v � c]D

1� � � K
nT
� I[Qd;1)

(Q)
�
F
T

+
rD

1� �
�
� hvD2T

(1� �)2�
1
P

+
(n� 1)(1� �)

2D
� n

2P

�
� Iv(1� �i�)vDMi

1� �
+
�iIp(1� �)vD(M2 �M1)

1� � ; (1)

where i = 1; 2 and �1 = 1; �2 = 0:

3.2. Retailer's total pro�t function
With regard to the retailer, its total pro�t per pro-
duction cycle is the gross pro�t on sale minus the
total relevant cost, which consists of the ordering cost,
transportation cost, inventory holding cost, shortage
cost, opportunity cost, and interest earned. These
components are evaluated as follows:

1. Gross pro�t. The retailer's sale revenue includes
non-detective and detective items which are p(1 �
�)Q = pDT and k�Q = k�DT=(1��), respectively.
In addition, the retailer's total purchasing cost is
(1� �i�)vQ = (1� �i�)vDT=(1� �), i = 1; 2, and
�1 = 1; �2 = 0. Hence, the retailer's gross pro�t per
replenishment cycle is:

pDT +
k�DT
1� � �

(1� �i�)vDT
1� � ;
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where i = 1; 2 and �1 = 1; �2 = 0.
2. Ordering cost. The retailer's ordering cost per

replenishment cycle is A.
3. Transportation cost. The retailer's transportation

cost per replenishment cycle is [1�I[Qd;1)(Q)](F +
rQ).

4. Holding cost. Because the retailer's maximum
inventory level for non-detective items is (1� �)Q�
B with the length of cycle time t, the holding cost
for non-detective items is hb1

[(1��)Q�B]t
2 . On the

other hand, after speedy inspection while receiving
the order, there are �Q detective items per replen-
ishment cycle. Hence, the holding cost is hb2�QT .
In summary, the retailer's total holding cost per
replenishment cycle is:

hb1
[(1��)Q�B]t

2
+hb2�QT =

hb1Dt2

2
+
hb2�DT 2

1�� :

5. Shortage cost. Since shortage is allowed and com-
pletely backlogged during the stock-out period, the
retailer's shortage cost per replenishment cycle is:

�
B(T � t)

2
=
�D(T � t)2

2
:

6. Interest earned and interest charged. Based on
the values of Mi(i = 1; 2), t and T , three cases,
including (i) Mi � t � T , (ii) t �Mi � T , and (iii)
t � T �Mi may occur.

Case 1: Mi � t � T (i = 1; 2). In this case, as
shown in Figure 2, for given Mi (i = 1; 2), the retailer's
interest earned at a rate of Ip per cycle is IepDM2

i
2 +

IepBMi = IepDM2
i

2 + IepD(T � t)Mi, where IepBMi is
the interest earned due to the revenue from backlogged
demand.

After payment time, Mi, the retailer pays o� the
purchasing cost and, then, incurs a capital opportunity
cost at a rate of Ic for the items in stock including
non-detective and detective parts. The opportunity

Figure 2. The retailer's inventory system when
Mi � t � T (i = 1; 2).

Figure 3. The retailer's inventory system when
t �Mi � T (i = 1; 2).

cost for non-detective items per replenishment cycle
is Ic(1 � �i�)vD(t�Mi)

2=2. As for detective items,
the opportunity cost per replenishment cycle is Ic(1�
�i�)v�Q(T �Mi) = Ic(1 � �i�)v�DT (T � Mi)=(1 �
�). Therefore, the retailer's opportunity cost per
replenishment cycle is:

Ic(1��i�)vD(t�Mi)
2

2
+
Ic(1��i�)v�DT (T�Mi)

1� � ;

where i = 1; 2 and �1 = 1; �2 = 0.

Case 2: t �Mi � T (i = 1; 2). In this case, as shown
in Figure 3, the retailer's interest earned when paying
at time Mi (i = 1; 2) per replenishment cycle is:

Iep[(1� �)Q�B]t
2

+ Iep[(1� �)Q�B](Mi � t)

+ IepBMi = IepDt
�
Mi � t

2

�
+ IepD(T � t)Mi;

where IepBMi is the interest earned due to the revenue
from backlogged demand. Because the retailer sells
out non-detective items at time Mi (i = 1; 2) in this
case, there is no interest charged for non-detective
items. Therefore, the retailer's opportunity cost per
replenishment cycle only includes that for detective
items and is given by:

Ic(1� �i�)v�Q(T �Mi) = Ic(1� �i�)v

�DT (T �Mi)=(1� �):

Case 3: t � T � Mi (i = 1; 2). In this case, as
shown in Figure 4, the retailer's interest earned per
replenishment cycle is:

Iep[(1� �)Q�B]t
2

+ Iep[(1� �)Q�B](Mi � t)

+IepBMi + Iek�Q(Mi � T ) = IepDt
�
Mi � t

2

�
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Figure 4. The retailer's inventory system when
t � T �Mi (i = 1; 2).

+IepD(T � t)Mi + Iek�(Mi � T )
DT

1� �;
where IepBMi is the interest earned due to the revenue
from backlogged demand, and Iek�Q (Mi � T ) is the
interest earned for sale revenue of detective items.
Because the retailer sells out the items (including non-
detective and detective items) at time Mi (i = 1; 2), in
this case, there is no interest charged.

Consequently, the retailer's total pro�t per unit
time (denoted by TPRi(T; t)) can be expressed as
follows:

TPRi(T; t) =
1
T
fgross pro�t - ordering cost

� transportation cost - holding cost

� shortage cost - opportunity cost

+ interest earnedg

=

8><>:TPRi1(T; t); if Mi � t � T;
TPRi2(T; t); if t �Mi � T;
TPRi3(T; t); if t � T �Mi;

(2)

where i = 1; 2,

TPRi1(T; t) =
1
T

�
pDT+

k�DT
1� � �

(1� �i�)vDT
1� �

�A� [1� I[Qd;1)(Q)](F + rQ)� hb1Dt2

2

� hb2�DT 2

1�� � �D(T�t)2

2
� Ic(1��i�)vD(t�Mi)

2

2

� Ic(1� �i�)v�DT (T �Mi)
1� � +

IepDM2
i

2

+ IepD(T � t)Mi

�
= pD +

k�D
1� � �

(1� �i�)vD
1� �

�A
T
�[1� I[Qd;1)(Q)]

�
F
T

+
rD

1� �
�
� hb1Dt2

2T

� hb2�DT
1� � � �D

2

�
T � 2t+

t2

T

�
� Ic(1� �i�)vD(t�Mi)

2

2T

� Ic(1� �i�)v�D(T �Mi)
1� � +

IepDM2
i

2T

+ IepDMi

�
1� t

T

�
;

(3)

TPRi2(T; t) =
1
T

�
pDT +

k�DT
1� �

� (1� �i�)vDT
1� � �A� [1� I[Qd;1)(Q)]

(F + rQ)� hb1Dt2

2
� hb2�DT 2

1� � � �D(T � t)2

2

� Ic(1� �i�)v�DT (T �Mi)
1� �

+ IepDt
�
Mi � t

2

�
+ IepD(T � t)Mi

�
= pD +

k�D
1� � �

(1� �i�)vD
1� �

� A
T
� [1� I[Qd;1)(Q)]

�
F
T

+
rD

1� �
�

� hb1Dt2

2T
� hb2�DT

1� � � �D
2

�
T � 2t+

t2

T

�
� Ic(1� �i�)v�D(T �Mi)

1� �
+
IepDt
T

�
Mi � t

2

�
+ IepDMi

�
1� t

T

�
; (4)

TPRi3(T; t) =
1
T

�
pDT +

k�DT
1� �

� (1� �i�)vDT
1� � �A� [1� I[Qd;1)(Q)]

(F + rQ)� hb1Dt2

2
� hb2�DT 2

1� �

� �D(T � t)2

2
IepDt

�
Mi � t

2

�
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+ IepDMi(T � t) +
Iek�DT (Mi � T )

1� �
�

= pD +
k�D
1� � �

(1� �i�)vD
1� �

� A
T
� [1� I[Qd;1)(Q)]

�
F
T

+
rD

1� �
�

� hb1Dt2

2T
� hb2�DT

1� � � �D
2

�
T � 2t+

t2

T

�
+
IepDt
T

�
Mi � t

2

�
+ IepDMi

�
1� t

T

�
+
Iek�D(Mi � T )

1� � ; (5)

where i = 1; 2 and �1 = 1; �2 = 0.

3.3. The integrated total pro�t function
When the supplier and retailer are treated as an
integrated supply chain system and decide to share
resources with each other to undertake mutually ben-
e�cial cooperation, the joint total pro�t per unit time
can be obtained as the sum of the supplier and retailer's
total pro�t per unit time and is a function of n, T and
t as follows:

JTPi(n; T; t) = TPVi(n) + TPRi(T; t)

=

8><>:JTPi1(n; T; t); if Mi � t � T;
JTPi2(n; T; t); if t �Mi � T;
JTPi3(n; T; t); if t � T �Mi;

(6)

where:

JTPi1(n; T; t) = TPVi(n) + TPRi1(T; t)

= pD +
(k�� c� r)D

1� � � A+ F
T

� K
nT

� hvD2T
(1� �)2

�
1
P

+
(n� 1)(1� �)

2D
� n

2P

�
� Iv(1� �i�)vDMi
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+
�iIp(1� �)vD(M2 �M1)
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� hb1Dt2

2T
� hb2�DT

1� � � �D
2

�
T � 2t+

t2

T

�
� Ic(1� �i�)vD(t�Mi)

2

2T

� Ic(1� �i�)v�D(T �Mi)
1� � +

IepDM2
i

2T

+ IepDMi

�
1� t

T

�
; (7)

JTPi2(n; T; t) = TPVi(n) + TPRi2(T; t)

= pD +
(k�� c� r)D

1� � � A+ F
T

� K
nT

� hvD2T
(1� �)2

�
1
P

+
(n� 1)(1� �)

2D
� n
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�
� Iv(1� �i�)vDMi

1� � +
�iIp(1� �)vD(M2 �M1)
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2T
� hb2�DT
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2

�
T � 2t+

t2
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� Ic(1� �i�)v�D(T �Mi)

1� �
+
IepDt
T

�
Mi � t

2

�
+ IepDMi

�
1� t

T

�
; (8)

JTPi3(n; T; t) = TPVi(n) + TPRi3(T; t)

= pD +
(k�� c� r)D

1� � � A+ F
T

� K
nT

� hvD2T
(1� �)2

�
1
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+
(n� 1)(1� �)

2D
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+
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� hb2�DT
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+
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T

�
Mi � t

2

�
+ IepDMi

�
1� t

T

�
+
Iek�D(Mi � T )

1� � ;

i = 1; 2; �1 = 1; �2 = 0: (9)

In the following, our purpose here is to determine the
optimal replenishment cycle length, T , the length of
time during which the stock reaches zero, t, and the
optimal number of shipments per production run from
the supplier to the retailer, n, which maximizes the
joint total pro�t per unit time, JTPi(n; T; t), i = 1; 2.
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4. Solution procedure

Firstly, for �xed Mi (i = 1; 2) and any given (T; t),
we temporarily relax the integer requirement on n and
take the second partial derivative of JTPi(n; T; t) with
respect to n, which gives:

@2JTPi(n; T; t)
@n2 =

@2JTPij(n; T; t)
@n2 =

�2K
n3T

< 0;

j = 1; 2; 3: (10)

It is obvious that for any given (T; t), JTPi(n; T; t) is
concave function in n, where i = 1; 2. Hence, searching
for the optimal solution of n is reduced to �nding a local
optimal solution. Next, for �xed Mi (i = 1; 2) and n,
we will discuss how to �nd the optimal solution (T; t).
There are three cases arising as follows: (i) Mi � t �
T , (ii) t �Mi � T , and(iii) t � T �Mi.

Case 1: Mi � t � T (i = 1; 2). Taking the �rst and
second partial derivatives of JTPi1(n; T; t) with respect
to T and t, respectively, yields:

@JTPi1(n; T; t)
@T

=
n(A+ F ) +K

nT 2 � hvD2

(1� �)2�
1
P

+
(n�1)(1��)

2D
� n

2P

�
+

(hb1 +�+Iep)Dt2

2T 2

� �D
2
� [hb2 +Ic(1� �i�)v]�D

1� �

+
[Ic(1� �i�)v � Iep]D(t�Mi)

2

2T 2 ; (11)

@2JTPi1(n; T; t)
@T 2 =

�2[n(A+ F ) +K]
nT 3

� (hb1 +�+Iep)Dt2+[Ic(1��i�)v�Iep]D(t�Mi)
2

T 3

� �2[n(A+ F ) +K]
nT 3

� (hb1 + �)Dt2 + Ic(1� �i�)vD(t�Mi)
2

T 3 < 0; (12)

@JTPi1(n; T; t)
@t

= �hb1Dt
T

+ �D
�

1� t
T

�
� Ic(1� �i�)vD(t�Mi)

T
� IepDMi

T
; (13)

@2JTPi1(n; T; t)
@t2

= � [hb1 +�+Ic(1� �i�)v]D
T

< 0;
(14)

@2JTPi1(n; T; t)
@T@t

=
@2JTPi1(n; T; t)

@t@T

=
D[(hb1 + �)t+ IepMi + Ic(1� �i�)v(t�Mi)]

T 2 :
(15)

Based on Eqs. (12), (14), and (15), the determinant of
Hessian matrix is:

Ji1 =
����@2JTPi1(n;T;t)

@T 2
@2JTPi1(n;T;t)

@T@t
@2JTPi1(n;T;t)

@t@T
@2JTPi1(n;T;t)

@t2

����
=
@2JTPi1(n; T; t)

@T 2 � @2JTPi1(n; T; t)
@t2

�
�
@2JTPi1(n; T; t)

@T@t

�2

=
2D[n(A+ F ) +K][hb1 + � + Ic(1� �i�)v]

nT 4

+
D2M2

i [Ic(1� �i�)v � Iep](hb1 + � + Iep)
T 4 ;

(16)

where i = 1; 2 and �1 = 1; �2 = 0.
Therefore, the following result can be obtained

from Eqs. (12), (14), and (16).

Theorem 1. For given Mi(i = 1; 2) and n, if Ji1 >
0, then JTPi1(n; T; t) has a maximum value at point
(T; t) = (Ti1; ti1) which satis�es @JTPi1(n; T; t)=@T =
0 and @JTPi1(n; T; t)=@t = 0.

Case 2: t � Mi � T (i = 1; 2). Similarly, taking
the �rst and second partial derivatives of JTPi2(n; T; t)
with respect to T and t, respectively, yields:

@JTPi1(n; T; t)
@T

=
n(A+ F ) +K

nT 2 � hvD2

(1� �)2�
1
P

+
(n� 1)(1� �)

2D
� n

2P

�
+
hb1 + � + Iep)Dt2

2T 2

� �D
2
� [hb2 + Ic(1� �i�)v]�D

1� � ;
(17)

@2JTPi2(n; T; t)
@T 2 =

�2[n(A+ F ) +K]
nT 3

� (hb1 + � + Iep)Dt2

T 3 < 0; (18)

@JTPi2(n; T; t)
@t

= � (hb1 + � + Iep)Dt
T

+ �D; (19)

@2JTPi2(n; T; t)
@t2

= � (hb1 + � + Iep)D
T

< 0; (20)
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@2JTPi2(n; T; t)
@T@t

=
@2JTPi2(n; T; t)

@t@T

=
(hb1 + � + Iep)Dt

T 2 : (21)

Based on Eqs. (18), (20), and (21), the determinant of
Hessian matrix is:

Ji2 =
����@2JTPi2(n;T;t)

@T 2
@2JTPi2(n;T;t)

@T@t
@2JTPi2(n;T;t)

@t@T
@2JTPi2(n;T;t)

@t2

����
=
@2JTPi2(n; T; t)

@T 2 � @2JTPi2(n; T; t)
@t2

�
�
@2JTPi2(n; T; t)

@T@t

�2

=
2D[n(A+ F ) +K](hb1 + � + Iep)

nT 4 > 0; (22)

where i = 1; 2 and �1 = 1; �2 = 0.
Therefore, the following result can be found from

Eqs. (18), (20), and (22).

Theorem 2. For given Mi (i = 1; 2) and n,
JTPi2 (n; T; t) has a maximum value at point (T; t) =
(Ti2, ti2) which satis�es @JTPi2(n; T; t)=@T = 0 and
@JTPi2(n; T; t)=@t = 0.

Case 3: t � T � Mi (i = 1; 2). Taking the �rst and
second partial derivatives of JTPi3(n; T; t) with respect
to T and t, respectively, yields:
@JTPi1(n; T; t)

@T
=
n(A+ F ) +K

nT 2 � hvD2

(1� �)2�
1
P

+
(n� 1)(1� �)

2D
� n

2P

�
+
hb1 + � + Iep)Dt2

2T 2

� �D
2
� (hb2 + Iek)�D

1� � ;
(23)

@2JTPi3(n; T; t)
@T 2 =

�2[n(A+ F ) +K]
nT 3

� (hb1 + � + Iep)Dt2

T 3 < 0; (24)

@JTPi3(n; T; t)
@t

= � (hb1 + � + Iep)Dt
T

+ �D; (25)

@2JTPi3(n; T; t)
@t2

= � (hb1 + � + Iep)D
T

< 0; (26)

@2JTPi3(n; T; t)
@T@t

=
@2JTPi3(n; T; t)

@t@T

=
(hb1 + � + Iep)Dt

T 2 : (27)

Based on Eqs. (24), (26), and (27), the determinant of
Hessian matrix is:

Ji3 =
����@2JTPi3(n;T;t)

@T 2
@2JTPi3(n;T;t)

@T@t
@2JTPi3(n;T;t)

@t@T
@2JTPi3(n;T;t)

@t2

����
=
@2JTPi2(n; T; t)

@T 2 � @2JTPi2(n; T; t)
@t2

�
�
@2JTPi2(n; T; t)

@T@t

�2

=
2D[n(A+ F ) +K](hb1 + � + Iep)

nT 4 > 0; (28)

where i = 1; 2 and �1 = 1; �2 = 0.
Therefore, the following result can be obtained

from Eqs. (24), (26), and (28).

Theorem 3. For given Mi (i = 1; 2) and n,
JTPi3 (n; T; t) has a maximum value at point (T; t) =
(Ti3; ti3) which satis�es @JTPi3(n; T; t)=@T = 0 and
@JTPi3(n; T; t)=@t = 0.

By combining the above-mentioned results, the
following algorithm can be developed to �nd the opti-
mal solution (n�; T �; t�).

Algorithm

Step 1. Set n = 1.
Step 2. For given n and Mi; i = 1; 2.

Step 2-1. When Ji1 de�ned in Eq. (16) is greater
than zero, �nd Ti1 and ti1 by setting Eqs. (11)
and (13) equal to zero and, then, compare them
with Mi, where i = 1; 2. If Mi � ti1 � Ti1, then
calculate the corresponding joint total pro�t per
unit time JTP1(n; Ti1; ti1) from Eq. (7). Otherwise,
set JTP1(n; Ti1; ti1) = 0.
Step 2-2. Find Ti2 and ti2 by setting Eqs. (17)
and (19) equal to zero and, then, compare them
with Mi, where i = 1; 2. If ti2 � Mi � Ti2, then
calculate the corresponding joint total pro�t per
unit time JTP2(n; Ti2; ti2) from Eq. (8). Otherwise,
set JTP2(n; Ti2; ti2) = 0.
Step 2-3. Find Ti3 and ti3 by setting Eqs. (23)
and (25) equal to zero and, then, compare them
with Mi, where i = 1; 2. If ti3 � Ti3 � Mi, then
calculate the corresponding joint total pro�t per
unit time JTP3(n; Ti3; ti3) from Eq. (9). Otherwise,
set JTP3(n; Ti3; ti3) = 0.
Step 2-4. Find max

i=1;2; j=1;2;3
JTPj(n; Tij ; tij) and

let:

JTP (n; T(n); t(n)) = max
i=1;2; j=1;2;3

JTPj(n; Tij ; tij):
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Step 3. Set n = n + 1, and repeat Steps 2-1 to 2-4
to get JTP (n; T(n); t(n)).
Step 4. If:

JTP (n; T(n); t(n)) < JTP (n� 1; T(n�1); t(n�1));

then:

JTP (n�; T �; t�) = JTP (n� 1; T(n�1); t(n�1)):

Hence:

(n�; T �; t�) = (n� 1; T(n�1); t(n�1));

is the optimal solution. Otherwise, return to Step 3.

5. Numerical examples

Example 1. To illustrate the solution procedure, an
inventory system with the following data is considered:

- P = 4500 units/year;
- D = 2000 units/year;
- K = $300/setup;
- A = $50/order;
- F = $30/shipment;
- r = $0:01/unit;
- hv = $1:5/unit/year;
- hb1 = $2/unit/year;
- hb2 = $1:8/unit/year;
- � = $3/unit/year;
- c = $10/unit;
- v = $20/unit;
- p = $40/unit;
- k = $10/unit;
- � = 0:03;
- Iv = 0:05/dollar/year;
- Ie = 0:03/dollar/year;
- Ic = 0:05/dollar/year;
- M1 = 30=365 years;
- M2 = 60=365 years;
- � = 0:01;
- Ip = 0:03/dollar/year;
- Qd = 500 units.

By applying the algorithm of Section 4, the solu-
tion procedure is shown in Table 2. According to
Table 2, the optimal solution is (n�; T �; t�) =
(3; 0:2119; 0:1063). Therefore, the retailer's optimal
ordering quantity is Q� = DT �=(1 � �) = 436:827
units, the supplier's optimal production quantity is

Table 2. The solution process of Example 1.

n t� T � JTP (n; T �; t�)
1 t11 = 0:2133 T11 = 0:4066 58221.2
2 t11 = 0:1398 T11 = 0:2713 58390.0
3 t11 = 0:1063 T11 = 0:2119 58397.5  
4 t11 = 0:0866 T11 = 0:1775 58364.0

Note: \ " denotes the optimal solution of the system.

n�Q� = 1310:48 units, and optimal joint total pro�t
is JTP (n�; T �; t�) = $58397:5. In this situation, due
to the retailer's optimal quantity Q� = 436:827 < Qd =
500, the transportation cost is paid by the retailer. In
addition, the retailer's optimal payment policy is to
make payments at M1 = 30=365 years to enjoy the
bene�t of cash discount when the supplier provides a
two-part trade credit.

Example 2. Using the same data as in Example 1,
we study the e�ects of changes in the retailer's interest
earned rate, Ie 2 f0:03; 0:04; 0:05g, and interest
charged rate, Ic 2 f0:03; 0:04; 0:05g, on the optimal
solutions. The computational results are shown in
Table 3. Based on the numerical results of Table 3, the
retailer's payment policy is dependent on its interest
earned. When the retailer's interest earned rate
exceeds a certain threshold (for example, Ie = 0:05
in Table 3), he/she will pay at time M2 to enjoy the
bene�t of permissible delay in payments. Otherwise,
the retailer will pay at early time M1 to take the price
discount instead. Furthermore, to enjoy the bene�t of
trade credit repeatedly, the retailer may order fewer
quantities caused by shorter replenishment cycle as
the retailer's interest earned rate, Ie, increases; hence,
the joint total pro�t increases. On the other hand,
the retailer's interest charged rate, Ic, has a negative
impact on the retailer's optimal ordering quantity,
supplier's production quantity, and the joint total
pro�t. This is because the retailer may reduce the order
quantity to avoid backlog capital when his/her interest
charged rate increases. With the �xed numbers of
deliveries, the production quantity will reduce. Hence,
the decreasing joint total pro�t will ensue.

Example 3. In order to understand the impacts of
the lengths of trade credit Mi and discount rate �
on optimal solutions, the same data as in Example 1
are used, except M1 2 f15=365; 30=365; 45=365 g,
M2 2 f60=365; 90=365; 120=365g, and � 2 f 0.05,
0.01, 0.015g. The computational results are shown in
Table 4. According to Table 4, although the e�ect of
the discount rate on the optimal solutions is weak,
it has di�erent impacts on the joint total pro�t in
di�erent lengths of trade credit, M1. When the length
of trade credit of M1 is low (for example, M1 = 15=365
in Table 4), the joint total pro�t decreases as the
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Table 3. Optimal solutions for various values of retailer's interest earned and charged.

Ic Ie t� T � n� Q� n�Q� JTP (n�; T �; t�)

0.03
0.03 t11 = 0:1073 T11 = 0:2129 3 438.891 1316.67 58400.9
0.04 t11 = 0:0995 T11 = 0:2104 3 433.746 1301.24 58447.3
0.05 t22 = 0:0883 T22 = 0:2059 3 424.477 1273.43 58555.4

0.04
0.03 t11 = 0:1068 T11 = 0:2124 3 437.849 1313.55 58399.2
0.04 t11 = 0:0991 T11 = 0:2099 3 432.819 1298.46 58445.7
0.05 t22 = 0:0883 T22 = 0:2056 3 423.860 1271.58 58554.9

0.05
0.03 t11 = 0:1063 T11 = 0:2119 3 436.827 1310.48 58397.5
0.04 t11 = 0:0987 T11 = 0:2095 3 431.908 1295.72 58444.1
0.05 t22 = 0:0883 T22 = 0:2053 3 423.246 1269.74 58554.4

Table 4. Optimal solutions under various values of �, M1 and M2.

� M2 M1 t� T � Q� n�Q� JTP (n�; T �; t�)

0.005

60/365
15/365 t11 = 0:115712 T11 = 0:214772 442.828 1328.48 58449.5

30/365 t11 = 0:106334 T11 = 0:211849 436.802 1310.41 58397.1

45/365 t12 = 0:101317 T12 = 0:209388 431.728 1295.19 58361.2

90.365
15/365 t11 = 0:115712 T11 = 0:214772 442.828 1328.48 58550.7

30/365 t11 = 0:106334 T11 = 0:211849 436.802 1310.41 58498.3

45/365 t12 = 0:101317 T12 = 0:209388 431.728 1295.19 58462.4

120.365
15/365 t11 = 0:115712 T11 = 0:214772 442.828 1328.48 58651.9

30/365 t11 = 0:106334 T11 = 0:211849 436.802 1310.41 58599.5

45/365 t12 = 0:101317 T12 = 0:209388 431.728 1295.19 58563.6

0.01

60/365
15/365 t11 = 0:115739 T11 = 0:214792 442.870 1328.61 58449.3

30/365 t11 = 0:116346 T11 = 0:211861 436.827 1310.48 58397.3

45/365 t12 = 0:101321 T12 = 0:209396 431.745 1295.23 58362.3

90.365
15/365 t11 = 0:115739 T11 = 0:214792 442.87 1328.61 58549.9

30/365 t11 = 0:106346 T11 = 0:211861 436.827 1310.48 58498.2

45/365 t12 = 0:101321 T12 = 0:209396 431.745 1295.23 58462.9

120.365
15/365 t11 = 0:115739 T11 = 0:214792 442.87 1328.61 58650.6

30/365 t11 = 0:106346 T11 = 0:211861 436.827 1310.48 58598.8

45/365 t12 = 0:101321 T12 = 0:209396 431.745 1295.23 58563.6

0.015

60/365
15/365 t11 = 0:115767 T11 = 0:214812 442.912 1328.73 58449.0

30/365 t11 = 0:106358 T11 = 0:211874 436.853 1310.56 58397.9

45/365 t12 = 0:101325 T12 = 0:209404 431.761 1295.28 58363.3

90.365
15/365 t11 = 0:115767 T11 = 0:214812 442.912 1328.73 58549.2

30/365 t11 = 0:106358 T11 = 0:211874 436.853 1310.56 58498.0

45/365 t12 = 0:101325 T12 = 0:209404 431.761 1295.28 58463.5

120.365
15/365 t11 = 0:115767 T11 = 0:214812 442.912 1328.73 58649.3

30/365 t11 = 0:106358 T11 = 0:211874 436.853 1310.56 58598.2

45/365 t12 = 0:101325 T12 = 0:209404 431.761 1295.28 58563.6
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discount rate increases. Otherwise, if the length of
trade credit of M1 is large enough, the joint total
pro�t increases as the discount rate increases. In
addition, for the given values of � and M1, the length
of trade credit of M2 has no e�ect on the retailer
and the supplier's optimal ordering and production
polices since the optimal retailer's payment policy is
payment at time M1; however, the joint total pro�t
increases when M2 increases, implying an increase in
the supplier's interest earned. Finally, for given values
of � and M2, when the length of trade credit of M1
increases, the retailer will pay at time M1 to take the
price discount and order less quantities to enjoy the
bene�t of trade credit repeatedly. However, the joint
total pro�t of the supply chain system decreases as M1
increases.

Example 4. In this example, we study the e�ects of
changes in other parameters P , D, K, A, F , r, �, hv,
hhb1 , hhb2 , C, v, p, k, �, Iv, Ip, and Qd on the optimal
solutions. The data in this example are identical to
those in Example 1. The results of the comparison
are shown in Table 5. Based on the results shown in
Table 5, the following observations can be made:

(a) When production rate P , the holding cost pa-
rameters of hv; hb1 ; hb2 or the retailer's wholesale
price v increase, all the retailer's length of cycle
time, during which the stock reaches zero t�, the
retailer's length of cycle time T �, retailer order
quantity Q�, supplier production quantity n�Q�,
and joint total pro�t JTP (n�; T � ; t�) decrease;

(b) As for the impact of the value of D or � on the
optimal solutions and joint total pro�t, the values
of t� and T � decrease, yet Q� and n�Q� increase
when the value of D or � increases. From the
economic point of view, the retailer will order more
and the supplier will product more in response to
increased demand rate or defective rate. While
the demand rate has a positive e�ect, defective
rate has a negative e�ect on the joint total pro�t;

(c) The value of K, A or F has positive e�ect on
the retailer's and the supplier solutions; however,
they have negative e�ect on the joint total pro�t
of the supply chain system. It is very intuitive
of the retailer and supplier to, respectively, order
and produce more as the costs such as setup
cost, ordering cost, and �xed transportation cost
increase. Thus, of course, the joint total pro�t will
reduce;

(d) Although the optimal solutions are not a�ected by
the values of r; c; k; Iv or Ip, the joint total pro�t
increases with a decrease in the values of r; c, or Iv,
yet increases in the value of k or Ip. It is obvious
that the retailer's order quantity does not a�ect

the parameters related to the supplier. Further, we
�nd the number of shipments too rigid for changes
in the supplier's parameters since the number must
be an integer;

(e) As the value of � increases, the value of t�
increases; however, the values of T �; Q�; n�Q�, and
JTP (n�; T � ; t�) decrease. This numerical result
is also very intuitive because the retailer will try to
avoid stockouts when the shortage cost increases;

(f) The values of t�; T �; Q�, and n�Q� decrease, while
JTP (n�; T �; t�) increases with the increase of the
value of p, because the retailer may order fewer
quantities caused by shorter replenishment cycle
as the retailer's selling price increases (implying
the interest earned increases) to enjoy the bene�t
of trade credit repeatedly; hence, the joint total
pro�t increases;

(g) Although the optimal solutions and joint total
pro�t are not a�ected by the value of Qd, it is
bene�cial for the retailer when the order quantity
threshold at which shipping cost is absorbed by
the supplier is low (for example, Qd = 400 < Q� =
436:827 in Table 5).

6. Conclusion

Although the inventory-related literatures with trade
credit have been widely published, few literatures have
considered supply chain inventory model. Moreover,
no previous studies have discussed the issue of the
freight concession that could e�ectively promote the
order quantity. Therefore, this study investigated an
integrated supplier-retailer production and inventory
model where the following issues were taken into
account simultaneously: (1) The supplier provides
a two-part trade credit which allows the retailer to
either make full payments at a certain time or pay
earlier with a cash discount, (2) The retailer can
enjoy a freight concession if the order quantity is over
the speci�ed threshold, (3) The retailer's arriving lot
contains defective items, and (4) Shortages are allowed
for the retailer and completely backlogged. To make
the model more rigorous, three theorems were proposed
to ensure the existence and uniqueness of the optimal
solutions; then, an algorithm was provided to reveal the
optimal solutions. Furthermore, numerical examples
demonstrating the solution procedures and a sensitivity
analysis of the optimal solutions with respect to all
parameters were presented. The numerical results
yielded several main management insights: (1) When
the supplier provides a two-part trade credit, the
retailer may order fewer quantities caused by shorter
replenishment cycle to enjoy the bene�t of trade credit
repeatedly. Further, if the retailer's interest earned
exceeds a certain threshold (e.g., Ie � 0:05, Example
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Table 5. Optimal solutions under di�erent parametric values.

Parameters Value t� T � Q� n�Q� JTP (n�; T �; t�)

P
4400 0.1066 0.2123 437.741 1313.22 58400.9
4500 0.1063 0.2119 436.827 1310.48 58397.5
4600 0.1061 0.2114 435.958 1307.87 58394.2

D
1950 0.1077 0.2142 430.554 1291.66 56912.8
2000 0.1063 0.2119 436.827 1310.48 58397.5
2050 0.1051 0.2096 443.055 1329.16 59882.6

K
275 0.1034 0.2067 426.184 1278.55 58437.3
300 0.1063 0.2119 436.827 1310.48 58397.5
325 0.1092 0.2169 447.203 1341.61 58358.6

A
45 0.1046 0.2088 430.475 1291.42 58421.3
50 0.1063 0.2119 436.827 1310.48 58397.5
55 0.1081 0.2149 443.084 1329.25 58374.1

F
25 0.1046 0.2088 430.475 1291.42 58421.3
30 0.1063 0.2119 436.827 1310.48 58397.5
35 0.1081 0.2149 443.084 1329.25 58374.1

r
0.009 0.1063 0.2119 436.827 1310.48 58399.6
0.01 0.1063 0.2119 436.827 1310.48 58397.5
0.011 0.1063 0.2119 436.827 1310.48 58395.4

�
2.75 0.1018 0.2132 439.522 1318.56 58411.3

3 0.1063 0.2119 436.827 1310.48 58397.5
3.25 0.1105 0.2107 434.417 1303.25 58385.0

hv
1.4 0.1089 0.2164 446.104 1338.31 58431.5
1.5 0.1063 0.2119 436.827 1310.48 58397.5
1.6 0.1039 0.2076 428.096 1284.29 58364.2

hb1
1.95 0.1076 0.2123 437.746 1313.24 58400.2

2 0.1063 0.2119 436.827 1310.48 58397.5
2.05 0.1051 0.2114 435.931 1307.79 58394.9

hb2
1.75 0.1064 0.2119 437.002 1311.01 58398.2
1.8 0.1063 0.2119 436.827 1310.48 58397.5
1.85 0.1063 0.2118 436.652 1309.96 58396.8

c
9.5 0.1063 0.2119 436.827 1310.48 59428.4
10 0.1063 0.2119 436.827 1310.48 58397.5

10.5 0.1063 0.2119 436.827 1310.48 57366.6

v
18 0.1066 0.2121 437.335 1312.01 58405.1
20 0.1063 0.2119 436.827 1310.48 58397.5
22 0.1061 0.2116 436.324 1308.97 58389.9

p
38 0.1075 0.2122 437.512 1312.53 54390.7
40 0.1063 0.2119 436.827 1310.48 58397.5
42 0.1052 0.2115 436.129 1308.39 62404.3
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Table 5. Optimal solutions under di�erent parametric values (continued).

Parameters Value t� T � Q� n�Q� JTP (n�; T �; t�)

k
9 0.1063 0.2119 436.827 1310.48 58335.6
10 0.1063 0.2119 436.827 1310.48 58397.5
11 0.1063 0.2119 436.827 1310.48 58459.4

�
0.02 0.1076 0.2140 436.699 1310.10 58412.8
0.03 0.1063 0.2119 436.827 1310.48 58397.5
0.04 0.1051 0.2098 437.006 1311.02 58382.0

Iv
0.04 0.1063 0.2119 436.827 1310.48 58431.1
0.05 0.1063 0.2119 436.827 1310.48 58397.5
0.06 0.1063 0.2119 436.827 1310.48 58363.9

Ip
0.02 0.1063 0.2119 436.827 1310.48 58363.9
0.03 0.1063 0.2119 436.827 1310.48 58397.5
0.04 0.1063 0.2119 436.827 1310.48 58431.1

Qd
400 0.1063 0.2119 436.827 1310.48 58397.5
500 0.1063 0.2119 436.827 1310.48 58397.5
600 0.1063 0.2119 436.827 1310.48 58397.5

2), the retailer may pay at time M2 to bene�t from the
permissible delay in payments; otherwise, the retailer
will pay at early time M1 to receive a discount on the
purchase price; (2) The retailer will order more and
the supplier will produce more in response to increased
defective rate of items; however, it has a negative e�ect
on the joint total pro�t; (3) The number of shipments
is rigid for changes in the supplier's parameters since it
must be an integer; (4) Although the optimal solutions
and joint total pro�t are not a�ected by the value of the
order quantity threshold in the integrated supply chain,
it is an important factor for determining whether the
freight should be paid by the retailer or by the supplier.

The proposed model can be extended to include
other aspects. For instance, it would be interesting to
consider the supply chain system with multiple items
or deteriorating items. In addition, inventory shortages
are common in business. Some customers willingly wait
for backlogged orders during shortage periods, whereas
others do not. It is, therefore, necessary to relax the
complete restriction on backlogging. Furthermore, the
supplier and retailer are not necessarily integrated; the
two parties may be only loosely associated or possibly
in competition. Future researches should discuss the
optimal decisions for the two parties from cooperative
and competitive perspectives. On the other hand,
sta� negligence, aging equipment, ine�ective inspection
technology, and erroneous inspection results must be
considered. Thus, a proportion of non-defective items
might be misclassi�ed as defective (termed as a Type I
inspection error), and a proportion of defective items
might be misclassi�ed as non-defective (termed as

Type II inspection error). Hence, the e�ects of these
inspection errors on any newly proposed model should
be considered. Finally, similar to the transportation
cost, the number of transportations increases which
implies the increasing percentage of carbon emission.
Carbon is a basic element in fossil energy, and cutting
carbon equals cost savings and operational e�ciency.
Thus, the e�ect of carbon emission cost can be taken
into account in the future research.
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