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Abstract. The main purpose of emergency medical services is to provide fast medical care,
as well as to transport patients to the hospital in the shortest possible time. Healthcare
managers try to improve healthcare systems through reducing the time it takes to respond
to demands. In this paper, we seek to propose an optimization model in order to cover
as much demand as possible in the shortest possible time using the available ambulance

eet. To do so, considering the response and service time, amount of demand during the
time periods, limitation in the number of available emergency vehicles and the capacity of
ambulance stations, we have proposed a mixed integer linear programming optimization
model, aiming to minimize the total response time. In this paper, we take into account

eet relocation and unavailability time, the time interval in which the vehicle is on its way
or doing a service at a demand point. Then, a sensitivity analysis is conducted on the
model by manipulating the parameters to observe the e�ects on the outputs. In order to
evaluate the model, several arti�cial test problems were generated and solved. The results
depict the capability of the proposed model in dealing with emergency cases.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Health infrastructure supports the health services. Due
to the high cost of providing new facilities, there is
always a tendency towards optimum use of the existing
infrastructure. Health services can be categorized
into three main categories: preventive, emergency,
and centralized services. Preventive services include
actions like vaccination, while centralized services
consist of health centers. The main focus of this
paper is on emergency services. Emergency services
like ambulances provide vital care in order to save
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people's lives. The unpredictability of the time and
place of emergency incidents is the main issue in this
category. The emergency demand in these services is
covered by the Emergency Vehicles (EV) located at
�xed points; therefore, the location of ambulances is
important in service quality level. The main challenge
in emergency services is to minimize the time it takes to
respond to demands (i.e., the time between emergency
call receipt and EV arrival to the demand point).
Accordingly, special standards related to the response
time to emergency demands have been established in
di�erent countries. For instance, in the U.S., this time
is between 4 and 5 minutes for vital issues (e.g., heart
attacks, severe accidents) [1]. Likewise, in BC, Canada,
this standard is 9 minutes or less in urban areas [2].

Four steps are included in the process of respond-
ing to an emergency demand in Emergency Medical
Services (EMS): (1) incident detection and reporting,
(2) call screening, (3) EV dispatch, and (4) actual
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interventions at the scene. Incident detection is related
to the moment that an emergency call is received.
Next, the level of the incident is determined in order
to �nd the type as well as the number of ambulances
needed to be dispatched. This step is one of the
toughest challenges in EMS [3]. Hence, it is important
to locate EVs properly at stations. Based on the level of
the incident and other data, the appropriate ambulance
is dispatched afterwards. The last step is to provide
patients with initial interventions. Short response to
demand time and returning to the emergency stations
are essential in order for the EVs to be available and
to cover the demand of upcoming periods.

In this paper, a new MIP model is presented to
deal with the problem of emergency vehicles location
and relocation. Unlike most of the previous works in
the literature, 
eet relocation and unavailability time
are considered. This results in higher utilization of the
available 
eet and, therefore, higher service standards
as well less needed 
eet to cover the demand. Using the
presented model, a manager can get a holistic view of
the system under his/her demand to evaluate changes
and improvements.

In Section 2, the related works in the literate
are reviewed brie
y. Then, in Section 3, the problem
under study is described in detail. The proposed
mathematical model is presented in Section 4. In order
to illustrate the performance of the proposed model,
a simple numerical example is presented and solved in
Section 5. A sensitivity analysis is conducted on the
proposed model, the results of which can be found in
Section 6. In order to evaluate the capability of the
model in dealing with di�erent problems from di�erent
sizes, several test cases are solved in Section 7. Finally,
we draw a conclusion in Section 8.

2. Literature review

Several studies have been conducted on EV location
in recent decades. In this section, the previous related
works are discussed. The common feature in most of
the selected works is consideration of EV unavailability
during service time. For further information about
EV location, the interested reader can see the review
papers available in the literature such as [3-9].

Two of the �rst optimization models utilized
frequently to formulate the EV location problem are
Location Set Covering Models (LSCM) and Maximal
Covering Location Problem (MCLP) proposed by Tore-
gas et al. [10] and Church and Velle [11] for the
�rst time, respectively. In LSCMs, the aim is to
minimize the number of ambulances needed to cover
the demand. Both LSCMs and MCLPs do not consider
many real-world aspects of the problem; the most
important shortcoming of these models is that, once an
ambulance is dispatched, some demand points are no

longer covered [3]. However, the main shortcoming of
LSCMs is that they need too many emergency vehicles
to deal with all the demands in the planning horizon.
Later, some researchers have considered using MCLP
models. These models maximize population coverage
while taking limited 
eet constraint into account.
Eaton et al. [12] applied MCLP in order to shake up
EMS in Austin, Texas, which resulted in a $3.4 million
construction cost cut down as well as a $1.2 million save
per year through lowering operations costs. The base
models were developed in di�erent ways to address real-
world conditions. A common way to develop classic
models is to consider multiple vehicle types. One of
the �rst models in which multiple vehicle types are
considered is Tandem Equipment Allocation Model
(TEAM) proposed by Schilling et al. [13]. TEAM can
be considered as a development of MCLP in which a
new set of constraints is introduced in order to impose
the hierarchy of vehicles. In the aforementioned mod-
els, the coverage may be insu�cient during the busy
time periods. To overcome this de�ciency, Hogan and
ReVelle [14] proposed two di�erent Backup Coverage
Formulations called BACOP1 and BACOP2.

Some of the models, using a probabilistic ap-
proach, attempt to maximize demand coverage. Ac-
cording to Daskin [15], one of the leading proba-
bilistic models proposed for EV location is Maximum
Expected Covering Location Problem (MEXCLP). In
this model, each EV is assumed unavailable by a
prede�ned probability, and EVs are independent of
one another. Repede and Bernardo [16] extended
MEXCLP by considering temporal changes in the daily
demand, as well as spatial variation and multiple
states of vehicle availability. The results show that
their method was able to increase the number of calls
covered in 10 minutes, from 84% to 95%. In addition,
response time was reduced by 36%. In another study,
Goldberg et al. [17] proposed a variant of MEXCLP
in which the travel times were assumed to take values
stochastically. The model attempted to maximize the
number of calls covered within 8 minutes. The authors
implemented the model on the data from Arizona,
U.S., the result of which was a 1% increase in the
expected number of calls covered within 8 minutes.
Moreover, the worst covering ratio of a zone in time was
increased from 24% to 53.1%. ReVelle and Hogan [18]
propose two probabilistic methods, namely Maximum
Availability Location Problems I & II (MALP I and
MALP II), which are formulated as chance-constrained
programming problems. An extension of LSCM was
proposed by Ball and Lin [19], called Rel� p, in which
they utilized a linear constraint on the 
eet size needed
to reach a prede�ned reliability level.

Rajagopalan et al. [20] proposed a multi-period
set covering location model for dynamic redeployment
of ambulances. They sought to �nd the minimum num-
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ber of ambulances needed and their location in each
time cluster in which the changes in the demand pat-
terns were signi�cant. They also considered reaching a
prede�ned reliability level in demand coverage. Degel
et al. [21] focused on the fact that, within a 24-hour
cycle, the demand, travel time, speed of ambulances,
and areas of coverage change and presented a new
approach in order to maximize the coverage, which has
been adjusted for variations due to daytime and site. A
mixed-integer programming formulation was presented
to formulate the location and relocation of EVs.

The focus in most of the recent works is on
dynamic models and the unavailability of EVs and their
relocation in order to cover the demand of upcoming
time periods. Dynamic models are utilized to �nd
deployment/redeployment strategies when a number
of ambulances are busy serving demand points. Dy-
namic models can be seen to be in contrast to those
strategies in which every ambulance is sent back to
its 'home base' after visiting a demand node. In the
majority of dynamic models, the aim is not to �nd
a good set of locations for the base points, but to
�nd the best strategies based on a given set of nodes.
Dynamic models can aid managers make daily or even
hourly plans to respond better to predictable demand

uctuations by time and space [20,22]. One of these
dynamic approaches, called Emergency Vehicle Rede-
ployment Problem (EVRDP) [23], applies a dynamic
ambulance management procedure, so as to control
the unavailability of ambulances. Studies in this �eld,
mostly, applied real-time-based and multi-period-based
approaches. In [24], a dynamic relocation system
is developed for �re companies in New York, U.S.
Another dynamic model in the �eld of EV relocation is
Dynamic Double Standard Model (DDSM), proposed
by Gendreau et al. [23], which utilizes the framework
proposed by Gendreau et al. [25]. This model takes into
account standard coverage and capacity constraints, as
well as some dynamic features of the problem such
as avoiding driving the same ambulance repeatedly,
avoiding round trips, and avoiding long trips. Yang
et al. [26] considered the dispatching and relocation of
EVs in a single problem and used an online dispatch
framework in order to improve the EV operations.
Maxwell et al. [27] presented an approximated dynamic
programming approach to decide where to redeploy
the idle ambulances to maximize number of calls
reached within a delay threshold. They formulated the
program as a Markov decision process and proposed
some approximations to the value function in order to
deal with the high-dimensional and uncountable state
space of the dynamic paradigm. Nogueira Jr et al. [28]
proposed an optimization model to reduce emergency
service response time via reallocation of ambulances
to the bases. They also ran a simulation of their
model to observe its performance in dynamic settings.

Schmid [29] solved the problem of location and reloca-
tion of emergency vehicles using Approximate Dynamic
Programming (ADP). They conducted some empirical
tests on data derived from a real case in the city of
Vienna. Their results showed a 13% improvement in
the performance of the system under study. Knight et
al. [30] proposed models focusing on the assumption
of multiple patient classes. Their model aims to
maximize the overall expected survival probability of
multiple classes of patients. They also presented an
approximation method to solve the stochastic version
of their model. Belanger et al. [31] evaluated and
analyzed di�erent relocation strategies. The results
of this study suggested that dynamic approaches, al-
though more expensive, dominated static ones. A real-
time approach to maximizing coverage with minimum
possible total travel time was proposed by Enayati
et al. [32]. They considered accumulated workload
restrictions for personnel in a shift. The reported
results showed a signi�cant improvement in average
coverage. Yue et al. [33] proposed another simulation-
based approach. The goal of their proposed approach
was to position an entire 
eet of ambulances to base
locations in order to maximize the service level/quality
of the emergency medical services system. Alanis
et al. [34] presented a two-dimensional Markov chain
model of an emergency medical services system. This
model relocated ambulances using a compliance table
policy. For the purpose of validation, they utilized
a detailed simulation model in di�erent scenarios.
Sudtachat et al. [35] considered a nested-compliance
table, which restricts the number of relocations that
can occur simultaneously. The nested-compliance
table is modeled as an integer programming model
aiming to maximize expected coverage. The authors
determined an optimal nested-compliance using steady
state probabilities of a Markov chain model. The
relocations were considered as input parameters. One
of the previous works that considered redeployment
of EVs at a point other than their origin or base
station is the paper presented by Jagtenberg et al. [22].
The authors claimed that although the problem was
a di�cult one in nature, it could be solved in real
time with their proposed polynomial-time heuristic.
Another paper that falls in this category is the work of
van Barneveld et al. [36]. In their proposed heuristic
redeployment method, the ambulances can idle at any
desired node. Moreover, Majzoubi et al. [37] proposed
integer linear, nonlinear programming model and an
approximation method aiming to minimize the total
travel costs, the penalty of not meeting response time
window for patients, and the penalty of not covering
census tracts. The main point of this work is that they
have assumed that an ambulance can serve two demand
points in one trip, i.e., an ambulance can pick up two
patients in special occasions.
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Multi-period redeployment problem (MDRDP)
seeks to provide a redeployment plan based on the
estimation of demand 
uctuations within the planning
horizon [38]. Schmid and Doerner [39] developed the
DSM approach so that it could be used in multi-period
redeployment problems. In [40], a bi-objective model
was proposed to minimize the number of ambulances
used and also to minimize the number of redeployments
within a shift. Naoum-Sawaya and Elhedhli [41]
presented a two-stage stochastic optimization model
for ambulance redeployment problem. To achieve a
reasonable level of service, this model minimizes the
number of relocations in the planning horizon. In their
mode, the relocations are considered predetermined
parameters; in other words, the reason for the unavail-
ability of the ambulances is not strictly speci�ed and it
is only formulated as an input parameter of the model.
The two-stage model presented by Lei et al. [38] takes
into account the assumption of redeployment of EVs
that are sent out for duty. In this model, travel times
and demand are uncertain in each time period.

Reviewing the literature, we came to the conclu-
sion that although many valuable studies have been
conducted in this area and some of them, such as
Jagtenberg et al. [22] and van Barneveld et al. [36],
have considered the relocation of emergency vehicles,
there are still some issues that are not addressed in the
previous studies. In some studies, the expected fraction
of later arrivals is minimized. This approach neglects to
consider the unavailability time of emergency vehicles.
In some other studies, the emergency vehicles are
assumed to be relocated only at their based stations,
which is not the case in many real-world situations.
Therefore, in this paper, a mathematical optimization
model is presented, in which both ambulance unavail-
ability time and relocation are taken into account. We
deal with relocation as a decision variable and a way
to better utilize the available 
eet at hand.

3. Problem statement

In order to dispatch an ambulance, after call screening,
it is necessary to consider two steps: (1) assigning
ambulances to emergency stations and (2) relocating
ambulances in emergency stations to cover the demand

Figure 1. Emergency response process.

of upcoming periods. With respect to the status of
EVs in each time period, the unavailable periods should
be determined. Figure 1 shows that the collection of
actions should be taken after an incident detection. In
order to dispatch the EVs, it is required to determine
the service time at the demand point, and the travel
time to a new station for the purpose of relocation. The
sum of these times is called the busy time (Figure 2).
Hence, the ambulance is unavailable from the moement
it is dispatched up to the time it is relocated at a
new station. Accordingly, an approach is required to
compute the number of available ambulances to cover
the demand in a multi-period system.

Many of the existing models in the �eld of location
and relocation of EVs are single-period. However,
in some recent studies, these issues are taken into
consideration. Moreover, in most of the previous
studies, as soon as an ambulance is sent out, it is
eliminated from the 
eet, yielding poor performance
of emergency system.

According to the literature, there are two types of
ambulance in di�erent countries: basic and advanced.
Both types can respond to all demands; however, the
advanced type is usually dispatched for cardiac arrest
or similar situations when there is a need for a faster

Figure 2. Response time and unavailable time of an ambulance.
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service. Although the basic type can also be used to
respond to this kind of demands, it takes longer to
perform the service. In case of severe accident, more
than one demand can perhaps be created in the same
location. Considering this issue, the proposed model
dispatches one ambulance for each demand, and the
number of dispatched ambulance will be equal to the
number of the demands.

Based on the aforementioned facts, in this paper,
we aim to develop a model to provide maximum
demand coverage in the least possible time for the
planning horizon. In the proposed model, to provide
high levels of conservatism, the length of each time
period is assumed to be 1 minute (the reason is
explained in Section 4.5 in detail). One of the features
of the model is dividing EV busy time into dispatching,
service, and return time. The objective functions
attempt to minimize total dispatch and relocation time.
It should be noted that, due to the number of EVs
at hand, there are some conditions in which all the
demand cannot be covered. To maximize the demand
coverage, the amount of unmet demand is penalized in
the objective function.

The main purpose of the proposed model is to pro-
vide a system-wide view for managers. In this way, they
are able to detect weak spots and identify potentials for
improvement in their respective system. For instance, a
manager might want to know that how would adding a
new emergency station and adding a new ambulance
to the 
eet or any other similar changes a�ect the
emergency system and its performance. In fact, the
purpose of the proposed model is not to satisfy a
speci�c demand pattern, but to help the decision-maker
gain a holistic knowledge of the system under his/her
management. Furthermore, considering the limited
resources of the system, including the number and the
type of the ambulances, the emergency stations as well
as their capacity, the proposed model tries to make the
best of this limited resources by taking into account
ambulance relocation and ambulance unavailability.

According to the main purpose of the proposed
method mentioned above, it should be noted that the
lack of response to a demand does not necessarily
mean that no ambulance can be dispatched to that
location. Since failing to respond to a demand can
potentially have signi�cant costs for the emergency
system, the demand must be satis�ed by any means
possible. By assigning a signi�cant high cost to the
unmet demands, the decision-maker may conclude that
the number of emergency vehicles must be increased,
or a new emergency station should be established.

4. Mathematical model

In this section, the proposed mathematical optimiza-

tion model for ambulance location and relocation is
discussed. In emergency response process (Figure 1),
when facing an incident, it is necessary to determine
whether an ambulance is available or not. An ambu-
lance is unavailable if one of the following conditions is
ful�lled:

� The ambulance is on its way to serve a demand;

� The ambulance is serving a demand;

� The ambulance is returning to the station it was sent
out from or to a new one.

4.1. Assumptions
The assumptions under which the model is developed
are as follows:

� Types of ambulances and 
eet size of each type are
known in advance. The type of ambulance deter-
mines its service time, which is the most important
element of unavailability time;

� The capacities of emergency stations are predeter-
mined;

� The amount of demand in each time period is �xed
and known;

� Each ambulance is either available or unavailable in
each time period;

� Due to the limited number of available ambulances,
some of the demand may remain unful�lled, which
will impose high costs on the emergency service;

� Ambulances are sent out to serve demand and after
serving the demand, they should either return to
their origin station or be relocated at another station
(based on the demand of next periods);

� The length of each time period is considered to be
1 minute;

� If the distance between a demand and an ambulance
is less than or equal to a prede�ned standard time,
it can be served by the ambulance, otherwise not.

4.2. Nomenclature
The nomenclature used to describe the proposed model
is illustrated in this subsection.

Sets
T Set of time periods indexed by t;

t 2 f1; :::; jT jg;
I Set of demand points indexed by i;

i 2 f1; :::; jIjg;
J Set of emergency stations indexed by

j; j 2 f1; :::; jJ jg;
K Set of ambulances indexed by k;

k 2 f1; :::; jKjg.
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Parameters

tij Time distance between demand point i
and emergency station j;

tki Service time of ambulance k at demand
point i. (This time is determined based
on the type of the ambulance and the
demand point.);

uj Capacity of emergency station j;

T st Standard response time;
bij Binary parameter whose value is equal

to 1 i� tij � T st;
�ti Penalty associated with uncovered

demand of demand point i in time
period t;

dti Value of demand point i in time period
t.

Variables
xtkj Binary variable whose value is equal

to 1 i� ambulance k is assigned to
emergency station j in time period t;

pti Integer decision variable indicating the
value of uncovered demand of demand
point i at time period t;

ytkij Binary variable whose value is equal
to 1 i� demand point i is served by
ambulance k from station j at time
period t;

yptkij Binary variable whose value is equal to
1 i� ambulance k starts returning from
demand point i to station j at time
period t;

RLtkij Binary variable whose value is equal
to 1 i� ambulance k is relocated from
demand point i to station j at time
period t;

�tkj Binary variable whose value is equal to
1 i� xt�1

kj �Pi y
t�1
kij � 1j.

4.3. Mathematical formulation
The mathematical formulation of the proposed model is
discussed in this section. The model is a mixed integer
linear programming model:

Min
X
t2T

X
k2K

X
j2J

X
t2T

tij
�
ytkij +RLtkij

�
+
X
t2T

X
i2I

�tip
t
i;

(1)

X
k2K

xtkj � uj 8j 2 J; t 2 T; (2)

X
j2J

xtkj � 1 8k 2 K; t 2 T; (3)

ytkij � xtkj 8k 2 K; i 2 I; j 2 J; t 2 T; (4)

ytkij � bij 8t 2 T; k 2 K; i 2 I; j 2 J; (5)X
j2J

X
k2K

ytkij + pti � dti 8i 2 I; t 2 T; (6)

X
j02J

ypt
0
kij0 � ytkij

8t; t0 2 T; i 2 I; j 2 J; k 2 K : t0 = t+ tij + tki;
(7)

ypt
0
kij0 �

X
t2T

X
j2J

t0=t+tij+tki

ytkij

8t0 2 T; i 2 I; j0 2 J; k 2 K; (8)X
i2I

X
j2J

ytkij � 1 8t 2 T; k 2 K; (9)

X
i2I

X
j2J

yptkij � 1 8t 2 T; k 2 K; (10)

RLt
0
kij0 = yptkij0

8t; t0 2 T; i 2 I; j0 2 J; k 2 K : t0 = t+ tij0 ; (11)

RLt
0
kij = 0;

8t; t0 2 T; i 2 I; j 2 J; k 2 K : t0<1 + 2tij+tki;
(12)

xt�1
kj �

X
i2I

yt�1
kij � xtkj

8j 2 J; k 2 K; t 2 T : t 6= 1; (13)X
i2I

RLtkij � xtkj 8j 2 J; k 2 K; t 2 T; (14)

xt�1
kj �

X
i2I

yt�1
kij � 1� 2

�
1� �t�1

kj

�
8j 2 J; k 2 K; t 2 T : t 6= 1; (15)

xt�1
kj �

X
i2I

yt�1
kij � �t�1

kj

8j 2 J; k 2 K; t 2 T : t 6= 1; (16)

�t�1
kj +

X
i2I

RLtkij � xtkj

8j 2 J; k 2 K; t 2 T : t 6= 1; (17)
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xtkj ; �
t
kj 2 f0; 1g 8k 2 K; j 2 J; t 2 T;

pti 2 Z 8i 2 I; t 2 T;
ytkij ; yp

t
kij ; RL

t
kij 2 f0; 1g

8k 2 K; i 2 I; j 2 J; t 2 T:
The objective function (1) aims to minimize the sum-
mation of response time and relocation time as well
as total penalty costs. Constraint (2) guarantees that
the number of ambulances in none of the stations
exceeds its capacity in any time period. Constraint (3)
represents the fact that each ambulance can be located
at most at one station in any time period. Constraint
(4) implies that an ambulance can be sent out from a
station to serve a demand point only if it is located
at that station. Departure of ambulances is possible if
and only if the distance between the station and the
demand point is less than or equal to the prede�ned
standard time; this rule is imposed on the model
by Constraint (5). Constraint (6) ensures that all
the demand should be either covered or marked as
uncovered (the uncovered demand is penalized in the
objective function). Constraint (7) implies that if an
ambulance is sent out for service, it has to either return
to its origin station or be relocated at another station.
Constraint (8) ensures that ambulance k can return
to station j0 in time period t0 = t + tij + tki only
if it has been dispatched for service from station j.
Constraint (9) is added to the model to guarantee
that each ambulance can be sent out from at most
one station to at most one demand point in each time
period. Likewise, Constraint (10) ensures that an
ambulance can return from at most one demand point
to at most one emergency station in each time period.
Constraint (11) aims to imply that if an ambulance
returns to station j0 in time period t, it should be
relocated at t0 = t + tij0 at that station. Constraint
(12) prevents the model from relocating ambulances
in time periods t < 1 + 2tij + tki: the time needed
for service plus the response time and return time.
Constraints (13)-(17) include ambulance availability
at stations' constraints whose logical relationships are
described in Section 4.4.

4.4. Ambulance availability constraints
In this subsection, the process of formulating ambu-
lance availability constraints in terms of linear math-
ematical optimization modeling is presented. An
ambulance is available at station j in time period t
if at least one of the following conditions is true:

A Ambulance k is available at station j in time period
t� 1 and is not dispatched in time period t� 1.

B Ambulance k is relocated at station j in time
period t.

Let C be equivalent to the availability of the ambu-
lance; hence, C � TRUE if and only if A � TRUE or
B � TRUE, which can be formulated as A _B , C.

Next, we rewrite A, B, and C as follows:

A � �xt�1
kj = 1

� ^ X
i2I

yt�1
kij = 0

!
; (18)

B �X
i2I

RLtkij = 1; (19)

C � xtkj = 1: (20)

Then, because
P
i2I yt�1

kij 2 f0; 1g (according to Con-
straint (9)), we can reformulate A as follows:

A � �xt�1
kj = 1

� ^ X
i2I

yt�1
kij = 0

!

� �xt�1
kj = 1

� ^ 1�X
i2I

yt�1
kij = 1

!

� xt�1
kj + 1�X

i2I
yt�1
kij = 2

� xt�1
kj �

X
i2I

yt�1
kij � 1: (21)

Now, we impose A _ B , C on the model. To do so,
we start with the �rst side and write the contrapositive
of the �rst side:

A _B ) C

� C 0 ) A0 ^B0

� (C 0 ) A0) ^ (C 0 ) B0) : (22)

Simply, the contrapositive can be formulated in the
mathematical optimization model as Relations (13)
and (14). In order to impose the second side (C )
A_B), we utilize an auxiliary (indicator) variable �t�1

kj
such that:

�t�1
kj = 1, xt�1

kj �
X
i2I

yt�1
kij � 1; (23)

which can be decomposed and rewritten as Eqs. (24)
and (25).

�t�1
kj = 1) xt�1

kj �
X
i2I

yt�1
kij � 1; (24)
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xt�1
kj �

X
i2I

yt�1
kij � 1) �t�1

kj = 1: (25)

In order to reformulate Eq. (25) so as to be added to
the mathematical optimization model, �rst, we have to
write the contrapositive.

xt�1
kj �

X
i2I

yt�1
kij � 1) �t�1

kj = 1

� �t�1
kj = 0) xt�1

kj �
X
i2I

yt�1
kij < 1

� �t�1
kj = 0) xt�1

kj �
X
i2I

yt�1
kij � 0: (26)

The linearized formats of Eqs. (24) and (26) are added
to the model as Constraints (15) and (16), respectively.
Finally, after adding variable � to the model as well as
the related dependency constraints, we are ready to
impose C ) A _B on the model:

C ) A _B

� �xt�1
kj = 1

�) �
�t�1
kj = 1

� _ X
i2I

RLtkij = 1

!
� xtkj = 1) �t�1

kj +
X
i2I

RLtkij � 1

� �t�1
kj +

X
i2I

RLtkij � xt�1
kij : (27)

4.5. Determining length of each time period
In order to determine an appropriate value for the
length of each time period t 2 T , �rst, we have to
calculate the likelihood of having 0 or 1 phone calls
per each time period. Assuming a Poisson distribution
with parameter � for the number of hourly emergency
phone calls, the probability that 0 or 1 phone call is
received in each time period can be calculated through
Eq. (28).

p(0) + p(1) = e��t + �te��t = (1 + �t)e��t: (28)

For the small amounts of ��t, the estimated value,
e��t t 1��t, can be used. The length of time periods
should be small enough in order to assure that, in each
time period, at most one emergency call is received. We
assume that the probability of receiving 0 or 1 phone
call is greater than or equal to 1� �. Therefore:

(1 + �t)(1� �t) � 1� �) 1� �2t2 � 1� �: (29)

Accordingly, the length of each time period should
be less than or equal to

p
�
� . For instance, assuming

� = 0:01 and � = 2 calls/hour, the length of each

time period should be less than or equal to 3 minutes,
i.e., 20 time periods are needed for a 1-hour planning
horizon. According to the data, in busy time periods, 6
calls are received within an hour. Hence, considering a
con�dence level of 99%, the length of each time period
is assumed to be 1 minute.

5. Numerical example

In this section, a simple numerical example is solved in
order to demonstrate the performance and to validate
the proposed model. The example includes �ve demand
points, two emergency stations, three ambulances, and
a time horizon of 120 minutes. Ten incidents are as-
sumed to happen during the time horizon. Ambulances
#1 and #2 are of the basic type, while ambulance #3 is
of the advanced type. Serving time varies between 8 to
10 minutes. Each emergency station has a capacity of
two ambulances. Standard response time is assumed
equal to 10 minutes. Emergency stations are labeled
from 1 to 2, and the demand points are labeled from 3
to 7. Time distances between the demand points and
the emergency stations are shown in Table 1.

The numerical example is solved using OPL and
CPLEX 12.6. In this example, the statuses of ambu-
lances #1 to #3 during the time horizon are depicted
in Figures 3 to 5. The status (vertical axis) is equal to 0
if the ambulance is not available, i.e., it is on its way to
an emergency station or is on its way to be relocated at
an emergency station. Otherwise, the status shows the
position of the ambulance: 1-2 for emergency stations
and 3-7 for demand points. For instance, ambulance
#2 is unavailable between time periods 62 and 69 and
is relocated at emergency station 6 afterwards.

Ambulance #1 is stationed at emergency sta-
tion #1 from time periods 1 to 15. In time period
15, it is dispatched in order to respond to the incident
at demand point #6 and in period 21, and it will
serve demand point #6 for about 10 minutes. Then, it
returns to emergency station #1 and will be stationed
there in time period 37. It will remain at emergency
station #1 from periods 37 to 47 and, then, will be
dispatched to demand point #4. It is unavailable from
periods 48 to 81, and it is stationed at emergency

Table 1. Time distances of the numerical example.

Demand
point

Emergency
station

1 2

3 15 9
4 5 10
5 10 3
6 6 9
7 7 5
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Figure 3. Status of ambulance #1.

Figure 4. Status of ambulance #2.

Figure 5. Status of ambulance #3.

station #2 by period 72. Between periods 72 and 74,
ambulance #1 is available at emergency station #2
and, then, is dispatched in period 74 to respond to
demand point #3 and will be unavailable until time
period 101. It will be stationed at emergency station
#2 in period 102 and will stay there until period
117. Finally, it will be dispatched to demand point
#7 in period 117. Figures 4 and 5 demonstrate the
status of ambulances #2 and #3 and can be explained
similarly. In order to better illustrate the solution to
the numerical example, the assignment of ambulances
to demands is illustrated in Table 2.

6. Sensitivity analysis

This section aims to investigate the e�ect of changing
di�erent parameters on the performance of the model.
Three parameters have been considered to conduct
the sensitivity analysis: number of emergency vehicles,

Table 2. Assignment of ambulances to demand points in
the numerical example.

Demand
index

Demand
point

Time
period

Assigned
ambulance#

01 7 1 2
02 6 15 1
03 3 19 3
04 5 42 2
05 4 47 1
06 4 56 3
07 6 61 2
08 3 74 1
09 4 102 2
10 7 117 1

Figure 6. Objective value versus number of EVs.

service time, and standard response time. A small-size
test problem, including 30 time periods, 3 emergency
vehicles, 2 emergency stations, and 5 demand points,
is utilized as the test bed for the analysis.

6.1. Changing the number of EVs
By increasing the number of ambulances from 3 to 4,
the objective function is expected to improve. The
results of this analysis are illustrated in Figure 6 and
Table 3.

As shown in Figure 6, decreasing the number
of ambulances down to 2 make the number of EVs
inadequate for the whole demand coverage. Besides,
increasing the number of ambulances to 4 and 5
results in a case in which only one incident remains
uncovered and the objective function becomes better
consequently. Adding one ambulance to the 
eet,
we were not able to cover all the demands, which is
a reason of limited capacity of emergency stations.
Because the capacity of each station is equal to 2,
thus relaxing emergency stations' capacity constraint
(Eq. (2)), the objective function decreases down to 51.
It means that with 5 ambulances at hand, we are able
to cover all 6 incidents in this case.

6.2. Changing service time
In this subsection, we observe the behavior of the
objective function while changing the value of service
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Table 3. Number of EVs sensitivity analysis.

Max. no.
of EVs

Objective
value

Unmet
demand

No. of
relocations

CPU Time

2 3024 3 1 4.43
3 2031 2 1 6.05
4 1039 1 2 7.55
5 1039 1 2 9.16

Figure 7. Objective value versus service time.

time. We expect the objective function to improve as a
result of decreasing service time. Table 4 and Figure 7
depict the results of this sensitivity analysis.

As illustrated in Table 4, service time is decreased
from 8 to 6; as a result, one unmet demand is covered
in the new setting. By increasing this time to 10 and
12, the ambulances are not available in the �rst time
periods of the planning horizon. Therefore, they cannot
be relocated for further demand coverage in upcoming
periods.

6.3. Changing standard response time
In this subsection, standard response time, T st, is
manipulated in order to observe the impact on the
objective value. The objective value is expected to

Figure 8. Objective value versus standard response time.

increase/decrease in the same way as T st. The results
are illustrated in Table 5 and Figure 8.

According to Figure 8, decreasing the standard
response time from 8 down to 4 minutes causes 4 in-
cidents to remain uncovered. Likewise, decreasing the
standard response time to 6 minutes causes 3 incidents
to be uncovered. On the other hand, increasing this
parameter form 8 to 10 improves the objective value
only by one unit from 2031 to 2030.

7. Computational Results

In this section, the e�cacy of the proposed model is
investigated using several simulated test cases. The

Table 4. Service time sensitivity analysis.

Service
time

Objective
value

Unmet
demand

No. of
relocations

CPU time

6 1039 1 2 6.00
8 2031 2 1 6.04
10 3013 3 0 5.99
12 3013 3 0 6.04

Table 5. Standard response time sensitivity analysis.

Standard
response time

Objective
value

Unmet
demand

No. of
relocations

CPU time

4 4011 4 1 6.03
6 3016 3 1 5.97
8 2031 2 1 5.96
10 2030 2 1 5.84
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test cases are generated and solved in small-, medium-,
large-, and extra-large sizes.

Reviewing the literature, we found that there are
was no problem set in order to be used as test cases
of the model; hence, several test cases were simulated
in di�erent sizes. The instances vary in terms of
the number of time periods in the planning horizon,
number of EVs available, number of emergency sta-
tions, and number of demand points. These arti�cial
test problems were created according to the following
parameters:

� Planning horizon T : 30, 60, 90, 120, 240;
� Number of EVs E: 2, 3, 4, 5;
� Number of emergency stations E: 2, 3, 4;
� Number of demand points I: 5, 6, 7, 80.

For each instance, a hypothetical area of service is
considered. This area is divided into several subareas.
Number of the sub-areas equals that of demand points.
Demand points are actually the center of these sub-
areas. The demands are then distributed randomly
in the whole area. Number of demands in each
demand point equals that of demands happening in
the respective sub-area. Each demand is associated
with a type that is determined randomly, with a lower
probability for severe incidents. The service time
needed at each demand point is determined based on
the ambulance type and demand type afterwards. The
service times vary in the range of 8 to 12 minutes.

These instances will be referred to as: LRL-T-E-
S-I, e.g., LRL-30-3-2-5 refer to a set of problems with
30 time periods, 3 emergency vehicles, 2 emergency
stations, and 5 demand points. Three problems sets in
three di�erent sizes are considered: 20 small-size, 12
medium-size, and 8 large-size problems. The amount
of total demand varies from 5 to 8 for small instances,
from 9 to 11 for medium-size instances, and �nally from
13 to 18 for large-size instances. It should be mentioned
that although total demand is �xed, the amount of
demand in each time period is generated randomly.
The locations of the demand points and stations are
generated based on a uniform distribution. Assuming
the speed of 50 km/h for the EVs, the time distance
between the points is calculated afterwards. EV service
times are assumed to be between 8 and 12 minutes
based on the type of the EV. As mentioned before,
the amount of unmet demand should be penalized in
the objective function; � = 1000 is considered as the
penalty coe�cient. Standard response time, T st, is
equal to 7 minutes for all the instances.

All the computations were carried out on an
Intel® Q740 running at 1.73 GHz with up to 4 GB of
memory. The models are coded in Optimization Pro-
gramming Language (OPL) and solved using CPLEX
12.6. A time limit of 3600 seconds was set for all

the test instances. The results are illustrated in
Table 6. The �rst and second columns represent the
dimension and index of the problem in that dimension,
respectively. The third column illustrates the best
objective value found within the time limit, while the
fourth column shows the number of relocations in the
best solution. The unmet demand penalized in the
objective function is shown in the �fth column; �nally,
the sixth column shows the total CPU time for solving
the problem.

According to the results of instances 1 to 20 (LRL-
30-3-2-5), 86% of the demand is covered using the three
available ambulances. Total demand in each instance
of 1 to 10 is equal to 5 or 6. The increase in the amount
of demand in instances 11-20 to 7 and 8 incidents
has rendered the three available ambulance unable to
cover all the demand, which is why the number of
unmet demands is increased in these instances. In
instances 1 to 10, the number of relocations is equal
to 2, while this value is increased to 3 for instances
11 to 20, which seems to be predictable due to the
increase in the demand. The CPU time for small-
sized instances is 5.84 seconds on average, which is
an acceptable duration for this size. The results of
instances 21 to 32 (medium-size instances) show that
97.5% of the demands are covered. By increasing the
number of incidents (demands) from 9 to 11, the four
EVs available are not able to cover all the demands.
The increase of the demand coverage compared to the
small instances is a result of increment in the number
of ambulances as well as the longer planning horizon.
Furthermore, by increasing the amount of demand
and the length of planning horizon, the number of
relocations varies from 6 to 8. The average CPU time
in this size varies and is approximately equal to 146
seconds, which seems to be a rational time for medium-
size problems.

As illustrated in the table, in large-size instances,
100% of the demands are covered due to a reason
similar to that mentioned before. The number of
relocations varies within the range of 10 and 15 by
increasing the number of time periods and the amount
of demand.

In the extra-large instances (#41-55), the average
demand coverage rate for the �rst subcategory (#41-
50) is about 90.75% and for the second category
(#51-55) is 92.18%. The CPU time in the second
category seems to be high. Therefore, one may consider
presenting a solution method to reduce this time as a
potential for future research.

8. Conclusion

This paper focused on emergency vehicle location and
relocation problem with the purpose of dealing with
emergency demands considering service time, response
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Table 6. Test problems computational results.

Dimensions Instance# No. of
demands

Obj.
value

Tot.
travel
time

Tot.
relocation

time

Tot.
unmet

demand
cost

No. of
relocations

No. of
unmet demand

CPU
time

LRL-30-3-2-5

1 10 22 18 4 0 2 0 6.01
2 10 18 14 4 0 2 0 6.59
3 10 26 18 8 0 2 0 6.12
4 10 23 15 8 0 2 0 6.00
5 10 23 15 8 0 2 0 6.01
6 12 2012 8 4 2000 2 2 6.12
7 12 24 18 6 0 3 0 6.03
8 12 1026 18 8 1000 2 1 6.07
9 12 1023 15 8 1000 2 1 5.92
10 12 29 20 9 0 3 0 6.26
11 14 1021 15 6 1000 3 1 6.00
12 14 1024 18 6 1000 3 1 6.07
13 14 2018 14 4 2000 2 2 6.04
14 14 1028 19 9 1000 3 1 6.35
15 14 1029 20 9 1000 3 1 6.32
16 14 1024 18 6 1000 2 1 6.16
17 16 2024 18 6 2000 3 2 6.04
18 16 3018 14 4 3000 2 3 7.75
19 16 2028 19 9 2000 3 2 5.98
20 16 2024 18 8 2000 3 2 5.78

LRL-60-4-3-6

21 9 40 25 15 0 6 0 168.07
22 9 53 29 24 0 7 0 168.79
23 9 55 34 21 0 6 0 168.56
24 9 1038 21 17 1000 6 1 169.01
25 10 49 29 20 0 7 0 165.28
26 10 57 31 26 0 8 0 182.39
27 10 63 42 21 0 6 0 174.15
28 11 1042 25 17 1000 6 0 167.15
29 11 1051 32 19 1000 6 1 169.13
30 11 54 34 20 0 7 0 167.96
31 11 63 34 29 0 8 0 172.64
32 11 69 45 24 0 7 0 167.73

LRL-90-5-4-7

33 13 62 36 26 0 10 0 1570.91
34 15 78 44 34 0 12 0 1570.91
35 16 84 47 37 0 13 0 1768.99
36 17 95 55 40 0 14 0 1787.65
37 18 102 57 45 0 15 0 1883.80
38 19 92 53 39 0 14 0 1831.77
39 18 93 52 41 0 15 0 2083.07
40 18 101 56 45 0 15 0 2112.38
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Table 6. Test problems computational results (continued).

Dimensions Instance# No. of
demands

Obj.
value

Tot.
travel
time

Tot.
relocation

tim
e

Tot.
unmet

demand
cost

No. of
relocations

No. of
unmet demands

CPU
time

LRL-120-3-2-80

41 12 89 43 46 0 12 0 632.74
42 12 1089 42 47 1000 11 1 637.92
43 12 107 51 56 0 12 0 626.87
44 12 2074 37 37 2000 9 2 653.14
45 12 1090 44 46 1000 11 1 645.98
46 14 1098 49 49 1000 12 1 647.47
47 14 1109 53 56 1000 13 1 672.91
48 14 1113 57 56 1000 12 1 637.89
49 14 3078 39 39 3000 10 3 638.29
50 14 2087 47 40 2000 11 2 636.28

LRL-240-3-2-80

51 24 178 86 92 0 24 0 4816.44
52 24 4152 76 76 4000 19 4 4962.41
53 24 2180 88 92 2000 22 2 4801.36
54 28 2205 104 101 2000 25 2 4905.01
55 28 2218 106 112 2000 26 2 5065.19

time, and return time. The proposed mathematical
optimization model is a multi-period model taking
into account real-time conditions. To the best of
our knowledge, for the �rst time, a model with the
considerations mentioned in Sections 3 and 4 is pre-
sented in this paper. The model aims to minimize
response times as well as ambulance relocations in
order to cover as much demand as possible taking into
account the resource limitations (emergency vehicles).
A sensitivity analysis was designed and conducted in
order to validate the presented model. The values of
three di�erent parameters, namely number of available
EVs, service time, and standard response time, were
manipulated so as to observe the impact on the ob-
jective value. For the purpose of model evaluation, a
set of test problems was generated to solve using OPL
and CPLEX 12.6 in 4 sizes: small-sized, middle-sized,
large-sized, and extra-large-sized cases. The results
show the e�cacy of the proposed model. According
to the outcome of the computational results, it can
be concluded that increasing the length of planning
horizon or number of available EVs increases the
number of ambulance relocations, resulting in a higher
response to demand percentage. The model could be
solved in a rational time in small-, middle- and large-
sized instances, whilst, in the extra-large-size test prob-
lems, the average solution time was higher relatively.
Although many new aspects of the real-world problem
were considered in this modeling, still some issues need
to be studied in the future. For example, including
hospitals in the problem formulation and dividing

the unavailability time into intervention time at the
scene and travel time to the hospital provides better
modeling of real-world situations. Besides, due to the
uncertainty in the demand of each time period and EV
service time, taking these uncertainties into account
enables us to produce more reliable solutions in real-
world applications. As mentioned before, in large-sized
instances, the solution time is not acceptable compared
to the planning horizon; therefore, presenting special
solution methods for the problem can be seen as a
potential future research.
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