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Abstract. This paper focuses on assessing sustainability of supply chains. This paper,
at �rst, proposes network dynamic Range Adjusted Measure (RAM) model. Then, an
inverse version of network dynamic RAM model is proposed. The proposed inverse network
dynamic Data Envelopment Analysis (DEA) model changes both inputs and outputs
of Decision-Making Units (DMUs) so that existing e�ciency scores of DMUs remain
unchanged. We change inputs and outputs without any modi�cation in e�ciency score
of DMU under evaluation, while inputs and outputs may have a large range. A case study
shows the e�cacy of the proposed model.
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1. Introduction

Nowadays, our earth encounters a number of di�culties
such as air pollution, little or lack of water resources,
energy ine�ciency, destruction of forests, etc. For
this reason, supply chains should be responsible for
environmental issues. Mentzer et al. [1] de�ned Supply
Chain Management (SCM) as \the systemic, strate-
gic coordination of traditional business functions and
the tactics across these business functions within a
particular company and across businesses within the
supply chain, for the purposes of improving the long-
term performance of the individual companies and
the supply chain as a whole". Drumwright [2] and
Murphy et al. [3] introduced Sustainable Supply Chain
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Management (SSCM). Carter and Rogers [4] de�ned
SSCM as \the strategic, transparent integration and
achievement of an organization's social, environmental,
and economic goals in the systemic coordination of key
inter-organizational business processes for improving
the long-term economic performance of the individual
company and its supply chains". At the moment,
sustainability considerations are not just a symbolic
action; however, they are reactive to pressures of
Non-Governmental Organizations (NGOs), media, and
green political parties [5]. Many �rms have established
tough evaluations for suppliers in their supply chain
to ensure that the sustainability considerations are
addressed seriously [6-8].

Charnes et al. [9] proposed Data Envelopment
Analysis (DEA). DEA is a proper tool for assessing
relative e�ciency of supply chains [10]. In classi-
cal DEA models, Decision-Making Units (DMUs) are
considered as a black box. Lewis and Sexton [11]
proposed a network DEA model to deal with divisions
in each DMU. In addition, most of other traditional
DEA models measure e�ciency score just in a speci�c
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period. For the �rst time, F�are and Grosskopf [12]
proposed dynamic DEA model. Tone and Tsutsui [13]
considered the network DEA model dynamically and,
then, proposed a network dynamic DEA model based
on Slacks-Based Measure (SBM) approach. They
named e�ciencies of each period and each division as
\term" and \divisional" e�ciencies, respectively.

This paper proposes input-oriented Range Ad-
justed Measure (RAM) model and clari�es the reason
for using this model. Then, an inverse model of network
dynamic input/output-oriented RAM is proposed. To
the best of our knowledge, the inverse RAM model with
network and dynamic structure has not been proposed
so far. This paper has the following contributions: the
following topics are proposed in this paper for the �rst
time:

� Input/output-oriented RAM model with dynamic
and network structure is developed;

� The inverse model of dynamic-network input/
output-oriented RAM model is developed;

� Both inputs and outputs of Decision-Making Units
(DMUs) can be changed in our inverse DEA model;

� The proposed model is applied to the assessment of
the sustainability of supply chains;

� To demonstrate the applicability of our model, a
case study is given.

The main objective of this paper is to develop
network-dynamic input-oriented RAM model and its
inverse for assessing sustainability of supply chains.

The structure of this paper is organized as follows.
Literature review is presented in Section 2. The
proposed models are given in Section 3. A case
study is given in Section 4. Managerial implications
and conclusions are explained in Sections 5 and 6,
respectively.

2. Literature review

2.1. Sustainable SCM
As mentioned earlier, environmental and social respon-
sibilities in SCM started to receive attention in 1994
and continued through researches such as greening sup-
ply chain [14], greening product [15,16], and greening
supply chain from product design to end user [17,18].

Liu et al. [19] focused on eco-friendly competition
between substitutable products and retail stores. They
found that eco-friendly manufacturers earned more
pro�ts because of customers' environmental awareness.
Zhang et al. [20] studied impact of customers' environ-
mental awareness on companies. Ghosh and Shah [21]
discussed greening costs and impact of greening sensi-
tivity of customers on pro�t. Xie [22] studied the role
of policy-makers in energy saving.

Assessing sustainability of supply chains is an
important topic. Genovese et al. [23] proposed an en-
vironmentally extended Multi-Regional Input-Output
(MRIO) hybrid model and Life Cycle Assessment
(LCA) that can be used for emissions assessment of
supply chains. They evaluated supply chains based
on emissions. Su et al. [24] addressed improving
sustainability of supply chain management in situa-
tions with incomplete information. They proposed
a hierarchical grey-DEMATEL approach. Dubey et
al. [25] focused on dynamic nature of SSCM. They ad-
dressed both quantitative and qualitative approaches.
Kumar et al. [26] assessed suppliers based on SSCM
criteria. They applied fuzzy multi-criteria decision-
making model. Azadi et al. [27] developed a fuzzy
model for assessing sustainability of suppliers in terms
of economic, environmental, and social factors. Li
and Cui [28] proposed network range adjusted mea-
sure model to evaluate sustainability of supply chains.
Table 1 summarizes previous researches on sustainable
SCM criteria and used techniques.

This paper proposes inverse network dynamic
input-oriented RAM model to assess sustainability of
supply chains as well as given economic, environmental,
and social criteria.

2.2. Data Envelopment Analysis (DEA)
2.2.1. Inverse DEA
Wei et al. [37], for the �rst time, proposed inverse DEA
model. The main purpose of the inverse DEA model
is to analyze sensitivity of a DEA model to changes
in inputs/outputs of DMUo (DMU under evaluation)
without any change in DMUo e�ciency score. In other
words, after changes in inputs/outputs, Production
Possibility Set (PPS) changes; however, e�cient fron-
tier should not be changed dramatically [38].

Yan et al. [38] introduced an inverse DEA model
for resource planning, given decision-makers' prefer-
ences. Jahanshahloo et al. [39] developed the inverse
model of Yan et al. [38] and presented inverse DEA
model to estimate outputs, given changes in inputs. Ja-
hanshahloo et al. [40] developed an inverse DEA model
to estimate inputs, given outputs increase and improve-
ments in e�ciency score. Furthermore, they estimated
maximum reduction in inputs without changing e�-
ciency scores. Jahanshahloo et al. [41] ran a sensitivity
analysis by inverse DEA model. They determined
upper and lower bounds for inputs and outputs by
two multi-objective linear programming problems and
converted multi-objective linear programme to a linear
program. Jahanshahloo et al. [42] addressed inter-
temporal dependency among e�ciencies of a DMUo
in multiple periods. They proposed inverse dynamic
DEA model. Furthermore, they introduced a periodic
weak Pareto solution in multiple-objective linear pro-
gramming. Lertworasirikul et al. [43] proposed inverse
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Table 1. Sustainable SCM criteria and di�erent approaches for assessing sustainability.

Authors Approaches and techniques Sustainable SCM criteria

Awasthi et al. [29]
Fuzzy Multi-Criteria Decision
Making (MCDM)

Environmental criteria

B�uy�uk�ozkan et al. [30]
Fuzzy MCDM in the presence of
incomplete information

Environmental and economic criteria

Erol et al. [31] Fuzzy MCDM Environmental criteria

Govindan et al. [32]
Fuzzy MCDM based on triple bottom
line approach

Environmental and economic criteria

Kuo et al. [33] Arti�cial neural network and MADM Environmental, social, and economic criteria

Punniyamoorthy et al. [34]
Structural equation modeling in
fuzzy context

Economic criteria

Amindoust et al. [35] Fuzzy inference system ranking model Environmental, social, and economic criteria

Yeh and Chuang [36] MCDM by use of Genetic Algorithm Environmental and economic criteria

Azadi et al. [27]
Enhanced Russell measure DEA model
in fuzzy context

Environmental, social, and economic criteria

DEA model based on linear programming and Pareto
optimal solution. Their main DEA model is based upon
BCC (Banker-Charnes-Cooper) model [44].

Amin et al. [45] merged a couple of DMUs and
studied whether or not the merged DMU could a�ect
e�ciency frontier. Amin et al. [46] used inverse DEA
model to recommend higher operational e�ciency.
Eyni et al. [47] divided inputs/outputs into desirable
and undesirable inputs/outputs and applied inverse
DEA model to increase desirable outputs and decrease
undesirable outputs.

2.2.2. RAM model
In real world, there are di�erences in measurement unit
of variables. In addition, in some cases, there might be
big ranges in inputs and outputs. Some DEA models
can cope with di�erent measurement units, which are
called unit invariant models [48]. For instance, CCR [9]
and BCC [44] models are considered as unit invariant
models. On the other hand, there might be zero and
negative values in datasets [49]. Some of DEA models
can deal with negative and zero values called transla-
tion invariant, i.e., translation of values does not a�ect
results [50]. Additive (ADD) model and BCC model
are translation invariant, although the input-oriented

BCC is invariant under output translation, and vice
versa [51]. RAM is an extension of the ADD model,
which is both unit and translation invariant [52].

In this paper, a new extension of RAM model
is introduced, which is called input/output oriented-
RAM model (oriented-RAM). Moreover, the inverse
oriented-RAM model with network and dynamic struc-
ture is proposed.

2.2.3. Network and dynamic DEA models
Tone and Tsutsui [53] argued that traditional DEA
models dealt with DMUs as black boxes and could
not address network structure of DMUs. They pro-
posed a network SBM model and calculated \divisional
e�ciency" of each division in each DMU. F�are and
Grosskopf [54], for the �rst time, addressed intermedi-
ate products and, then, extended their work and devel-
oped network DEA model [55]. Sexton and Lewis [56]
proposed a two-stage DEA model and extended their
work to multi-stage networks. Mirhedayatian et al. [57]
proposed a network DEA model to assess green supply
chains.

F�are and Grosskopf [12] �rst introduced dynamic
DEA. Tone and Tsutsui [58] proposed a dynamic SBM
measure and calculated \term e�ciency" for each DMU
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in each period. Chen [59] proposed a network DEA
model with dynamic e�ects on network. Park and
Park [60] expanded Debreu-Farrell technical e�ciency
and applied their multi-period model to cable TV
service units. Shabanpour et al. [61] utilized dynamic
DEA and arti�cial neural networks to evaluate past,
present, and future e�ciencies of green supply chains.
Tone and Tsutsui [13] combined network and dynamic
DEA models and proposed network dynamic DEA
model.

3. The proposed models

3.1. Oriented-RAM model
Basic RAM model proposed by Cooper et al. [52] is as
follows:

max � =
1

m+ p

 
mX
i=1

Rxi s
x
i +

pX
r=1

Ryrs
y
r

!
;

s.t.:

nX
j

xij�j + sxi = xio; i = 1; � � � ;m;

nX
j

yrj�j � syr = yro; r = 1; � � � ; p;

�j ; sxi ; s
y
r � 0; 8 i; j; r; (1)

where sxi and syr are distances of DMUo from e�cient
frontier. Rxi and Ryr denote ranges of inputs and
outputs calculated as 1=(xUi � xLi ) and 1=(yUr � yLr ),
respectively. Upper and lower bounds are speci�ed by
xUi = maxjfxijg, yUr = maxjfyrjg as well as xLi =
minjfxijg, yLr = minjfyrjg, respectively. Objective
function measures ine�ciency of DMUo. E�ciency
score is calculated by �� = 1�(1=m+p)(

Pm
i=1R

x
i sx�i +Pp

r=1R
y
rsy

�
r ). A DMUo (supply chain) is e�cient if the

objective function of Model (1) is zero, i.e., sx
�
i = sy

�
r =

0. Our new input-oriented RAM model is as follows:

max
1
m

mX
i=1

Rxi s
x
i ;

s.t.:

nX
j

xij�j + sxi = xio; i = 1; � � � ;m;

nX
j

yrj�j � yro; r = 1; � � � ; p;

nX
j

�j = 1;

�j ; sxi � 0; 8 i; j; r; (2)

where Rxi is 1=(xUi � xLi ).
The reason for proposing the oriented-RAM

model is that, in real world, some cases exist in
which there might be very a high range of inputs or
outputs. On the other hand, in some cases, such
as production plants, divisions produce intermediate
measures delivered to next divisions. Thus, except
for the last division, other divisions cannot deliver
outputs to outside of the network (e.g., water re�nery).
Therefore, ordinary RAM model cannot be utilized.
There is a signi�cant di�erence between our model and
the other unit and translation invariant DEA models.
Our idea originates from input (output) oriented SBM
model proposed by Cooper et al. [51].

Theorem 1. In optimal solution, e�ciency score is
0 � �� � 1.

Proof. According to Aida et al. [62], in an optimal
solution, there is:

0 � �
nX
j

xij��j + xio = sx
�
i � xUi � xLi : (3)

Eq. (3) comes from condition
Pn
j �j = 1. Therefore,

we have:

0 � Rxi sx�i � 1: (4)

�

Theorem 2. The RAM model is translation invari-
ant. This theorem can be generalized for input-oriented
RAM model. Suppose that there are n DMUs with one
input and one output. Changes after translation are
depicted in Figures 1, 2, and 3.

As is observed, in Figures 1, 2, and 3, transla-
tion cannot change direction or amount of e�ciency
improvement.

Figure 1. Basic RAM.
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Figure 2. Output oriented-RAM model.

Figure 3. Input oriented-RAM model.

Proof. For proof, see Cooper et al. [63]. �

Theorem 3. The input-oriented RAM model is unit
invariant in inputs. In addition, output-oriented RAM
model is unit invariant in outputs, corresponding to
the objective function of input (output)-oriented RAM
model (Model 2). As is seen, there are only inputs'
(outputs') slacks in the objective function.

Now, output-oriented RAM model is proposed.
Model (5) has characteristics similar to those of
Model (2):

max
1
p

pX
r=1

Ryrs
y
r ;

s.t.:

nX
j

xij�j � xio; i = 1; � � � ;m;

nX
j

yrj�j � syr = yro; r = 1; � � � ; p;

nX
j

�j = 1;

�j ; syr � 0; 8 i; j; r: (5)

Proof. For proof, see Cooper et al. [63]. �
3.2. Network-dynamic input-oriented RAM

(NDIO-RAM) model
In this subsection, we extend the input-oriented RAM
model to a network dynamic model. Suppose that
there are n DMUs (j = 1; � � � ; n) with k divisions (k =
1; � � � ;K) in each t period (t = 1; � � � ; T ). Notations
are as follows:
xtijk The ith input of the jth DMU in the

kth division in term t;
ytrjk The rth output of the jth DMU in the

kth division in term t;
ltwj(k�h) The wth (w = 1; � � � ;W ) intermediate

measure of the jth DMU sent from the
kth division to the hth division in term
t;

ct;t+1
ujk The uth (u = 1; � � � ; U) carry-over of

the jth DMU in the kth division from
term t to term t+ 1;

�tjk Intensity vector of the jth DMU in the
kth division in term t.

At this juncture, the NDIO-RAM model is proposed
as follows:

max
1
T

TX
t=1

1
K

KX
k=1

1
m

mX
i=1

Rx
t

ioks
xt
iok;

s.t.:

nX
j

xtijk�
t
jk + sx

t

iok = xtiok;

i = 1; � � � ;m; 8 K;T;
nX
j

ytrjk�
t
jk � ytrok; r = 1; � � � ; p; 8 K;T;

nX
j

ltwj(k�h)�
t
jk =

nX
j

ltwj(k�h)�
t
jh;

w = 1; � � � ;W; 8 K;T;
nX
j

ct;t+1
ujk �tjk =

nX
j

ct;t+1
ujk �t+1

jk ;

u = 1; � � � ; U; t = 1; � � � ; T � 1; 8 K;
nX
j

�tjk = 1; 8 K;T;
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�tjk; s
xt
iok � 0; 8 i; j; r: (6)

Model (6) is a general model in which there is no
preference for divisions, inputs, and terms. Intermedi-
ate measures and carry-overs have indirect impact on
objective function.

3.3. Inverse oriented-RAM model
For the �rst time, Wei et al. [37] introduced the follow-
ing inverse (Models (7) and (8)). Their inverse model
was derived from a general radial output-oriented DEA
model.

max z0;

s.t.:

nX
j

xij�j � xio; i = 1; � � � ;m;

nX
j

yrj�j � yroz0; r = 1; � � � ; p;

�1

0@ NX
j

�j + �2(�1)�3v

1A = �1;

�j ; v � 0; 8 i; j; r: (7)

Parameters �1, �2, and �3 can have only 0 or 1 values:

� If �1 = 0, then Model (7) is a CCR model;
� If �1 = 1 and �2 = 0, then Model (7) is a BCC

model;
� If �1 = �2 = 1 and �3 = 0, then Model (7) is a

non-increasing model;
� If �1 = �2 = �3 = 1, then Model (7) is a non-

decreasing model.

Wei et al. [37] supposed that inputs of DMUo (xio)
increased to a given value, i.e., ai. Then, they tried
to determine proper values for �r given that objective
function values of Models (7) and (8) are equal, i.e.,
z�o = z�inv. Wei et al. [37] proposed a new dummy
DMUn+1 with input vector aio and output vector �ro,
where aio = xio + �xio and �ro = yro + �yro.

max zinv;

s.t.:

nX
j

xij�j + �i0�n+1 � �i0; i = 1; � � � ;m;

nX
j

yrj�j + �ro�n+1 � �rozinv; r = 1; � � � ; p;

�1

0@ NX
j

�j + �n+1 + �2(�1)�3v

1A = �1;

�j ; v � 0; 8 i; j = 1; 2; � � � ; n+ 1; r: (8)

In our proposed model, there are not any
given predetermined values for neither aio nor �ro.
Model (13) is a multi-objective linear programme that
determines aio and �ro.

De�nition 1. Let the optimal solution for the fol-
lowing input-oriented RAM model be (z�0 , ��j , sx

�
i ):

max z0 =
1
m

mX
i=1

Rxi s
x
i ;

s.t.:

nX
j

xij�j + sxi = xio; i = 1; � � � ;m;

nX
j

yrj�j � yro; r = 1; � � � ; p;

nX
j

�j = 1;

�j ; sxi � 0; 8 i; j; r: (9)

De�nition 2. The input-oriented RAM inverse
model can be formulated as Model (10), and its optimal
solution is (z�inv, ��j , ��j+1, s�a�

i ):

max zinv =
1
m

mX
i=1

Rxi s
��
i ;

s.t.:

nX
j

xij�j + ��io�n+1 + s��
i = ��io;

i = 1; � � � ;m;
nX
j

yrj�j + (yro + ��yro)�n+1 � yro + ��yro;

r = 1; � � � ; p;
nX
j

�j + �n+1 = 1;

�j ; �n+1; s��
i � 0; 8 i; j; r: (10)

Given the assumption, z�0 from Model (9) and z�inv
from Model (10) have similar values. In addition,
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Rxi is assumed constant as we want to keep e�ciency
frontier unchanged. Therefore, the following equation
is considered:

1
m

mX
i=1

Rxi s
x�
i =

1
m

mX
i=1

Rxi s
���
i : (11)

As a result:
sx
�
i = s���

i : (12)

Now, a multi-objective linear programme (13) is uti-
lized that determines �io and �yro, simultaneously,
where �io = xio + �xio:

min �io;

s.t.:

nX
j

xij�j + sx
�
i = �io; i = 1; � � � ;m;

nX
j

yrj�j = yro + �yro; r = 1; � � � ; p;

�io � xio;
�j � 0; 8 i; j; r;
�yro : free: (13)

In the �rst constraint of Model (13), s�i is replaced
by sx

�
i . Rxi is assumed to be constant. The last

condition of Model (13) guarantees that purpose.

De�nition 3. Suppose that ��io, ��yro, and ��j are
feasible solutions. If there is no feasible solution such
as �i < ��io, (��io, ��yro, ��j) can be a weak Pareto
solution for Model (13).

Theorem 4. (��io, ��yro, ��j) is a weak Pareto solu-
tion for Model (13) and z�o is the optimal objective
function value for Model (9). z�RA is the optimal
objective function value for Model (14):

max zRA =
1
m

mX
i=1

Rxi s
�
i ;

s.t.:

nX
j

xij�j + s�i = ��io; i = 1; � � � ;m;

nX
j

yrj�j � yro + ��yro; r = 1; � � � ; p;

nX
j

�j = 1;

�j ; s�i � 0; 8 i; j; r: (14)

Proof. Model (14) has an optimal solution (z�RA, ��j ,
s�
�
i ). The optimal solution of Model (13) is embedded

in its �rst constraint and that of Model (14) in its �rst
constraints. Therefore, given Model (13), we have:

nX
j

xij��j + sx
�
i = ��io: (15)

In addition, given Model (14), we have:
nX
j

xij��j + s�
�
i = ��io: (16)

Consequently:
nX
j

xij��j + s�
�
i =

nX
j

xij��j + sx
�
i : (17)

Furthermore, given De�nition 3 and Model (14), we
know the optimal solution of Model (13), and (��io,
��yro, ��j) is a feasible solution for Model (14). Given
Models (9) and (14) and De�nition 3, we have:

z�RA � z�o : (18)

As mentioned earlier, Rxi remains constant. Therefore:

s�
�
i � sx�i : (19)

If z�RA > z�o , then:

s�
�
i > sx

�
i : (20)

By Eqs. (17) and (20), we have:
nX
j

xij��j <
nX
j

xij��j : (21)

To convert Expression (21) to an equation, h > 0 is
added to left-hand side of Expression (21).

nX
j

xij��j + h =
nX
j

xij��j : (22)

Now, we substitute
Pn
j xij�

�
j + h by

Pn
j xij��j in the

�rst constrain of Model (13).
nX
j

xij��j + sx
�
i = �io � h: (23)

Therefore, we have a feasible solution (��j , ��io��h)
for Model (13), while we know that Model (13) has a
weak Pareto solution (��io, ��j). Therefore, we have
z�RA = z�o . Then, h = 0. By Theorem 4, the
relationship between Models (14) and (13) is examined.
�

Theorem 5. Models (9) and (14) have similar objec-
tive function values: z�RA = z�o .
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Proof. Given Theorem 4, we know that s�
�
i = sx

�
i .

Thus, there is 1
m
Pm
i=1R

x
i s�

�
i = 1

m
Pm
i=1R

x
i sx

�
i . �

Theorem 6. Models (10) and (14) have similar
objective function values: z�RA = z�invs.

Proof. Let (z�inv, ��j , ��j+1, s�a�
i ) be the optimal

solution of Model (10) and z�inv � 0. We suppose that
z�inv > 0. If z�inv > 0, then �n+1 = 0. In this case, we
add a new constraint (�n+1 = 0) to Model (10) so that
it becomes similar to Model (14). We can prove it by
another manner. The dual of Model (10) is as follows:

min
mX
i

vi��iO �
pX
r

ur (�y + ��yro) + �;

s.t.:

mX
i

vixiO �
pX
r

uryrj + � � 0; 8 j;
mX
i

vi��iO �
pX
r

ur (�y + ��yro) + � � 0;

vi � 1
mRxi

; 8 i;

vi; � : free; ur � 0; j = 1; 2; � � � ; n: (24)

Given the relationship between primal and dual prob-
lems [64], objective function value of Model (24) is
similar to that of Model (10). Therefore, the second
constraint of Model (24) should be an inequality. Thus,
this constraint is redundant. Consequently, Model (24)
is similar to Model (25). The only di�erence between
Model (24) and Model (25) is the second constraint of
Model (24).

min
mX
i

vi��iO �
pX
r

ur (�y + ��yro) + �;

s.t.:

mX
i

vixiO �
pX
r

uryrj + � � 0; 8 j;

vi � 1
mRxi

; 8 i;

vi; � : free; ur � 0; j = 1; 2; � � � ; n: (25)

Note that Model (25) is the dual of Model (10).
In Model (10), the �rst set of constraints has equity
sign. Therefore, the related dual variable (vi) is free in
sign.

Theorem 7. Let (z�o , ��j , and sx
�
i ) be the optimal

solution of Model (9) and (z�inv, ��j , ��j+1, and s�a�
i ) be

the optimal solution of Model (10). Then, z�inv = z�o .

Proof. Given Theorems 4 and 5, it is proved that
Models (9) and (14) have similar objective function
values. Furthermore, in Theorem 6, we proved that
Models (14) and (10) have similar objective function
values. As a result, given Theorems 4, 5, and 6,
Models (9) and (10) have similar objective function
values. �
3.4. Numeric example
Suppose that there are 8 DMUs, and each DMU has 2
inputs (x1 and x2) and 2 outputs (y1 and y2). Data
are shown in Table 2.

Given input-oriented RAM model (Model 9),
Table 3 demonstrates e�ciency scores of DMUs and
distances of DMUo from e�cient frontier, where sx

�
1

and sx
�

2 are distances of DMUo from e�cient frontier
for input 1 and input 2, respectively.

Now, Model (13) is utilized and sx
�

1 and sx
�

2 are
considered to determine �io and �yro, where �io =
xio + �xio. Results are shown in Table 4. Given
Model (14) and Table 4, e�ciency scores of inverse
models are shown in Table 5.

As is seen, the e�ciency scores in Tables 3 and 5
are similar, although some outputs have changed, yet
inputs remain unchanged.

3.5. The inverse network-dynamic
input-oriented RAM model

In a classical approach, a decision-maker changes out-
puts (inputs) and solves Model (8) for calculating a
new set of inputs (outputs). Herein, for the �rst time,
two approaches are proposed:

Approach 1. Given the presented theorems, here,
we extend the inverse input-oriented RAM Model (10)
to inverse network-dynamic input-oriented RAM
model, proposed as follows:

max
1
T

TX
t=1

1
K

KX
k=1

1
m

mX
i=1

Rx
t

ioks
xt
iok;

Table 2. Numeric example dataset.

DMUs Inputs Outputs
x1 x2 y1 y2

A 3 5 13 13
B 2 4 12 13
C 5 7 15 15
D 4 6 14 15
E 8 10 18 13
F 9 13 19 17
G 1 2 20 15
H 14 10 11 10
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Table 3. E�ciency scores of DMUs.

DMUs A B C D E F G H

E�ciency scores 0.7867 0.8706 0.6189 0.7028 0.3672 1 1 0.1363

Sx
�

1 2 1 4 3 7 0 0 13
Sx
�

2 3 2 5 4 8 0 0 8

Table 4. Results of Model (13).

DMUs

Changes
in inputs

Changes
in outputs

�x1o �x2o �y1o �y2o

A 0 0 7 2
B 0 0 8 2
C 0 0 5 0
D 0 0 6 0
E 0 0 2 2
F 0 0 0 0
G 0 0 0 0
H 0 0 9 5

s.t.:

nX
j

xtijk�
t
jk + sx

t

iok = xtiok; i = 1; � � � ;m;

8 K;T;
nX
j

ytrjk�
t
jk � ytrok; r = 1; � � � ; p;

8 K;T;
nX
j

ltwj(k�h)�
t
jk =

nX
j

ltwj(k�h)�
t
jh;

w = 1; � � � ;W; 8 K;T;
nX
j

ct;t+1
ujk �tjk � ct;t+1

uok ;

u =1; � � � ; U; t = 1; � � � ; T � 1; 8 K;
nX
j

ct;t+1
ujk �tjk =

nX
j

ct;t+1
ujk �t+1

jk ;

u = 1; � � � ; U; t = 1; � � � ; T � 1; 8 K;

nX
j

�tjk = 1; 8 K;T;

�tjk; s
xt
iok � 0; 8 i; j; r: (26)

Tone and Tsutsui [13] classi�ed intermediate
measures into four categories: free, �xed (non-
discretionary), input intermediate, and output inter-
mediates. In addition, they classi�ed carry-overs into
four categories: good, bad, free, and �xed carry-
overs. Model (26) demonstrates a case with �xed
intermediate measures and good carry-overs. The third
set of constraints of Model (26) connects two divisions.
Moreover, the �fth set of constraints of Model (26) links
two consecutive terms. Given Tone and Tsutsui [13]
classi�cation, good carry-overs play a role of outputs.
As a result, in Model (26), we have good carry-overs
addressed in the fourth set of constraints.

Model (27) is a multi-objective linear programme.
It determines �tiok, �ytrok, and �ct;t+1

uok , where (�tiok =
xtiok + �xtiok). The optimal solution of Model (27) is
(�t
�
iok, �yt

�
rok, �ct;t+1�

uok , and, �t
�
jk).

min �tiok;

s.t.:

nX
j

xtijk�
t
jk + sx

t�
iok = �tiok; i = 1; � � � ;m;

8 K;T;
nX
j

ytrjk�
t
jk = ytrok + �ytrok; r = 1; � � � ; p;

8 K;T;
nX
j

ltwj(k�h)�
t
jk =

nX
j

ltwj(k�h)�
t
jh;

w = 1; � � � ;W; 8 K;T;

Table 5. E�ciency scores of inverse models.

DMUs A B C D E F G H

E�ciency scores 0.7867 0.8706 0.6189 0.7028 0.3672 1 1 0.1363
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nX
j

ct;t+1
ujk �tjk = ct;t+1

uok + �ct;t+1
uok ;

u = 1; � � � ; U; t = 1; � � � ; T � 1; 8 K;
nX
j

ct;t+1
ujk �tjk =

nX
j

ct;t+1
ujk �t+1

jk ;

u = 1; � � � ; U; t = 1; � � � ; T � 1; 8 K;
�tiok � xtiok; i = 1; � � � ;m; 8 K;T;
nX
j

�tjk = 1; 8 K;T;

�tjk � 0; �ytrok;�c
t;t+1
uok : free; 8 i; j; r; t: (27)

Model (27) minimizes inputs and determines
changes of normal outputs, intermediate outputs, and
good carry-overs. Expression �tiok � xtiok does not let
the inputs be decreased to less than original inputs.
Thus, Models (26) and (28) have similar input ranges
(Rx

t

iok = R�
t�
iok ). Finally, inverse network-dynamic

input-oriented RAM model is as follows:

max
1
T

TX
t=1

1
K

KX
k=1

1
m

mX
i=1

R�
t�
iok s

�t
iok;

s.t.:

nX
j

xtijk�
t
jk + �t

�
iok�

t
(n+1)k + s�

t

iok = �t
�
iok;

i = 1; � � � ;m; 8 K;T;
nX
j

ytrjk�
t
jk+

�
ytrok+��ytrok

�
�t(n+1)k�ytrok+�yt

�
rok;

r = 1; � � � ; p; 8 K;T;
nX
j

ltwj(k�h)�
t
jk+ ltwj(k�h)�

t
(n+1)k =

nX
j

ltwj(k�h)�
t
jh

+ ltwj(k�h)�
t
(n+1)h;

w = 1; � � � ;W; 8 K;T;
nX
j

ct;t+1
ujk �tjk +

�
ct;t+1
uok + �ct;t+1�

uok

�
�t(n+1)k

� ct;t+1
uok + �ct;t+1�

uok ;

u = 1; � � � ; U; t = 1; � � � ; T � 1; 8 K;

nX
j

ct;t+1
ujk �tjk +

�
ct;t+1
uok + �ct;t+1�

uok

�
�t(n+1)k

=
nX
j

ct;t+1
ujk �t+1

jk +
�
ct;t+1
uok + �ct;t+1�

uok

�
�t+1

(n+1)k;

u = 1; � � � ; U; t = 1; � � � ; T � 1; 8 K;
nX
j

�tjk + �t(n+1)k = 1; 8 K;T;

�tjk; �
t
(n+1)k; s

�t
iok � 0; 8 i; j; r: (28)

Given the inverse oriented-RAM (Model (10)),
only two types of variables, including intermediate
measures and carry-overs, are added to Model (28).
Intermediate measures and carry-overs do not have
direct impact on objective function.

Approach 2. Given Model (27), we propose
Model (29). Inputs and outputs are changed simultane-
ously. In Model (29), despite Model (27), inputs can be
reduced to their lower bounds and be increased to their
upper bounds. Expression xtiok � xtiok + �xtiok � �xtiok
guarantees input ranges to remain unchanged. Also
xtiok and �xtiok are lower and upper bounds of inputs,
respectively.

min �xtiok;

s.t.:

nX
j

xtijk�
t
jk+sx

t�
iok =xtiok+�xtiok; i = 1; � � � ;m;

8 K;T;
nX
j

ytrjk�
t
jk = ytrok + �ytrok; r = 1; � � � ; p;

8 K;T;
nX
j

ltwj(k�h)�
t
jk =

nX
j

ltwj(k�h)�
t
jh;

w = 1; � � � ;W; 8 K;T;
nX
j

ct;t+1
ujk �tjk =ct;t+1

uok + �ct;t+1
uok ;

u = 1; � � � ; U; t = 1; � � � ; T � 1; 8 K;
nX
j

ct;t+1
ujk �tjk =

nX
j

ct;t+1
ujk �t+1

jk ;
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u = 1; � � � ; U; t = 1; � � � ; T � 1; 8 K;
xtiok � xtiok + �xtiok � �xtiok;

i = 1; � � � ;m; 8 K;T;
nX
j

�tjk= 1; 8 K;T;

�tjk � 0; �xtiok;�y
t
rok;�c

t;t+1
uok : free; 8 i; j; r; t:

(29)

4. Case study

Nirou Moharekeh Industrial Co. (NMI) is an Iranian
manufacturer that manufactures spare parts such as
di�erent types of gear boxes, splines, and shafts. NMI
delivers them to Iran Khodro (an Iranian automaker).
NMI has 12 suppliers that provide gear boxes. Dataset
is shown in Table 6, which dates back to 2010-2015.
Suppliers provide required spare parts of NMI Co.
Figure 4 shows the structure of supply chain.

In this paper, we focus on suppliers of NMI Co.
Each supplier of NMI has three divisions (see Figure 5).
Each division has three inputs (including wage cost,
energy cost, and material cost (economic factors)), two
good carry-overs (including green programs and ISO

Figure 4. Overall structure of supply chain of NMI.

Figure 5. Internal structure of each supplier of NMI.

TS (environmental factor)), and human care programs
(social factor). In addition, each division has one
�xed intermediate measure (intermediate product) (see
Figure 6). First, divisions have only two inputs
including wage cost and energy cost.

Figure 6 depicts divisions, inputs, carry-overs,
and intermediate measure of the jth supplier of NMI
during 6 years. The following notations are de�ned:
xtijk The ith input of the jth DMU in the

kth division in term t;
ltwj(k�h) The wth (w = 1; � � � ;W ) intermediate

measure of the jth DMU which is
sent from the kth division to the hth
division in term t;

ct;t+1
ujk The uth (u = 1; � � � ; U) carry-over of

the jth DMU in the kth division from
term t to term t+ 1.

First, DMUs' e�ciency scores are calculated in 6
years (terms). Given Table 6, there are huge di�erences
between the smallest and biggest values in inputs (big
ranges). Thus, our new (Model (30)) can be used.

max
1
T

TX
t=1

1
K

KX
k=1

1
m

mX
i=1

Rx
t

ioks
xt
iok;

s.t.:

nX
j

xtijk�
t
jk + sx

t

iok = xtiok; i = 1; � � � ;m;

8 K;T;
nX
j

ltwj(k�h)�
t
jk =

nX
j

ltwj(k�h)�
t
jh;

w = 1; � � � ;W; 8 K;T;
nX
j

ct;t+1
ujk �tjk � ct;t+1

uok ; u = 1; � � � ; U;

t = 1; � � � ; T � 1; 8 K;
nX
j

ct;t+1
ujk �tjk =

nX
j

ct;t+1
ujk �t+1

jk ; u = 1; � � � ; U;

t = 1; � � � ; T � 1; 8 K;
nX
j

�tjk = 1; 8 K;T;

�tjk; s
xt
iok � 0; 8 i; j; r: (30)
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Figure 6. Structure of each supplier of NMI.

Table 7 demonstrates each division's e�ciency
and e�ciency of terms for each supplier of NMI. As is
observed in Table 7, DMU D has an increasing trend,
while DMU F has a decreasing trend. DMUs A, I, and
L are only overall e�cient DMUs.

To determine changes of inputs and outputs, the
following model is utilized:

min �xtiok;

s.t.:

nX
j

xtijk�
t
jk + sx

t�
iok = xtiok + �xtiok;

i = 1; � � � ;m; 8 K;T;

nX
j

ltwj(k�h)�
t
jk =

nX
j

ltwj(k�h)�
t
jh;

w = 1; � � � ;W; 8 K;T;
nX
j

ct;t+1
ujk �tjk = ct;t+1

uok + �ct;t+1
uok ; u = 1; � � � ; U;

t = 1; � � � ; T � 1; 8 K;
nX
j

ct;t+1
ujk �tjk =

nX
j

ct;t+1
ujk �t+1

jk ; u = 1; � � � ; U;

t = 1; � � � ; T � 1; 8 K;
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Table 7. E�ciency scores.

DMUs
(suppliers)

Overall
e�ciency

Term e�ciency Divisional e�ciency

2010 2011 2012 2013 2014 2015 Div. 1 Div. 2 Div. 3

TECH. A. T. (A) 1 1 1 1 1 1 1 1 1 1

STEEL P. (B) 0.9974 1 1 0.9846 1 1 1 1 0.9923 1

D. L. KARAN (C) 0.5032 0.5441 0.4403 0.3861 0.9004 0.5501 0.1984 0.5672 0.4716 0.4709

PARS HAM. (D) 0.7047 0.8819 0.5157 0.4542 0.5069 0.9941 0.8758 0.7080 0.7022 0.7040

FARAZAN (E) 0.9999 1 1 0.9999 1 1 1 0.9999 1 1

SIRIN S. N. (F) 0.5396 0.9795 0.5931 0.6245 0.2901 0.2812 0.4691 0.4608 0.5778 0.5802

PIROOZ (G) 0.9999 1 1 1 1 1 0.9999 0.9999 1 1

ALSAN (H) 0.9702 0.8215 1 1 1 1 1 0.9817 0.9648 0.9641

KARIN (I) 1 1 1 1 1 1 1 1 1 1

TIR (J) 0.9206 0.9985 0.7178 0.8746 0.9331 1 1 0.9228 0.9261 0.9130

BARAN (K) 0.8907 0.9459 0.7120 0.7766 1 0.9096 1 0.9555 0.8583 0.8582

HAMRAH (L) 1 1 1 1 1 1 1 1 1 1

nX
j

�tjk = 1; 8 K;T;

�xtiok; �
t
jk � 0; �ct;t+1

uok : free; 8 i; j; r; t: (31)

Results of Model (31) are shown in Table 4. Some
points can be derived from the results:

� Inputs experience very low changes (�xtijk). Struc-
ture of Model (31) addresses this result;

� Manufacturers D. L. KARAN, PARS HAM, SIRIN
S. N., and TIR have bigger changes in carry-overs
(�ct;t+1

uok );
� Given DMU TIR, it can be found that DMUs with

higher e�ciency score may have more changes;
� Carry-overs have large changes. Positive changes

of carry-overs imply DMUs' shortfall in investments
in green programs, ISO TS programs, and human
care programs. Conversely, negative changes imply
excess investments.

5. Managerial implications

Key factors of sustainability of supply chains are
economic, environmental, and social factors. Though
the amount of investment in sustainability factors
demonstrates management attention to sustainability
of supply chains, investment in each sustainability
factor should be proportionate. For instance, in
Table 8, given results of PARS HAM, we conclude
disproportionate investment.

Amount of investment in green programs and ISO
TS is more than that of investment in human care
programs. Negative carry-over changes indicate excess

amounts of investment in green programs and ISO TS.
Furthermore, PARS HAM has unbalanced investment
in green programs during 6 years. On the other hand,
positive changes of carry-over (human care programs)
imply shortfall of investment in human care programs.
Accordingly, the main �nding of the case study is to
know whether or not the investment of an organization
is proportionate.

6. Conclusions

As Seuring and Muller [65] addressed, sustainable
supply chain is a growing topic. Carbone et al. [66]
argued that a couple of factors triggered companies
to apply sustainability principles. Those factors in-
cluded regulations, scandals, competitors' moves, and
customer expectations. Wittstruck and Teuteberg [67]
introduced House of Sustainable Supply Chain that
had three pillars including environmental performance,
economic performance, and social performance. Li [68]
claimed that bene�ts of sustainability, including eco-
nomic, environmental, and social bene�ts, should be
achieved, simultaneously.

In this paper, a model was proposed to assess sus-
tainability of supply chains. For the �rst time, we intro-
duced inverse network and dynamic model based upon
input-oriented RAM model. As mentioned earlier,
RAM model is a unit and translation invariant DEA
model. We discussed that the classical inverse DEA
models could only determine input or output changes.
For the �rst time, two approaches were proposed to
determine input and output changes. The �rst ap-
proach was used to determine which inputs and carry-
overs, as well as to what extent, should be changed.
In the second approach, inputs can be reduced to their
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Table 8. Results of Model (31).

�X�
and
�C�

Suppliers (DMUs)

TECH.
A. T.

STEEL
P.

D. L.
KARAN

PARS
HAM.

FARAZAN SIRIN
S. N.

PIROOZ ALSAN KARIN TIR BARAN HAMRAH

2
0
1
0

Div. 1

DW1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DEN1 -0.745E-8 0.0 0.0 0.0 0.0 1.970156 0.0 0.0084704 0.0 0.0 1.160656 0.0

DCARGR-TS2 -0.186E-8 0.0 -4407.17 -1004242 -0.433E-7 105469.2 0.0 -0.181928 -0.222E-6 187368.8 -103.3697 0.0

DCARHC3 -0.745E-8 0.0 -0.475E-8 -0.104E-8 0.305874 99.02449 0.0 0.0 0.526E-7 0.186E-8 0.0 0.0

Div. 2

DW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DEN -0.103E-7 0.0 0.0 0.0 0.0 0.0 0.0 36.1752 0.0 0.0 19.72798 0.0

DM4 0.0 0.0 3781.88 0.0 0.0 26.13003 0.0 0.0 0.0 0.0 264.9410 0.0

DCARGR-TS 0.332E-8 0.0 -3.0411 -88519.5 0.0 145506.2 0.0 -0.116260 0.521E-7 -2.026985 -0.873759 0.0

DCARHC -0.213E-8 0.0 0.37488 167730.6 0.0 0.0 0.0 -0.364701 -0.141E-8 -0.555666 0.0091881 0.0

Div. 3

DW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DEN 0.0 0.0 0.0 0.0 0.0 0.483685 -0.288E-7 3.04067 0.0 0.0 0.0 0.0

DM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.20219 0.0

DCARGR-TS -0.171E-8 0.0 -22.523 -67875.2 0.0 109051.2 0.0 -0.080657 -0.791E-8 0.411475 0.0516349 0.0

DCARHC -0.325E-8 0.0 0.141E-8 167600.4 0.0 8.871403 0.0 -0.016989 -0.707E-7 1.382778 0.262E-8 0.0

2
0
1
1

Div. 1

DW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DEN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.39747 0.0 0.0

DCARGR-TS 0.0 0.0 968808.1 -2660908 -0.795E-7 80279.25 0.0 -0.214151 -0.932E-6 2077114. 300000 0.0

DCARHC 0.0 0.0 0.137E-8 0.0 0.108E-6 2264.724 0.0 0.141E-8 -0.109E-5 0.345E-8 0.0 0.0

Div. 2

DW 0.0 0.0 0.0 0.0 0.0 392.8517 0.0 0.0 0.0 0.0 0.0 0.0

DEN 0.0 0.0 0.0 0.0 0.0 186.9409 0.0 0.0039664 0.0 0.0 0.0 0.0

DM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DCARGR-TS 0.0 0.0 1314663.0 -260899.8 0.0 120860.2 0.0 -0.299907 0.0 1720426. 399993.9 0.0

DCARHC 0.0 0.0 8.57366 3836057.0 0.186E-8 -0.186E-8 0.0 -0.492839 0.0 -12.7082 0.210135 0.0

Div. 3

DW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 114.9616 0.0

DEN 0.0 0.0 30.8368 0.0 0.0 0.0 0.0 0.0 0.0 4.033516 6.212341 0.0

DM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DCARGR-TS 0.0 0.0 985936.7 -200734.2 0.0 90172.23 0.0 -0.177334 0.186E-8 1575897. 299999.8 0.0

DCARHC 0.0 0.0 0.321E-7 3833079.0 0.175E-8 202.8921 0.0 -0.388562 -0.170E-5 31.62460 0.0139E-8 0.0

2
0
1
2

Div. 1

DW 0.0 0.0 77.5122 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.28630 0.0

DEN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.937587 0.0

DCARGR-TS 0.0 0.0 388879.6 -1068089 -0.313E-7 32224.09 0.0 -0.085960 -0.373E-6 833753.7 120420.0 0.0

DCARHC 0.0 0.0 0.0 -0.372E-8 0.512E-8 110.0272 0.0 0.0 -0.886E-6 0.0 0.0 0.0

Div. 2

DW 0.0 141.0 0.0 0.0 0.0 249.0799 0.0 -0.302E-7 0.0 0.0 0.0 0.0

DEN 0.0 0.0 24.7075 0.0 0.0 0.0 0.0 -0.302E-7 0.0 0.0 0.0 0.0

DM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.302E-7 0.0 0.0 433.8932 0.0

DCARGR-TS 0.0 0.0 527413.5 -105153.8 0.0 48003.31 0.0 -0.120356 0.0 691015.0 159997.6 0.0

DCARHC 0.0 0.0 0.41653 186367.3 0.0 0.0 0.0 -0.402053 0.0 -0.617406 0.010209 0.0

Div. 3

DW 0.0 0.0 519.468 0.0 0.0 0.0 -0.298E-7 -0.238E-7 0.0 0.0 58.75217 0.0

DEN 0.0 0.0 17.9930 0.0 0.0 0.0 0.0 -0.238E-7 0.0 0.0 5.812746 0.0

DM 0.0 0.0 0.0 0.0 0.0 0.0 -0.372E-8 -0.238E-7 0.0 0.0 3.681721 0.0

DCARGR-TS 0.0 0.0 395664.7 -80762.99 0.0 36253.35 0.0 -0.071172 0.0 632986.4 120999.9 0.0

DCARHC 0.0 -0.158E-8 0.242E-7 186222.6 0.0 9.857115 0.0 -0. 316984 0.208E-8 1.536419 0.0 0.0

2
0
1
3

Div. 1

DW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DEN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DCARGR-TS 0.0 0.185E-8 121642.0 -281791.8 -202600.0 -418299.0 0.0 0.0428301 -0.212E-6 0.0077834 60000.0 0.0

DCARHC 0.0 -0.276E-8 -0.110E-8 -0.372E-8 0.558E-8 110.0272 0.0 0.0 -0.886E-6 0.149E-8 0.0 0.0

Div. 2

DW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2491E-4 0.0 0.0 0.0 0.0

DEN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1992E-4 0.0 0.0 0.0 0.0

DM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1973E-5 0.0 0.0 -0.023E-8 0.0

DCARGR-TS -0.186E-8 -0.341E-7 270268.8 106528.3 0.0 -130917.9 0.0 -0.604637 0.0 0.0679126 79998.78 0.0

DCARHC -0.372E-8 0.608E-8 0.41653 186367.3 0.0 0.00 0.0 -0.402053 0.0 -0.617406 0.010209 0.0

Div. 3

DW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.684E-7 0.0 0.0 0.0 0.0

DEN 0.0 0.0 0.0 14.005 0.0 0.0 0.0 0.0 0.0 8.883 0.0 0.0

DM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DCARGR-TS -0.643E-8 0.0 202841.0 78873.71 0.0 -186631.4 0.0 -0.035753 0.0 0.2064502 59999.96 0.0

DCARHC -0.340E-7 -0.186E-8 0.0 186222.6 0.0 9.857115 0.0 -0.316984 0.0 1.536419 0.0 0.0

1. DW and DEN denote changes of wage and energy costs; 2. DCARGR-TS denotes changes of green programs and ISO TS investments;

3. DCARHC denotes changes of human care programs costs; 4. DM represents changes of material costs.
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Table 8. Results of Model (31) (continued).

�X�
and
�C�

Suppliers (DMUs)

TECH.
A. T.

STEEL
P.

D. L.
KARAN

PARS
HAM.

FARAZAN SIRIN
S. N.

PIROOZ ALSAN KARIN TIR BARAN HAMRAH

2
0
1
4

Div. 1

DW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.172E-8 0.0 0.0

DEN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.172E-8 0.0 0.0

DCARGR-TS 0.0 -0.242E-7 -29139.9 -845375.4 0.0 -2536489. 0.0 -0.107932 -0.613E-6 0.0151980 -284737.7 0.0

DCARHC 0.0 0.288E-8 1.99375 -0.465E-8 -0.186E-8 139.7647 0.0 -0.022961 0.134E-6 0.0312679 0.012968 0.0

Div. 2

DW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.464E-7 0.0 0.0

DEN 0.0 0.0 395.657 0.0 -0.498E-8 0.0 0.0 0.0 0.0 -0.464E-7 0.0 0.0

DM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DCARGR-TS 0.0 0.271E-6 18142.27 -129411.1 0.0 -1002170. 0.0 -0.232607 0.135E-5 0.2455036 -1061060. 0.0

DCARHC 0.0 0.623E-8 0.529113 236737.5 0.0 -0.815E-8 0.0 -0.510718 -0.171E-8 -0.840912 0.012968 0.0

Div. 3

DW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.115E-6 0.0 0.0

DEN 0.0 0.0 100.307 0.0 0.0 0.0 0.0 0.0 0.0 0.115E-6 0.0 0.0

DM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DCARGR-TS -0.674E-6 0.0 13628.13 -996953.6 0.0 -1471328. 0.0 -0.158647 0.119E-6 0.3812455 -795185.9 0.0

DCARHC 0.0 -0.295E-8 0.0 236553.7 0.0 12.52123 0.0 -0.431735 0.0 2.092614 -0.186E-8 0.0

2
0
1
5

Div. 1

DW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DEN 0.0 0.0 41.1759 0.0 0.0 0.0 0.0 0.5732829 0.0 0.0 0.0 0.0

DCARGR-TS 0.0 -0.390E-8 1135687.0 -284467.6 0.0 -973915. 458334.1 -0.068623 -0.232E-6 0.0024823 -61693.16 -0.201E-7

DCARHC 0.0 0.401E-6 1.81593 0.0 0.0 127.2990 0.209E-4 -0.209136 0.121E-6 0.0284792 0.0105793 0.0

Div. 2

DW 0.0 0.0 19.8118 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DEN 0.0 0.0 43.5999 0.0 0.0 0.0 0.0 9.190957 0.0 0.0 0.0 0.0

DM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DCARGR-TS 0.0 -0.114E-6 1526598.0 -127922.6 0.0 -217139.3 0.0 -0.151619 0.121E-6 -0.164971 -229896.4 -0.201E-7

DCARHC 0.0 0.0 0.43164 215622.9 0.0 -0.279E-8 0.0 -0.416618 0.291E-8 -0.630291 0.0105793 0.0

Div. 3

DW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.543818 0.0 0.0 0.0 0.00

DEN 0.0 0.0 21.5113 0.0 0.0 0.0 0.0 1.723376 0.0 0.0 0.0 0.0

DM 0.0 0.0 101.675 0.0 0.0 0.0 0.0 0.0 0.0 0.447E-7 0.0 0.0

DCARGR-TS 0.170E-8 0.0 1144953.0 -70833.57 0.0 -632645.1 0.0 -0.101078 0.551E-7 0.336189 -172290.3 0.0

DCARHC 0.568E-8 -0.327E-8 -0.407E-8 215455.5 0.0 11.40446 0.0 -0.352205 0.188E-8 1.707133 0.0 0.0

1. DW and DEN denote changes of wage and energy costs; 2. DCARGR-TS denotes changes of green programs and ISO TS investments;

3. DCARHC denotes changes of human care programs costs; 4. DM represents changes of material costs.

lower bounds and be increased to their upper bounds.
In the �rst approach, inputs cannot decrease to less
than their current values. Negative or positive changes
in inputs/outputs demonstrate the direction of future
investments. This paper assessed sustainability of
supply chains. For prospective researchers, we suggest
running our model in �elds of assessing production
lines, assessing electricity transfer lines, etc.
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