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Abstract. This paper studies the problem of capacitated lot-sizing and scheduling in
job shops with a carryover set-up and a general product structure. After analyzing the
literature, the shortcomings are easily realized; for example, the available mathematical
model is unfortunately not only non-linear, but also incorrect. No lower bound and heuristic
are developed for the problem. Therefore, we �rst develop a linear model for the problem
in hand. Then, we adapt an available lower bound in the literature to the problem studied
here. Since the problem is NP-hard, heuristic based on production shifting concept is also
proposed. Numerical experiments are used to evaluate the proposed model and algorithm.
The proposed heuristic is assessed by comparing it with other algorithms in the literature.
The computational results demonstrate that our algorithm has an outstanding performance
in solving the problem.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Production management is a multi-disciplinary task
simultaneously involving many factors. Lot-sizing
and scheduling are the two main parts of production
planning and control system. Lot-sizing deals with
determining the production amount of each product
at each production run, often over a �nite multi-
period horizon. A lot indicates the quantity of a given
product processed on a machine continuously without
interruption after its correspondent set-up. On the
other hand, scheduling is to determine the production
sequence in which the products are manufactured on a
single machine [1].

The integrated problem provides a more e�ec-
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tive production plan than the cases in which two
problems are solved hierarchically by inducing the
solution to the lot-sizing problem in the scheduling
level. Simultaneous lot-sizing and scheduling is essen-
tial, especially when sequence-dependent set-up costs
and times occur [2]. In many of the production
environments, switching between production lots of two
di�erent products triggers operations such as machine
adjustments, tool changing, and cleansing procedures.
These set-up operations are usually dependent on
the sequence [2]. In order to avoid unnecessary
changeovers, customer demand has to be pooled in the
production orders (lots). When sequence-dependent
set-up times are predominant, the available capacity
for production depends on both sequence and size of
the lots. In such a situation, lot-sizing and scheduling
have to be applied simultaneously [3]. Consequently,
the production sequence must be explicitly embedded
in the lot de�nition and scheduling.

The problem of the integrated lot-sizing and
scheduling can be either capacitated or incapaci-
tated [4]. Another issue in this area is the product
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structure. In one type, only a set of �nal products are
planned, while in another one, assembly products are
assumed [2]. That is, each �nal product is the assembly
of some other intermediate products and it can be
manufactured when all its intermediate products are
planned. In the assembly type, the products can
have either serial or general structure. In the serial
structure, each product has only one predecessor and
one successor, while in the general one, each product
can have multiple predecessors and successors. If each
product needs one operation for completion, the prob-
lem is called single-level, while if it requires more than
one operation, the problem is de�ned as multi-level. In
the case of multi-level operation, when all the products
have the same processing route, the problem is called
a ow shop; while when each one has its own unique
processing route, the problem is called a job shop.

The incapacitated problem has been well studied
in the literature. The incapacitated lot-sizing ow shop
was reviewed by Ouenniche and Bertrand [5], while the
incapacitated lot-sizing job shop was studied by Ouen-
niche et al. [6]. Regrding the capacitated problems,
the �rst conclusion is that the papers focus more on the
ow shops than on the job shops. In this regard, one
can refer to Maravelias and Sung [7], Karimi-Nasab and
Seyedhoseini [8], Stadtler and Sahling [9], and Babaei
et al. [10].

Mohammadi et al. [11] considered the ow shop-
based lot-sizing and scheduling problem and proposed
a Mixed Integer Linear Programming (MILP) model.
Their model was an extension of the model previously
proposed for the parallel-machine version of the ow
shop-based lot-sizing and scheduling problem [12].
Later, the same authors proposed several rolling hori-
zon heuristics in [11,13] and a Genetic Algorithm (GA)
was extended by Mohammadi et al. [14,15] for the same
problem. Mohammadi and Jafari [16] also developed
the mentioned problem with parallel machines at each
stage. They proposed a Lower Bound (LB) as well as a
mixed integer programming-based algorithm. Rameza-
nian et al. [17] developed an improved mathematical
model for the same problem proposed by Mohammadi
et al. [15]. Ramezanian and Saidi-Mehrabad [18] devel-
oped the problem with stochastic processing times and
proposed a Mixed Integer Programming (MIP) model.

Considering the importance of lot-zing and
scheduling of the job shop manufacturing systems, this
issue has less been studied than the ow shop systems.
Hence, we will present a review of this issue in the
following.

Karimi-Nasab and Seyedhoseini [8] studied the
job shop-based problem, but they ignored carryover
set-up times. More importantly, they only considered
scheduling of �nal products and ignored the general
product structure. Moreover, Fandel and Hegene [2]
generalized the problem with both carryover set-up

and general product structure and proposed a math-
ematical model for the problem. Unfortunately, this
model does not work correctly. More detail on why the
model is incorrect is presented in Section 2. Besides
its incorrectness, the model of Fandel and Stammen-
Hegene [2] is non-linear. Authors did not propose
solution method to solve the problem.

Lasserre [19] and Dauzere-Peres and Lasserre [20]
presented integrated models of multi-product, multi-
period job shop lot-sizing and scheduling problems
considering set-up scheduling for the job shop man-
ufacturing system. Since this problem was NP-hard,
they o�ered a decomposition approach in which a
production planning problem with a �xed sequence
of products on machines was considered at �rst and
then, based on this �xed production plan, scheduling
was carried out using an adapted version of Shifting
Bottleneck algorithm.

Lalitha et al. [21] studied N -stage hybrid ow
shop lot streaming problem for the multi-product
single-period case. The aim was to minimize the
makespan. In this regard, they tried to respond to
the following issues: quantity of sub-lots, sequence of
sub-lots, and jobs. Since the problem was NP-hard,
they developed a heuristic algorithm for large-scale
instances. Giglio et al. [22] studied a lot-sizing and
scheduling problem considering energy consumption
with the goal of minimizing total cost of the system.
They solved a single-level multi-period problem and
considered �xed set-up parameters. They also im-
plemented a relax-and-�x based heuristic algorithm.
Wolosewicz et al. [23] considered a constant sequence
for the operations in the lot-sizing and scheduling
problem with constant set-up. They developed an
adaptation of Lagrangian methods for the large-scale
instances. Karimi-Nasab et al. [24] considered a
lot-sizing and scheduling problem with compressible
processing time. They considered a constant sequence
of jobs, where by allocating the jobs to each machine,
the lot size of jobs would be determined. Also, their
solution procedure was a variation of Particle Swarm
Optimization (PSO). Karimi-Nasab et al. [25] investi-
gated simultaneous lot-sizing and scheduling problem
in a job shop manufacturing environment over a �nite
number of periods. They supposed that each machine
could operate at di�erent discrete speed levels and the
set of modes for each machine was known in advance.
The problem was formulated as an Integer Linear
Program (ILP) and a branch and cut approach was
employed so as to solve it. The goal was to minimize
the total costs originating from set-up, production,
inventory holding, and shortage. Urrutia et al. [26]
incorporated both lot-sizing and scheduling problems
simultaneously and considered sequence-independent
set-up time/cost, single level, and multiple items. In
order to solve the problem, they considered a constant
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sequence of jobs and solved their models using an
adaptation of Lagrangian method. They made an
endeavor to solve the lot-sizing problem at �rst and
then tried to improve the sequence of jobs. Mateus
et al. [27] studied a constrained lot-sizing and schedul-
ing problem under single-level manufacturing system,
unrelated parallel machines, and sequence-dependent
set-up conditions. They optimized their solution as
separable (independent) consequent processes. First,
lot sizes were calculated and then, the scheduling
problem was solved using GRASP method. Finally, a
new methodology was presented so as to combine both
solutions together. Zhang and Yan [28] proposed a non-
linear mathematical model for the multi-product multi-
period simultaneous lot-sizing and scheduling problem,
in which the type of set-up was simple and only end
products were taken into account. They also deployed
a GA to solve the problem in hand. Ouenniche and
Boctor [29] proposed a multi-stage approach to �nd
a solution to the lot-sizing and scheduling problem.
They �rst determined the scheduling by solving a non-
linear model and then, calculated lot sizes based on
the given schedules. For the medium and large-scale
problems, they implemented Simulated Annealing (SA)
and Tabu Search (TS) algorithms. In their model,
the demand of customers was deterministic and set-ups
were independent from sequences.

After a detailed review of the literature, the
existing research gap motivated the authors to study
the problem of job shop-based lot-sizing and scheduling
so as to overcome the current shortcomings in the
literature. This paper �rst presents a mixed integer,
interestingly linear, programming model and both the
problem and the model are then analyzed to introduce
an e�ective LB. Moreover, production shifting-based
heuristic is proposed so as to solve the problem.
The proposed model, LB, and heuristic are evaluated
through several numerical experiments.

The rest of the paper is organized as follows:
Section 2 de�nes and formulates the problem in hand.
Section 3 presents the proposed LB, while Section 4
proposes a production shifting-based heuristic. Then,
Section 5 conducts numerical experiments to evaluate
the proposed model, LB, and heuristic. Finally,
Section 6 provides conclusions and future research
directions.

2. Problem de�nition and formulation

The problem under consideration can be described as
follows. There is a set ofN products and a set ofM ma-
chines for production. On the one hand, the products
are assumed to follow the general product structure
(i.e., they are assembly products and each part might
have more than one predecessor and successor). The
lower-level products are the elements of the higher-level

ones. Therefore, the production of the upper levels
can be started when all of its elements at the lower
levels are already produced. Also, the products are
assumed to be multi-level; that is, each product needs
multiple operations for completion. Each operation is
carried out with one machine and the processing route
of each product di�ers from the others. Note that one
operation can be started when its precedent operation
is already �nished, called vertical interaction.

The planning horizon is �nite, consisting of T
macro-periods of the same length. For each product,
there may be both external (independent) and internal
(dependent) demands. The �nal products have only
external demands. The demands for each period have
to be satis�ed during that period. Thus, no shortage
is allowed. Moreover, each product can be produced at
most as a single lot during each period.

In this production system, we assume that ma-
chines are capacitated as resources. The set-up is also
assumed to be sequence-dependent (i.e., its magnitude
and cost depend on product sequence) and carry-
over (i.e., it can be accomplished within the next
micro-period). Each macro-period is segmented into
several micro-periods (see Figure 1), in which the �rst
micro-period is also assigned to the set-up process.
Regarding the precedence relations and the general
product structure, some standstills may occur during
the process, of which the length can be measured using
the shadow product concept. Each product cannot
be produced on more than one machine and each
machine cannot process more than one product in a
micro-period. It is also assumed that machines are
continuously available.

The integrated lot-sizing and scheduling problem
is concerned with determining the periods in which
all products are manufactured, their lot size, and
product sequence on each machine, simultaneously.
The objective is to minimize the cost of the network
including set-up, production, inventory, and idle costs.

For further illustration, a numerical example is
presented. Consider a job shop problem with three
products and two machines including two planning

Figure 1. The product structure for the example with
N = 3.



3670 O. Poursabzi et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 3667{3684

Table 1. The demands for the numerical example.

Macro period
Product

1 2 3

1 10 30 20
2 20 20 50

horizons and two macro-periods. Figure 1 and Table 1
show the three product structures and demands, re-
spectively. The processing route is as follows:

Product 1 = f1; 2g; Product 2 = f2; 1g;
and Product 3 = f2g:

Also, the processing and set-up costs are as follows:

b1 = 2; b2 = 3; b3 = 1; w1;3 =w3;1 =30;

w1;2 = w2;1 = 20; w2;3 = w3;2 = 10:

A feasible solution for this example is shown in Fig-
ure 2. The numbers on the arcs signify the quantity of
the lower-level products.

The indices, parameters, and variables of the
multi-level general lot sizing and scheduling problem
(MLGLSP) MM are shown below:

Indices:
i; j; k; l; n Product or item type;
f Micro-periods per machine in each

macro-period;
�; � A speci�c micro-period per machine in

each macro-period in accordance with
the micro-period segmentation of the
machine;

m; �m Machine type;
T Macro-period.

Parameters:
T Planning horizon;

N Number of di�erent products;
M Number of di�erent machines

(or di�erent stages) available for
production;

aji Production coe�cient, which indicates
how many units of product j are
required to produce a unit of product
i;

BM A large number;
bj;m Capacity of machine m required for

the production of a unit of product j
(in time units per quantity unit);

~bj;m Capacity of machine m required as
input in order to produce one unit of
the shadow product j (in time units
per quantity unit), also referred to as
the input coe�cient;

Cm;t Available capacity of each machine m
in macro-period t (in time units);

dj;t External demand for product j at
the end of macro-period t (in units of
quantity);

hj;t Storage costs unit rate for product j in
macro-period t;

oj;m Cost unit rate for maintaining the
set-up condition of machine m for
product j (in money units per time
unit);

pj;m;t Production costs for producing one
unit of product j on machine m in the
macro-period t (in money units per
quantity unit);

Sij;m Sequence-dependent set-up costs
for the set-up of machine m from
the production of product i to the
production of product j (in money
units); to i 6= j, sij;m � 0 applies and
for i = j, sij;m = 0;

Figure 2. A feasible solution for the example.
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wij;m Sequence-dependent set-up times
for the set-up of machine m from
the production of product i to the
production of product j (in time
units); to i 6= j, wij;m � 0 applies and
for i = j, wij;m = 0.

Variables
Ij;0 Stock of product j at the start of the

planning horizon (in quantity units);
Ij;T Stock of product j at the end of the

planning horizon (in quantity units);
qj;m;f;t Production quantity of product j in

the micro-period f of macro-period t
on machine m (in quantity units);

~qj;m;f;t Quantity of shadow product j in the
micro-period f of macro-period t on
machine m (in quantity units);

zj;m;f;t A binary variable which indicates
whether micro-period f of macro-
period t is an idle period for machine
m in which the set-up condition for
product j is maintained (zj;m;f;t = 1)
or not (zj;m;f;t = 0); with zj;m;f;t = 1,
product j has the role of a shadow
function.

Decision variables
xij;m;f;t A binary variable which indicates

whether to set up machine m from
the production of product i to the
production of product j in micro-
period f of macro-period t on machine
m (xij;m;f;t = 1) or not (xij;m;f;t = 0);

yj;m;f;t A binary variable which indicates
whether machine m is set up
(yi;m;f;t = 1) or not (yi;m;f;t = 0) in
micro-period f of macro-period t for
the production of product j.

The MILP formulation of the problem is as follows
(Eqs. (1)-(20)):

Objective function:

min
NX
i=1

NX
j=1

MX
m=1

TX
t=1

3X
f=1

NSij;m:xij;m;f;t

+
NX
j=1

TX
t=1

hj;t:Ij;t +
NX
j=1

MX
m=1

TX
t=1

3NX
f=1�

pj;m;t:qj;m;f;t + oj;m:~bj;m:~qj;m;f;t
�
: (1)

Subject to:

Ij;t =Ij;t�1 +
MX
m=1

3NX
f=1

qj;m;f;t

�
NX
i=1

MX
m=1

3NX
f=1

aji:qi;m;f;t � dj;t;

j = 1; � � � ; N; t = 1; � � � ; T; (2)

[aji]

"
BM(yj; �m;�;t � 1) +

"
bj; �m:qj; �m;�;t

+
NX

n=1;n 6=j

��1X
�=1

 
bn; �m:qn; �m;�;t

+
NX

k=1;k 6=n
xnk; �m:�;t:wnk; �m + ~bn; �m:~qn; �m;�;t

!##

� [aji]

"
BM(1� yi;m;f;t)

+
NX

n=1;n 6=i

f�1X
�=1

 
bn;m:qn;m;�;t;

+
NX

k=1;k 6=n
xnk;m;�;t:wnk;m + ~bn;m:~qn;m;�;t

!#
;

j = 1; � � � ; N; i 6= j; m; �m = 1; � � � ;M;

f; � = 1; � � � ; 3N; t = 1; � � � ; T; (3)

NX
j=1

3NX
f=1

bj;mqj;m;f;t +
NX
i=1

NX
j=1
j 6=i

3NX
f=1

wij;m:xij;m;f;t

+
NX
j=1

3NX
f=1

~bj;m:~qj;m;f;t = Cm;t;

m = 1; � � � ;M; t = 1; � � � ; T; (4)

qj;m;f;t � Cm;t
bj;m

:yj;m;f;t; j = 1; � � � ; N;

m = 1; � � � ;M; t = 1; � � � ; T;
f = 1; � � � ; 3N; (5)

~qj;m;f;t � Cm;t
~bj;m

:zj;m;f;t; j = 1; � � � ; N;

m=1; � � � ;M; t=1; � � � ; T; f=1; � � � ; 3N;
(6)
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3NX
f=1

yj;m;f;t � 1; j = 1; � � � ; N;

m = 1; � � � ;M; t = 1; � � � ; T; (7)

MX
m=1

yj;m;f;t � 1; j = 1; � � � ; N;

f = 1; � � � ; 3N; t = 1; � � � ; T; (8)

NX
j=1

0B@yj;m;f;t +
NX
i=1
i 6=j

xij;m;f;t + zj;m;f;t

1CA = 1;

m=1; � � � ;M; t=1; � � � ; T; f=2; � � � ; 3N; (9)

yj;m;(f�1);t + xij;m;(f�1);t + zj;m;(f�1);t

=yj;m;f;t + xjk;m;f;t + zj;m;f;t;

i; j; k = 1; � � � ; N; i 6= j; j 6= k;

m = 1; � � � ;M; t = 1; � � � ; T;
f = 3; � � � ; 3N; (10)

yj;m;3N;(t�1) + xij;m;3N;(t�1)

+ zj;m;3N;(t�1) =
NX
k=1

xjk;m;1;t;

i; j = 1; � � � ; N; i 6= j;

m = 1; � � � ;M; t = 2; � � � ; T; (11)

qj;m;f;t � Cm;t
bj;m

:(2� yj;m;f;t � yj;m;(f�1);t);

j = 1; � � � ; N; m = 1; � � � ;M;

t = 1; � � � ; T; f = 2; � � � ; 3N; (12)

~qj;m;f;t � Cm;t
~bj;m

:(2� zj;m;f;t � zj;m;(f�1);t);

j = 1; � � � ; N; m = 1; � � � ;M;

t = 1; � � � ; T; f = 2; � � � ; 3N; (13)

yj;m;f;t � BM:

 
NX
i=1

f�1X
�=1

xij;m;�;t

!
;

j = 1; � � � ; N; m = 1; � � � ;M;

t = 2; � � � ; T; f = 2; � � � ; 3N; (14)

NX
I=1

NX
j=1

xij;m;1;t � 1; m = 1; � � � ;M;

t = 1; � � � ; T; (15)

Ij;0 = Ij;T = 0; j = 1; � � � ; N (16)

yj;m;f;t 2 f0; 1g; j = 1; � � � ; N;
m = 1; � � � ;M; t = 1; � � � ; T;
f = 1; � � � ; 3N; (17)

xij;m;f;t 2 f0; 1g; i; j = 1; � � � ; N;
m = 1; � � � ;M; t = 1; � � � ; T;
f = 1; � � � ; 3N; (18)

zj;m;f;t 2 f0; 1g; j = 1; � � � ; N;
m = 1; � � � ;M; t = 1; � � � ; T;
f = 1; � � � ; 3N; (19)

Ij;t; qj;m;f;t; ~qj;m;f;t � 0; j = 1; � � � ; N;
m = 1; � � � ;M; t = 1; � � � ; T;
f = 1; � � � ; 3N: (20)

In this model, Eq. (1) represents the objective function
which minimizes the sum of the sequence-dependent
set-up costs, the storage costs, the production costs,
and the costs of maintaining set-up conditions of the
machine in the planning horizon. Constraint (2)
ensures the balance of demand supply in each period.
Two types of product's demand are taken into account
in this model:

1. The external demand for products that must be
provided at the end of each macro-period;

2. The internal demand of the products required for
the production of high-level products in the product
structure, which must be satis�ed within the macro-
period.

The external demand (dj;t) and the internal demand
(
PN
i=1
PM
m=1

P3N
f=1 aji:qi;m;f;t) of a macro-period for

product j must be provided by the previous macro-
period's stock and the production quantity of product
j in the current macro-period. Here, the �rst period is
exception, since the demands have to be provided by
production.

Constraint (3) is used so as to consider vertical
interaction in the proposed model. In this equation,



O. Poursabzi et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 3667{3684 3673

each typical product is produced before its direct
substitute product in one macro-period. The left
side of Constraint (3) is equal to the time between
the beginning of the macro-period t and the end of
the production of product j if micro-period f is a
production micro-period for product j; otherwise, it
is zero. In other words, if the value is not positive,
the left side of Constraint (3) becomes zero. The
right side of Constraint (3) is equal to the time
between the beginning of period t and the beginning
of the production of product i if micro-period f is a
production micro-period for product i, or else it is a
big number. In other words, if the value is positive,
the right side of Constraint (3) is zero.

Constraint (4) shows the capacity constraints
of machines during a macro-period. Constraint (5)
indicates the relation between set-up and production
processes and obtains an Upper Bound (UB) for
production quantity. Constraint (6) determines the
duration of idle times. It also yields a UB for the
duration of the idle times. Constraints (7) and (8)
guarantee that in each macro-period, at most a single
lot is produced for each product. To achieve this aim,
Fandel and Stammen-Hegene [2] applied:

MX
m=1

lmtX
fmt =1

� yj;m;fmt ) � 1;

j = 1; � � � ; N; t = 1; � � � ; T;
but these constraints could not satisfy it. Assume a
problem with N = 2, M = 3, T = 2, lmt = 2,
Product routf1g = f1; 3g, and Product routf2g =
f1; 2; 3g. Also, suppose that all products must be
produced in period 1; then:

t = 1; lmt = 2 :

if j = 1; y1;1;1 + y1;1;2 + y1;2;1 + y1;2;2

+ y1;3;1 + y1;3;2 � 1;

if j = 2; y2;1;1 + y2;1;2 + y2;2;1 + y2;2;2

+ y2;3;1 + y2;3;2 � 1:

Due to the above expanding equation, for each product
in each period, only one stage of product rout can be
run on, so the products demand cannot be satis�ed.
However, by applying Eqs. (21) and (22) in the pro-
posed model, the mentioned de�ciency is recti�ed.

t = 1; j = 1;

if m = 1; y1;1;1;1 + y1;1;2;1 + y1;1;3;1

+ y1;1;4;1 + y1;1;5;1 + y1;1;6;1 � 1;

if m = 2; y1;2;1;1 + y1;2;2;1 + y1;2;3;1

+ y1;2;4;1 + y1;2;5;1 + y1;2;6;1 � 1;

if m = 3; y1;3;1;1 + y1;3;2;1 + y1;3;3;1

+ y1;3;4;1 + y1;3;5;1 + y1;3;6;1 � 1: (21)

t = 1; j = 1;

if f = 1; y1;1;1;1 + y1;2;1;1 + y1;3;1;1 � 1;

if f = 2; y1;1;2;1 + y1;2;2;1 + y1;3;2;1 � 1;

if f = 3; y1;1;3;1 + y1;2;3;1 + y1;3;3;1 � 1;

if f = 4; y1;1;4;1 + y1;2;4;1 + y1;3;4;1 � 1;

if f = 5; y1;1;5;1 + y1;2;5;1 + y1;3;5;1 � 1;

if f = 6; y1;1;6;1 + y1;2;6;1 + y1;3;6;1 � 1: (22)

Constraints (9)-(11) bound the micro-periods in each
macro-period to one of the following three positions:
production, set-up, and idle micro-period.

To ensure this purpose, Fandel and Stammen-
Hegene [2] presented the following equation in their
paper:

NX
i=1

NX
j=1;j 6=i

(yj;m;ftm + xij;m;ftm + zj;m;ftm) = 1;

m = 1; � � � ;M; t = 1; � � � ; T;
f tm = 1; � � � ; ltm:
In the case with m = 1, lmt = 2, t = 1, and M = 3,

the generated constraint could be written as follows:

if i = 1 then j = 2; 3! y2;1;2 + x1;2;1;2

+ z2;1;2 + y3;1;2 + x13;1;2 + z3;1;2;

if i = 2 then j = 1; 3! y1;1;2 + x21;1;2

+ z1;1;2 + y3;1;2 + x2;3;1;2 + z3;1;2;

if i = 3 then j = 1; 2! y1;1;2 + x31;1;2

+ z1;1;2 + y2;1;2 + x32;1;2 + z2;1;2;

2y1;1;2 + 2y2;1;2 + 2y3;1;2 + x1;2;1;2 + x1;3;1;2

+ x2;1;1;2 + x2;3;1;2 + x3;1;1;2 + x3;2;1;2

+ 2z1;1;2 + 2z2;1;2 + 2z3;1;2 = 1:
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In contrast, the generated form of Eq. (9) can be
written as:

if j = 1 then i = 2; 3! y1;1;2 + x21;1;2

+ x31;1;2 + z1;1;2;

if j = 2 then i = 1; 3! y2;1;2 + x21;1;2

+ x32;1;2 + z2;1;2;

if j = 3 then i = 1; 2! y3;1;2 + x13;1;2

+ x23;1;2 + z3;1;2;

y1;1;2 + y2;1;2 + y3;1;2 + x12;1;2 + x13;1;2 + x21;1;2

+ x23;1;2 + x31;1;2 + x32;1;2 + z1;1;2

+ z2;1;2 + z3;1;2 = 1: (23)

The above-mentioned expression shows that:

i. According to this constraint, none of the micro-
periods can be allocated to the production process.
Therefore, considering the whole model, only the
�rst micro-period of each macro-period has the
chance to implement the product process, which
is against the innovation of the presented model,
namely, the Big Bucket. The reason is that if
it is impossible to produce more than one type
of product in each macro-period, the Big Bucket
assumption is violated;

ii. According to this constraint, after the second
micro-period, no other idle micro-period would
exist, which is very important for the whole model,
especially for observing the vertical interaction.
For example, assume that two products with direct
precedence relation are produced in macro-period.
To guarantee vertical interaction, an interval be-
tween two micro-periods may be needed. It may
also be much more commodious to keep the ma-
chine ready for producing a speci�c product than
producing one product at �rst and then reverting
the machine to the previous state. This constraint
prevents the mentioned di�culty;

iii. It is obvious that only the indicated variables in
the set-up micro-periods can be 1. This constraint
imposes consecutive set-up micro-periods on the
model without any production process and conse-
quently, enormous cost is imposed on the whole
system.

In this paper, in order to observe the assumptions
and to meet them along with the above-mentioned
purposes, the equation in the research of Fandel and
Stammen-Hegene [2] is replaced with Eq. (23).

Constraint (12) along with Constraints (7) and (8)
determines that if one lot belonging to each product
is produced in a macro-period, it must be produced
within a micro-period, not in two or more directly
successive micro-periods. Constraint (13) applies the
same restriction for the standstill of the machine.
Constraints (14) and (15) consider the set-up of the
machine. Constraint (16) speci�es that there is no on-
hand inventory at the beginning/end of the planning
horizon. Finally, Constraints (17)-(20) de�ne the type
of decision variables.

2.1. Lower bound adaptation
Since the problem in hand in this research is NP-
hard, providing LBs could be useful and applicable.
For example, they can be a base point for approx-
imation methods of evaluation; thus, the available
LB is developed and employed. To do so, �rst, the
performance of the LB and model is assessed and then,
the performance of the proposed heuristic is evaluated
with respect to the LB. The adapted LB is taken from
Mohammadi et al. [13] and obtained through linear
relaxation of all binary variables in the model and
adding Eq. (24):

3NX
f=1

yj;m;f;t = Aj;m;t; j = 1; � � � ; N;

m = 1; � � � ;M; t = 1; � � � ; T: (24)

Aj;m;t is a binary variable.
Eq. (24) similar to a part of Eq. (23) has always

been established in the original model.
After relaxing the binary variables, neither Eq. (3)

nor (14) has signi�cant inuence on the model, since
the left side of Eq. (3) would be a big negative number
and the right side of Eq. (3) or (14) would be a big
positive number owing to the values of the relaxed
variables yj;m;f;t. It means that by relaxing the binary
variables, Eq. (3) or (14) is always satis�ed without
imposing any obligation so as to guarantee vertical
interaction in the model. Thus, in calculating of the
LB, Eq. (3) or (14) can be eliminated from the model.

3. The proposed shifting-based heuristic

Since the problem in hand is NP-hard, it cannot be
solved in a reasonable computational time using the
exact classical methods. To rectify such a di�culty,
employing heuristics is the best alternative [30]. The
proposed heuristic in this research is based on a part
of (or the entire) product lot shifting from a speci�c
period to others and includes 4 phases: initializing,
smoothing, improving, and merging mechanisms.

In initializing mechanism, an initial solution is
generated through ignoring the capacity constraints.
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Figure 3. The general outline of the heuristic.

If this initial solution is infeasible, the smoothing
mechanism is used to obtain a feasible solution based
on the concept of product shifting. The improving
mechanism starts from the feasible solution obtained
by the smoothing mechanism and tries to improve
it. In merging mechanism phase, the produced lots
obtained by the improving procedure are integrated
with the goal of reducing the set-up cost. If the
solution obtained in the merging mechanism phase is
infeasible, it will be used as the initial solution in the
next iteration.

The algorithm repeats until the stopping criterion
is met. The general outline of the proposed heuristic is
shown in Figure 3. The 4 mechanisms are described as
follows.

3.1. Initialization
In this mechanism, one initial solution is generated.
It is noteworthy that three decisions should be made
in the problem under consideration: products to be
produced at each period, the lot-size of each product,
and product sequence on each machine. Obviously,
these decisions are determined in any solution. The
used heuristic search in this research de�nes the �rst
two decisions and tries to improve them while the
product sequence of a given solution is de�ned using
a dispatching rule. Figure 4 shows how a solution
is encoded in the proposed heuristic in terms of a
numerical example.

Figure 4. A numerical example for the encoding scheme.

Ej;t=

8><>:product quantity of product j in period t,
if item j is produced in period t

0; otherwise

First, the initial solution is generated for the
incapacitated version of the problem. This solution
then becomes feasible using the soothing mechanism,
if it violates the capacity constraint. To this end,
Wagner-Whitin algorithm is used for each product.
The algorithm is �rst applied to items with indepen-
dent demand dj;t. It is then applied to each item,
j 2 f2; � � � ; Ng, with both independent and dependent
demands.

The products should be produced during the
studied period according to the encoding scheme with
the following conditions. Let P (j) be a set including
all products that can be produced, i.e., there is suf-
�cient amount of its prerequisites. The sequence can
be determined considering the following rules among
those products which have necessary conditions for
production. In each step, the products in which the
examined machine is one of the production process
steps are selected. At the initial steps of produc-
tion, if a given product has any prerequisite, then
a required amount of necessary materials should be
available in order to make sure that the product is
considered as a candidate for the operation. Also,
if the examined machine is in any step except the
�rst one, then the operation on the product should
be completed in previous steps. According to [2], the
products in lower levels of General Product Structure
(GPS) have greater numbers of demands; also, there
are many products which are dependent on these
products for the initiation of their production process;
therefore, they are assigned higher priority for produc-
tion.

If there is more than one output from the previous
level, the high-priority product is the one with lower av-
erage set-up cost. The average set-up cost for product
j on machine m is derived from �Sj;m =

P
i Sij;mP

j
P
i Sij;m

.
If the examined product is the �rst produced product
of the considered machine during the current macro-
period, its set-up could be performed in the previous
period(s) by considering cost and source. In this case,
the carryover option for set-up should be applied to the
next period.

A well-known property, called zero-switch prop-
erty [31], for the incapacitated lot-sizing problem can
be de�ned as follows: There is an optimal solution
to the incapacitated lot-sizing problem (the GCLSP
problem without resource constraints), which can be
written as:

Product quantity (j; t)�Inventory (j; t� 1) = 0;

or:
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0@ MX
m=1

3NX
f=1

yj;m;f;t

1A :Ij;t = 0;

or0@ MX
m=1

3X
f=1

Nqj;m;f;t

1A :Ij;t = 0:

Using this property, the production quantity of each
item in its production periods can be calculated:

- Step 1: For any item j and period t, if Ej;t = 0,
then set Product quantity(j,t) = 0;

- Step 2: For any item j and any periods t1 < t2 � T ,
if Ej;t1 = Ej;t2 = 1 and Ej;t = 0 for all t1 < t < t2,
then:

Product quantity (j; t1)=
t2�1X
t=1

0@dj;t+X
i2S(j)

aji:di;t

1A :
(25)

In other words, if a product is produced in a given
period, the demand of that period as well as those of all
periods up to the next production period of that item
should be satis�ed. Since no backlogging is assumed,
all items are produced in the �rst period, i.e.:

Ej;1 = 1; 8j = 1; � � � ; N:
In CLSP, the optimal solution may not include

zero-switch property, since it also depends on the
available capacity of machines. Hence, the solution
derived from this property is used as a basic solution
to generate a feasible solution considering capacity
constraints. This procedure is carried out using the
heuristic explained in the next subsection.

3.2. Smoothing mechanism
The initial solution (P1) may be infeasible due to vio-
lating capacity constraint. In this case, the smoothing
mechanism aims to generate a feasible solution named
P2 through shifting products from an infeasible period
to other periods. Note that a period is infeasible if the
capacity constraint is violated.

In an infeasible period t, a portion of product
quantity, named qit, out of total production quantity
of item j in period t is transferred to another period tl.
For each item j produced in an infeasible period t, two
quantities are considered to shift to period tl:
Wj;tl : The maximum production quantity of

product j in period t, which guarantees
that inventory constraints are still
satis�ed. This amount depends on
whether tl > t or tl < t;

Qj;t : The quantity of product j in infeasible
period t, which eliminates the resource
overload (machine capacity) m in
period t by shifting this quantity to
another one; Qj;t is calculated by
Eq. (26) as shown in Box I.

In Eq. (26), the comparison is made only for
positive values. Note that the amount of Qi;t indicates
that overuse of resource k in period t can be reduced
to zero if there is a quantity less than Wi;tl;. The
smoothing mechanism includes the following two steps.

3.2.1. Backward shifts
In this mechanism, the production shifting from each
period to earlier periods is analyzed. The procedure
starts from the last period and continues toward the
�rst period. If the period is infeasible, a portion of the
selected produced product is moved to earlier periods
so that period t becomes feasible. It should be pointed
out that the production shifting process is checked for
all earlier periods and the best one is selected. The
product is also selected by the ratio test, which will
be discussed later. If no feasible solution is found
by shifting the �rst selected product, the procedure
applies to the next product. For an infeasible period t,
a quantity, Qj;t, out of the entire production amount of
product j in period t is shifted to earlier target period
tl, where � � tl � t� 1. Note that we have:

� = maxf1; the last period among periods prior

to period t in which component j is

producedg:
The production shifting increases the product stock
in a period. In order to meet the inventory balance
constraints, the portion of the shifting must be held:

qj;t �Wj;tl = min

8<: min
i2P (j)

�=tl;tl+1;t�1

fIi;�=aijg;

Product Quantity(j; t)

9=; : (27)

It is noteworthy to indicate that there
always exists a component r whose entire
production can be moved to an earlier period,
r = maxfjjProduct Quantity(j; t) > 0g, since
ProductQuantity(i;t) = 0, for all i 2 P (r), where P (r) is
the set of all immediate predecessors of component r.
In other words, the entire product of an item can be
moved from the current period to earlier periods when
none of its components is produced in the current
period.
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Qj;t = max
m

8<:
0@ 3NX
f=1

bj;m:qj;m;f;t +
NX
i=1

3NX
f=1

wij;m:xij;m;f;t +
3NX
f=1

�bj;m:�qj;m;f;t � Cm;t
1A,pj;m;t

9=; : (26)

Box I

The selection of quantity, component, and target
period (qj;t; j; tl) is based on the ratio test derived
from cost variation calculation and resource usage.
If the procedure continues to the �rst period and
no feasible solution is found, the forward shifting is
applied. Otherwise, procedure P2 terminates.

3.2.2. Forward shifts
This mechanism deals with the production shifting
from a given period to later periods. It starts from
the �rst period to the last one and intends to shift a
portion of a product to subsequent periods so as to
make it feasible. Similar to the backward shift, the
production shift to all earlier periods is checked and
the best one is selected. The products are selected one
by one and the procedure applies to the next product
if no feasible solution is found.

For an infeasible period t, a quantity qj;t out of
the entire production amount of product j in period t is
shifted to later target period tl, where t+1 � tl � � and
� = minfT; the �rst period among periods subsequent
to period t in which component j is producedg.

Similar to backward shifts, the selection of quan-
tity, moved component, and target period is based on
the ratio test. The production shift to the next periods
reduces the inventory from period t to tl�1; therefore,
the inventory balance should be guaranteed. Eq. (25)
is used to determine the shifted quantity to the next
periods.

qj;t �Wj;tl = min
�=t;t+1;tl�1

fIj;�g: (28)

After shifting, if a feasible solution is found, P2
terminates; otherwise, the backward shift procedure
should be applied again.

3.2.3. Ratio test
This procedure aims at selecting the shifted quantity,
component, and target period (qj;t, j, tl), i.e., the
quantity qj;t out of the entire production amount of
component j in period t should be moved to an earlier
or later target period tl. The values of (qj;t, j, tl)
are chosen so that the following ratio (Eq. (29)) is
minimized.

Ratio =
Extra cost + �:Penalty

Excess decrease
: (29)

The Extra Cost (Eq. (30)) is calculated as follows:

Extra cost =
Additional cost

Total cost
: (30)

By shifting qj;t from period t to tl, the cost variation
calculated by Additional Cost (Eq. (31)) is imposed.

Additional cost = qj;t:

"
(cj;tl � cj;t)

+Z:

0@X
k

0@hj;k�X
i2P (j)

aij :hi;k

1A1A35+SU1+SU2:
(31)

The �rst term of the right-hand side of Eq. (31)
calculates the production cost variation. The second
and third terms compute the inventory cost variation
and set-up cost variation, respectively. Total Cost is
the sum of the current system costs, which is derived
from the model objective function. The Additional cost
parameters can be expressed as follows.

k=

(
tl; tl+1; � � � ; t�1 for tl<t (backward step)
t; t+1; � � � ; tl�1 for tl>t (forward step)

)
;

Z =

(
1; for the backward step
�1; for the forward step

)
;

SU1 =

(
sj;tl; if Product Quantity (j; tl) = 0
0; otherwise

)
;

SU2 =

(
sj;t; if qj;t=Product Quantity(j; tl)
0; otherwise

)
:

When qj;t is replaced from period t to tl, resource
consumption is changed. Eq. (32) calculates this
change as shown in Box II.

In fact, this equation illustrates the overuse ra-
tio of resources in period t. In this equation, the
resources (machines) whose current demand is more
than the available capacity (i.e., the ones with a
positive numerator) are calculated. The penalty term
in the mentioned ratio represents the resource usage
variations caused by the moved quantity qj;t from
period t to tl and is de�ned by Eq. (33).

Penalty = Excess after(t) + [Excess after(tl)

� Excess before(tl)]; (33)
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Excess(t) =
MX
m=1

0@0@ 3NX
f=1

bj;m:qj;m;f;t +
NX
i=1

3NX
f=1

wij;m:xij;m;f;t +
3NX
f=1

�bj;m:�qj;m;f;t � Cm;t
1A,Cm;t

1A : (32)

Box II

where:

Excess after(t) = Excess(t) after the move;

Excess before(t) = Excess(t) before the move:

Note that the penalty cannot be negative and it can be
interpreted as a cost for overuse of resources in periods
t and tl.

Excess decrease in Eq. (29) is the di�erence
between Excess after(t) and Excess before(t).

Let a cycle denote a sequence of a backward step
and a forward step in the smoothing procedure. In the
�rst cycle set, � = 1. If a feasible solution is not found,
the second iteration starts with � = 2 and continues
up to � = n. The more the value of � in each iteration,
the greater the importance of the use of additional
resources.

The number of iterations in this procedure is
de�ned in advance, equal to the number of products.
The reason for this can be explained with an exam-
ple. Consider a multi-product problem with a two-
period time horizon. The production starts from the
�rst period. Due to the capacity constraint, all the
demanded products should be produced in the �rst
period and some should be transferred to the next
period. Although there is a similar algorithm in the
literature [30], it uses only backward shift and fails to
use the penalty concept for replacement.

3.3. Improvement mechanism
This mechanism starts from a feasible solution gener-
ated by the smoothing mechanism and improves it by
shifting production from one period to other (either
earlier or later) periods. It is obvious that only the
improving shifting is accepted. For each period t, a
quantity, qj;t, of each component, j, is shifted to a
target period, tl, such that tl < t in the backward step
and tl > t in the forward step. For each item i and each
target period tl, two quantities in period t are exam-
ined: qj;t = Wj;t; qj;t is sampled based on the uniform
distribution U [0; wi;tl]. One reason for selection of the
second random value is that di�erent solutions may be
obtained with the same initial point. Moreover, the
costs vary over time and shifting a quantity qjt < wi;tl
may result in a lower cost. Any candidate set (q; i; tl)
in period t among all candidates which minimizes the
extra cost is chosen. The procedure terminates when
no feasible and improving solution is found.

3.4. Merging procedure
The purpose of this procedure is to further diversify
the search. In this procedure, the entire production
of an item, j, in a given period is moved to another
(either earlier or later) period, tl, in which that item
is produced. The aim of production lots merging
is to reduce the set-up and production costs. The
item production process can be shifted to period tl
if this item's lot in the current period is equal to
Wj;tl, which is calculated by Eq. (27) for tl < t and
by Eq. (28) for tl > t. If the obtained solution is
feasible, the improvement procedure (P3) is applied to
enhance the quality of the solution. Otherwise, the
obtained solution is used as a new starting point for
the Smoothing procedure (P2).

In the rest of this section, an example is provided
so as to clarify the proposed heuristic steps.

Assume a problem with N = 4, M = 1, and T =
4, and except for parameters a and D, the values of
other parameters are similar to those in Section 3. For
this aim, the implementation of the Heuristic's steps is
shown in Algorithm 1.

a4;2 = 2; a4;3 = 3; a2;1 = 3; a3;1 = 1;

D =

266415 20 20 10
50 46 48 51
40 45 53 42
80 59 66 71

3775 :
The algorithm terminates when maximum iter-

ation number (MaxIT) or Max Run Time is reached.
The selection of the optimum level for the max iteration
of the algorithm is a serious challenge. In this regard,
three levels of the mentioned parameters are de�ned as
15, 20, and 25.

For calibration of the algorithm, several problems
are generated and solved; ultimately, 20 is selected as
the optimum level of max iteration. Also, Max Run
Time is set to 10,000 seconds.

4. The heuristic evaluation

In this section, the performance of the adapted LB and
the proposed algorithm is evaluated. To this end, the
adapted LB is compared with the optimum solution
in very small sized problems. Also, the proposed
algorithm is compared with other algorithms.

The model is coded in LINGO 8 and the heuristic
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Algorithm 1. Implementation steps of shifting-based heuristic.

is implemented in MATLAB 2011a. All the experi-
ments are run on a PC with a 3.4 GHz Intelr CoreTM

2 Duo processor and 4 GB RAM memory.

4.1. Evaluation of the model and lower bound
In order to ensure the accuracy of the LB, a set of
15 instances similar to those used in Mohammadi et
al. [13] are generated as follows:

bj;m;~bj;m � U(1:5; 2); dj;m � U(0; 180);

hj;m � U(0:2; 0:4); pj;m;t � U(1:5; 2);

wij;m) � U(35; 70); sij;m � U(35; 70);

ajijj � i � U(1; 3):

The capacity of each machine at each period
denoted by Cm;t is calculated so as to satisfy the
demand of that period according to the lot-for-lot
(L4L) scenarios.

Table 2 shows the results of all instances belonging
to the problem with [N = 2;M = 2; T = 2] and [N =
2;M = 3; T = 2]. In Table 2, the �rst row shows the
optimal solutions while the second row indicates the
di�erence between the LB and the optimal solution.
Also, the computational times in seconds are shown in
the third row.
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Table 2. The results of the model and the lower bound.

Problem
size

Instance
no.

Model Lower bound
GapOptimal

solution
Computational

time (sec)
Solution Computational

time (sec)

N = 2,
M = 2,
T = 2

1 3095 8 3059.09 < 0:1 1.2%
2 4593.64 1 4519.68 < 0:1 1.6%
3 1194.69 2 1158.32 < 0:1 3%
4 3061.68 4 2960.31 1 3.3%
5 2451.55 4 2367.66 1 3.4%

N = 2,
M = 3,
T = 2

1 2982.35 8 2700.44 1 9.4%
2 2227.44 12 2063.88 1 7.3%
3 3712.71 97 3668.78 2 1.2%
4 4559.12 39 4506.157 2 1.2%
5 4885.49 55 4849.19 2 0.7%

Figure 5. The general product structure for N = 4, N = 7, N = 10, N = 14.

The following performance measure (Eq. (34))
shows the gap, i.e., the di�erence between LB and the
optimal solution:

5X
i=1

�
LBsolution;i �GOsolution;i

GOsolution;i
� 100

��
5; (34)

where LBsolution;i is the solution obtained by the LB
and GOsolution;i is the global optimum for any instance.

The computational times for a problem with [N =
2;M = 2; T = 2] and [N = 2;M = 3; T = 2] are 5.2 and
42.2 seconds, respectively. It reveals that the average
computational time grows more than 8 times by adding
only one machine to the system.

4.2. Heuristic evaluation
This subsection evaluates the performance of the pre-
sented heuristic. To do so, the outputs of the applied
algorithms for similar problems with the developed

heuristic in this paper are compared. A set of 15 prob-
lems with di�erent sizes from (N M T ) = (3 3 3)
to (14 14 14) are generated. The used GPSs in the
paper are shown in Figure 5. The test instances are
taken from the literature [32,33].

These data sets can be divided into three groups:

1. Small-size, including instances with sizes of 3.3.3 to
4.5.4;

2. Medium-size, including instances with sizes of 7.5.5
to 7.7.7;

3. Large-size, including instances with sizes of 10.7.7
to 14.14.14.

Also Cm;t is calculated so that the demand of each
period according to the L4L scenarios is met [34].

Table 3 shows the experimental results in which
any instance is solved 5 times and its results are nor-
malized through using Relative Percentage Deviation
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Table 3. Average Relative Percentage Deviation (RPD) for the algorithms grouped by N , M , T .

Problem size Algorithms
N M T Heuristic GA RHBH1 RHBH2
3 3 3 0.060 3.322 5.028 2.091
3 3 4 0.027 2.308 4.838 3.635
3 4 3 0.002 3.580 5.678 4.358
4 3 3 0.196 0.458 4.031 1.452
4 4 4 0.180 4.289 6.251 4.386
4 4 5 0.033 4.701 9.770 5.419
4 5 4 0.012 1.166 6.149 6.051
7 5 5 0.044 9.676
7 7 5 0.198 18.880
7 7 7 0.166 2.543
10 7 7 0.008 10.290
10 10 10 1.057 25.227
10 14 10 2.699 1.295
14 10 10 0.565 8.841
14 14 14 0.836 10.011

Average 0.405 7.106 5.964 3.913

(RPD) metric calculated as follows (Eq. (35)):

RPDi;j =
xi;j � xmin;j

xmin;j
:100; (35)

where RPDi;j is the relative percentage deviation of
the jth instance of the ith trial. Also, xi;j is the
objective function value obtained from the jth instance
of the ith trial and xmin;j is a minimum value of the
objective function obtained for the jth instance.

The average values of RPDs are shown in Table 3.
In small instances, all of the algorithms can solve
the model, but the results show that the proposed
algorithm has a better performance than others with
an average RPD of 0.073%. In the medium- and large-
scale instances, only GA and the proposed algorithm
can solve the problems. In the medium-scale problems,
the average RPD of our algorithm, i.e., 0.136%, is much
lower than that of GA, i.e., 10.366%. Also, in the
large-scale problems, the average RPD of the proposed
algorithm is 1.033%, while average RPD of GA is
11.133%, which shows the superiority of the proposed
algorithm. Generally speaking, one can say that the
proposed algorithm outperforms GA in all categories
of instances, i.e., small-, medium-, and large-scale ones,
with the average RPD of 0.405% versus 7.106%.

Moreover, in order to further analyze the results,
analysis of variance (ANOVA) technique is employed.
By using ANOVA, we can study three hypotheses:
normality, homogeneity of variance, and independence
of residuals. By doing so, we can make sure of
the validity of the experiments. The mean plot and
Least Signi�cant Di�erence (LSD) interval at the 95%
con�dence level for the di�erent algorithms are shown
in Figure 6. As can be seen, the proposed algorithm
shows better statistical indices than the others.

Figure 6. Mean plot and LSD interval (at the 95%
con�dence level) for the factors of the type of algorithm.

Figure 7. Means plot for the interaction between the
type of the algorithms and the number of jobs.

In order to evaluate the robustness of the algo-
rithm in di�erent situations, possible inuence of the
number of products is studied. To show the mutual
impact between solution procedure factors and the
number of products, the mean plot diagram is depicted
(see Figure 7). It is clear that by increasing the number
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Figure 8. CPU time evaluation of the proposed heuristic against similar algorithms in the literature.

of products, the di�erence between the performances
of the proposed algorithm and the other algorithms
increases signi�cantly. The previous comparison also
shows superiority of the proposed algorithm over the
other three ones.

Figure 8 shows the run time comparison of the
proposed algorithm with the others with di�erent
problem sizes.

5. Conclusions and future research directions

This paper dealt with the problem of capacitated
lot-sizing and scheduling in job shops with carryover
set-up and General Product Structure (GPS). An
e�cient Mixed Integer Linear Programming (MILP)
model was �rst proposed to formulate the problem.
Then, an available Lower Bound (LB) in the literature
was adapted to the problem in hand. Due to the
complexity of the studied problem, heuristics based on
the production shifting concept was also proposed.

The numerical experiments were used to evaluate
the proposed model and algorithm. The results indi-
cated that the model and the solution method together
provided good results for use by a production manager.

One opportunity for future research is developing
heuristic and meta-heuristic algorithms for the studied
problem. Also, using the multi-objective optimization
approach can be taken into consideration for further
studies.
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