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Abstract. Based on optimal Latin hypercube design of computer experiments, blind
kriging surrogate model, and sequential quadratic programming method, the optimal design
of the aerodynamic con�guration of a 30 mm tubular projectile is carried out through
commercial software products such as UG, ICEM CFD, FLUENT, etc. The aerodynamic
con�guration has been optimized to minimize the drag coe�cients at di�erent Mach
numbers and maximize the kinetic energies at given 
ight ranges. The optimal con�guration
is obtained and discussed. Finally, the similarities and di�erences of the 
ow structure
and aerodynamic characteristics between the original and optimal tubular projectiles are
compared. The numerical optimal method proposed in this paper for optimizing the tubular
projectile can provide important guidances for the aerodynamic con�guration design of
projectiles.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Tubular projectiles, also known as hollow projectiles,
are virtually thin-walled tubes with beveled ends.
Compared with conventional solid projectile, the tubu-
lar projectile has many advantages [1,2]: small drag,
high accuracy and precision, low cost, and small recoil
force. The tubular projectile has broad application
background in the ammunition �eld of air defense,
and it has been proved very promising. Therefore,
studying the optimal design of the tubular projectile
con�guration is quite necessary.

The study of tubular projectile has attracted
much attention for many years due to its superiority,
mainly focusing on its applications [3,4] and wind
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tunnel tests [5,6]. With the rapid improvement of
computer capacity and the development of Computa-
tional Fluid Dynamics (CFD) in recent years, many
studies have focused on numerical simulation of the

ow �eld around the tubular projectile [7,8], and
the 
ow structure and aerodynamic characteristics are
studied. Our research group has also done a lot of work
from numerical simulation to numerical optimization
of the tubular projectile [1,2]. Li and Chen [2] dedi-
catedly studied the aerodynamic characteristics of the
tubular projectile under real conditions with the use of
FLUENT. Based on numerical simulations of the two-
dimensional 
ow �elds around di�erent con�gurations
at Mach number of 3.0, Huang et al. [1] optimized
the aerodynamic con�guration of a simpli�ed tubular
projectile using the exhaustive method and obtained
the optimal con�guration with minimum drag coe�-
cient. However, it appears that the exhaustive method
is appropriate based on the extremely limited number
of design variables.

This paper presents an approach to the opti-
mal design of supersonic tubular projectiles based on
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Figure 1. Flowchart of the optimization process of aerodynamic con�guration.

blind kriging surrogate model. Up to now, surrogate
model has been successfully applied to the aerodynamic
con�guration optimization of airfoils [9], rockets [10],
guided projectiles [11], and missiles [12]. As a typical
surrogate model, kriging is widely used [13-15]. Blind
kriging is the extension of kriging whose predictor
is more complicated and more robust, and it has
been successfully applied to many di�erent kinds of
optimization problems [16].

In this paper, numerical simulations are per-
formed for a 55.09 mm tubular projectile, and the
drag coe�cients at Mach number of 2.3-4.5 are ob-
tained. Simultaneously, the computational predictions
are compared with the free-
ight results. Based on
blind kriging surrogate model, conducting research on
the optimal design of the aerodynamic con�guration
of our previously studied 30 mm tubular projectile
is then carried out using the Sequential Quadratic
Programming (SQP) method.

2. Optimization process of the aerodynamic
con�guration of supersonic tubular
projectiles

Surrogate-based optimization approach, which has re-
cently attracted much attention due to the ability
of substantially reducing the computational cost, has
proven quite useful for engineering design problems.
The actual process of aerodynamic con�guration op-

timization based on surrogate model is shown in Fig-
ure 1, and it involves the following four primary steps:

1. Choose the numerical method for the 
ow simula-
tion;

2. Design computational experiments for a collection
of pairs of inputs and responses for use;

3. Build blind kriging surrogate models with high
accuracy;

4. Conduct an optimization search based on the sur-
rogate models.

In this paper, the original 30 mm tubular projectile
is chosen as an optimization object. First, the same
numerical method used in [1] is selected for the 
ow
simulation of the tubular projectile. Then, a computa-
tional experiment is conducted using the optimal Latin
hypercube design, and the drag coe�cients of a few
selected tubular projectile con�gurations at di�erent
Mach numbers are obtained. Afterwards, blind kriging
surrogate models are built for the drag coe�cients at
di�erent Mach numbers. Finally, the SQP is selected as
a method for the optimal design of the con�guration of
a supersonic tubular projectile. The following sections
provide a detailed process of each step.

2.1. Computational method
Considering that the supersonic tubular projectile is
mainly used for air defense, it must make full use of
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Figure 2. The tubular projectile model from [6].

Figure 3. Comparison of the drag coe�cients at di�erent
Mach numbers.

the kinetic energy of the ascending stage. During the
ascending stage, the tubular projectile almost 
ies with
zero angle of attack; hence, the zero attack-angle 
ight
model re
ects the practical 
ight of a tubular projectile
within the e�ective range. Therefore, the zero angle
of attack is used in our calculation model during the
simulation process.

The same numerical method is chosen, as used
in [1]. The compressible Navier-Stokes equations
and the Spalart-Allmaras turbulence modeling are
adopted. The convection term and viscosity term are
discretized by the second-order Advection Upstream
Splitting Method (AUSM) scheme and second-order
central di�erence scheme, respectively. In addition,
the second-order Runge-Kutta scheme is used for time
stepping. In order to validate the above method, a
tubular projectile [6], shown in Figure 2, is taken as an
example. The drag coe�cient results of CFD and free

ight at Mach number of 2.3-4.5 are shown in Figure 3.
As illustrated, our numerical results agree well with
free-
ight results of [6].

Our previously studied 30 mm tubular projectile
with a length-to-diameter ratio of 2.7 is selected as
the original model, and its two-dimensional model is
shown in Figure 4. The tubular projectile is composed
of the nose, the cylindrical body, the boattail, and the
internal part. The internal part is a tube that consists

Figure 4. The original two-dimensional tubular projectile
(unit: mm).

Figure 5. The change of the drag coe�cient according to
the total cell number at Ma = 3:0.

Figure 6. The computational domain size and the �nal
mesh of the tubular projectile.

of the convergence section, the cylinder tube, and the
divergence section. The computational domain is taken
as a cylinder topology, and the tubular projectile is
placed at the center of the symmetry plane. The
diameter and depth of the cylinder are 8D and 12D,
respectively, and D is the diameter of the tubular
projectile. The computational mesh is generated by the
mesh generation software, i.e., ICEM CFD. Moreover,
by considering the particular structure of the tubular
projectile, the O-grid generation technique is applied
to generate three-dimensional body-�tted structured
mesh. After repeated calculations and the convergence
test at Ma = 3:0 shown in Figure 5, about 4 million
mesh cells in computational domain are selected. Fig-
ures 6-8 show the computational domain size and the
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Figure 7. The surface and sectional meshes of the
tubular projectile.

Figure 8. The mesh around the tubular projectile.

�nal mesh, the surface and sectional meshes, and the
mesh around the tubular projectile, respectively. As for
the boundary conditions, the no-slip wall condition and
pressure far-�eld condition are used for the projectile
surface and 
ow inlet and exit, respectively. The �rst
layer distance from the wall is selected to maintain
the y+ value in the range of 30-60 for all the cases
at di�erent Mach numbers. Taking Ma = 3:0 as an
example, the �rst layer distances from the inner and
external walls are 1:7 � 10�5 m and 2:0 � 10�5 m,
respectively, and the range of y+ values is 31.62-57.81.

2.2. Design of computational experiments
Design Of Experiments (DOE), also known as sam-
pling, is a collection of pairs of inputs and responses
from runs of a computer model, and it has a signi�cant
impact on the accuracy of a surrogate model. The
actual process of the DOE involves intelligent selection
of sample points in the design space. A great variety of
methods exist for this purpose, such as the full factorial
design [17], the fractional factorial design [17], the
Latin Hypercube Design (LHD) [18], and the Optimal
Latin Hypercube Design (OLHD) [19].

The LHD and OLHD are just two of the most
common methods for designing computer experiments.
The OLHD is an improvement of the LHD. Mckay et

al. [18] proposed LHD. Consider the case where we wish
to sample M points in the n-dimensional vector space.
The LHD strategy is as follows:

1. Divide the range of each dimension into M intervals
with equal marginal probability;

2. Sample once from the intervals in each dimension
and pair them at random.

Because the sample points obtained using LHD are
made of combinations of each dimension randomly, the
potential lack of uniformity is unavoidable. To improve
the uniformity, the enhanced stochastic evolutionary
algorithm and e�cient methods for evaluating opti-
mality criterion are developed [19]. This computer
experiment strategy is the so-called OLHD adopted in
this paper. It has been proved that the OLHD o�ers
a substantial improvement over the LHD on the uni-
formity and maintains good computational e�ciency
in sampling. Furthermore, we can easily determine
the sample size according to the prediction accuracy
of a surrogate model in an OLHD. Thus the method
of OLHD is chosen for DOE. By considering the trade-
o� between computational complexity and prediction
accuracy of a surrogate model, the sample size of 35 is
�nally determined.

Generation of an OLHD for the design variables,
X = fX1; X2 � � � ; Xng, produces a set of M vectors
of length n. Then, commercial software products,
such as UG, ICEM CFD, and FLUENT, are used to
calculate the drag coe�cient of each con�guration. The

owchart of the DOE process is shown in Figure 9, and
the detailed process is as follows:

1. Choose the numerical experiment method, OLHD,
and design numerical experiment;

2. Update con�guration i as well as output the mass
of the tubular projectile through a C++ program,
which is developed on the UG platform;

3. Run the �le ICEM CFD.rpl which contains a record
of the commands used to generate the computa-
tional structured mesh automatically via a script;

4. Run the �le FLUENT.jou which contains a se-
quence of FLUENT commands via a script and
obtain the corresponding drag coe�cient;

5. Return to steps 2-4 until i reaches sample size M .

2.3. Blind kriging surrogate model
A wide variety of approaches can be used to construct
a surrogate model, including polynomial regression,
kriging, support vector regression, and radial basis
functions. Kriging is of particular popularity for ap-
proximating deterministic computer experiments, and
it is widely used for obtaining a surrogate model.
Blind kriging, proposed by Joseph et al. [16], extends
kriging with a Bayesian feature selection method. The
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Figure 9. Flowchart of the DOE process.

mathematical formula of blind kriging is given as
follows:
Y (x) = �(x) + Z(x); (1)

where �(x) =
Pm
i=0 �ivi(x) is a trend function, and

Z(x) is a stochastic process with mean 0 and variance
�2
m. In addition, vi(x), �i, and m are the basis

function, the corresponding coe�cient, and the number
of basis functions, respectively.

Consider predicted value ŷ(x) at a new point x
by a linear model:

ŷ(x) =
mX
i=0

�ivi +
tX
i=0

�iui; (2)

where ui denotes the candidate function, and t is the
number of candidate functions. As for

Pt
i=0 �iui, it

includes the linear e�ects, quadratic e�ects, and two-
factor interactions. The linear e�ects and quadratic
e�ects are de�ned, respectively, as follows:

xjl =
p

3p
2

(xj � 2); (3)

xjq =
1p
2

(3(xj � 2)2 � 2); (4)

where j = 1; 2; � � � ; p, and p denotes the number of
input dimensions. Taking a two-dimensional input
xT = (x1; x2) as an example, from Eq. (2), we get
the expression for ŷ(x),

Pm
i=0 �ivi +

P8
i=0 �iui, where

u0 = 1, u1 = x1l, u2 = x1q, u3 = x2l, u4 = x2q, u5 =
x1lx2l, u6 = x1lx2q, u7 = x1qx2l, and u8 = x1qx2q.

Considering the fact that the number of sample
points available may be less than the number of
candidate functions, a frequentist estimation of � =
(�0; �1; � � � ; �t)T becomes impossible; therefore, a prior
distribution is postulated for �:

� � N(0; �2
mR); (5)

where 0 is a vector of length t+ 1, and R is a (t+ 1)�
(t+ 1) diagonal matrix.

De�ne vectors li and qi with the following prop-
erties:

1. If �i includes the linear e�ect of factor j, lij = 1;
otherwise, lij = 0;

2. If �i includes the quadratic e�ect of factor j, qij =
1; otherwise, qij = 0.

Then, diagonal matrix R can be expressed as follows:
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R =

266664
rl1l � rq1q 0 � � � 0

0
. . . 0

...
... 0

. . . 0
0 � � � 0 rlt+1

l � rqt+1
q

377775 ; (6)

where:

rl =
3� 3 (2)

3 + 4 (1) + 2 (2)
; (7)

rq =
3� 4 (1) +  (2)
3 + 4 (1) + 2 (2)

: (8)

Subsequently, the posterior mean of � is derived as
follows:

�̂ =
�2
m
�2
m

RUT �1(y � vm�̂m); (9)

where U is the model matrix of all candidate variables,
 is the correlation matrix of the sample points, and
vm is the model matrix of currently chosen candidate
variables. The larger the absolute coe�cient j�ij is,
the more important the candidate variable is. Thus,
the candidate variable with the largest j�ij will be
selected in each step m = 0; 1; 2 � � � . The best value
of m is chosen using Cross-Validation Prediction Error
(CVPE), which is de�ned as follows:

CV PE(m) =

vuut 1
M

MX
i=1

(yi(x)� ŷi(x))2; (10)

where ŷi(x) is the predicted value after removing the
ith sample point, yi(x) denotes the corresponding
actual value, and M is the number of sample points.
Then, m with minimum CV PE(m) is chosen as the
best value. Subsequently, the current best set of
features is chosen to construct the �nal blind kriging.

2.4. SQP method
The SQP is selected as the method of trajectory opti-
mization. The SQP represents the state of the art in
nonlinear programming methods, with advantages such
as fast convergence and high precision; in addition,
it is one of the most e�ective methods available for
trajectory optimization [20]. The basic idea of SQP
is to model the nonlinear programming problems for
a given iteration, by a Quadratic Programming (QP)
subproblem, and then the solution is used to construct
this subproblem to obtain a better approximation of
the solution. This process is conducted iteratively until
a converged solution is obtained.

The constrained nonlinear programming problem
has the following form:

min f(x)

gi(x) = 0; i = 1; 2; � � � ; ne
gi(x) � 0; i = ne + 1; � � � ; nt

9>>>>=>>>>; ; (11)

where f(x) is the objective function, gi(x) is the
linear or nonlinear function; gi(x) denotes an equality
constraint for i = 1 � ne, while, for i = ne + 1 � nt,
gi(x) denotes the inequality constraint.

After linearizing the nonlinear constraints, the
following form of subproblem QP can be obtained:

min 1
2dTB(k)d + (rf(x(k)))Td

[rgi(x(k))]Td+gi(x(k))=0; i=1; 2; � � � ; ne
[rgi(x(k))]Td+gi(x(k))�0; i=ne + 1; � � � ; nt

9>>>>>=>>>>>; ;
(12)

where d is the search direction, rf(x(k)) is the gradient
of the objective function at the current iterate x(k),
B(k) is a positive de�nite approximation of the Hessian
matrix of the Lagrangian function updated by the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
The QP subproblem can be solved through a quadratic
approximation of the Lagrangian function:

L(x;�) = f(x) +
ntX
i=1

�igi(x); (13)

where � is the vector of Lagrange multipliers, and �i
is the ith Lagrange multiplier.

The main steps of the SQP method can be
summarized as follows [21]:

1. Give the �rst iterate, x(1), a positive de�nite matrix
B(1) 2 Rn�n (an identity matrix) and let k = 1;

2. Compute search direction d(k) and Lagrange mul-
tiplier �(k+1) by solving the QP subproblem (12);

3. Determine stepsize �k by an appropriate line search
procedure to obtain a su�cient decrease in a merit
function and, then, obtain a new iterate, x(k+1), as
follows: x(k+1) = x(k) + �kd(k);

4. Calculate the di�erence in x(k) and obtain the dif-
ference k�x(k)k as follows: k�x(k)k = k�kd(k)k =
kx(k+1) � x(k)k. If k�x(k)k is su�cient small, then
the iteration is over, otherwise return to step 5;

5. Update the positive de�nite matrix B(k) to B(k+1)

by the BFGS algorithm and let k = k + 1. Then,
return to step 2.

3. Optimal design of a typical tubular
projectile

Case studies seek to solve the problem of optimal
design of the tubular projectile. Firstly, based on
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blind kriging surrogate model, the con�guration of the
tubular projectile has been optimized for minimum
drag coe�cient using the SQP method. The minimum
drag coe�cient and optimal con�guration parameters
at Ma = 2:5� 4:5 are obtained, respectively. Then, by
applying the simple particle trajectory model [20], the
con�guration of the tubular projectile is optimized to
maximize the kinetic energy in the given 
ight ranges
through the SQP method, and the variation range of
each con�guration parameter is obtained. Finally, the
similarities and di�erences of the 
ow structure and
aerodynamic characteristics between the original and
optimal tubular projectiles are compared.

3.1. Main design variables
Our previously numerical simulation shows that the
ratio of the inner throat area to inlet area and e�ective
Mach number essentially govern the 
ight condition of
a speci�c tubular projectile. Since the throat and inlet
diameters have been de�ned in the early design phase,
they are not design variables. The design variables of
a typical tubular projectile and their ranges are shown
in Figure 10 and Table 1, respectively.

3.2. Minimization of the drag
Based on the software products, such as UG, ICEM
CFD, FLUENT, etc., the whole calculation process is
conducted automatically via scripting, and the drag
coe�cients corresponding to 35 numerical samples
at Ma = 2:5, 3.0, 3.5, 4.0, and 4.5 are obtained,
respectively. Then blind kriging surrogate model is
established for the drag coe�cients at di�erent Mach
numbers. As for the drag coe�cient of a speci�c
con�guration at any Mach number within the range,
it is obtained by using the Lagrange interpolation
method.

In order to evaluate the prediction accuracy of

Figure 10. Schematic of design variables of a typical
tubular projectile (unit: mm).

Table 1. Design variables and their ranges.

Variables Lower bound
(mm)

Upper bound
(mm)

X1 16.00 50.00
X2 6.00 16.00
X3 20.00 45.00
X4 10.00 36.00

the blind kriging surrogate model and Lagrange inter-
polation method, the Mean Absolute Percentage Error
(MAPE) is used, de�ned as follows:

MAPE =
1
N

NX
i=1

jCd � Ĉdj
Cd

� 100%; (14)

where N is the number of testing samples, Cd and
Ĉd are the actual numerical and predicted values of
the drag coe�cient, respectively. In this paper, eight
testing samples are obtained using the OLHD, and the
MAPE values at Ma = 2:5 � 4:5 are obtained and
shown in Figure 11. It can be seen that the minimum
and maximum MAPE values are 0.83% and 2.56%,
respectively, indicating that both the blind kriging
surrogate model and Lagrange interpolation method
have good prediction accuracy.

Table 2 gives the optimal con�guration parame-
ters with minimum drag at Ma = 2:5� 4:5. The value
of the optimal con�guration parameter, X2, is the same
at di�erent Mach numbers. For optimal con�guration
parameters X1, X3, and X4, their variation ranges are
44.16-46.65 mm, 40.37-45.00 mm, and 30.50-35.48 mm,
respectively.

The comparison of the drag coe�cients of the
original and optimal tubular projectiles is shown in

Figure 11. The MAPE values at di�erent Mach numbers.

Table 2. The optimal con�guration parameters with
minimum drag.

Mach
number

X1

(mm)
X2

(mm)
X3

(mm)
X4

(mm)
2.5 46.65 16.00 44.62 30.82
3.0 45.57 16.00 44.75 33.81
3.5 44.16 16.00 45.00 35.01
4.0 45.58 16.00 42.36 35.48
4.5 46.29 16.00 40.37 30.50
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Figure 12. Comparison of the drag coe�cients of two
tubular projectiles at di�erent Mach numbers.

Figure 12. Compared with the drag coe�cient of the
original tubular projectile at the same Mach number,
the drag coe�cient of the optimal tubular projectile
is smaller, and the percentage decreases of the drag
coe�cients at Ma = 2:5 � 4:5 are all over 35.0%,
indicating that the optimal results are satisfactory.

3.3. Maximization of the kinetic energy
Considering that the 30 mm tubular projectile is
mainly used for short-range air defense, reaching a
target with maximum kinetic energy is of vital impor-
tance. It is necessary to conduct an optimal design of
the tubular projectile to maximize the kinetic energy
at a given 
ight range. By applying the simple
particle trajectory model, based on the blind kriging
surrogate models established for the drag coe�cients at
Ma = 2.5-4.5 in Section 3.2, the con�guration has been
optimized for maximum kinetic energy in 
ight ranges
of 800 m and 1600 m, respectively, and the results are
shown in Table 3 and Figure 13, where RF denotes
the 
ight range and EK denotes the kinetic energy.
In addition, all of tubular projectiles have the same
muzzle kinetic energy, EK = 220 kJ.

Table 3. The optimal con�guration parameters with
maximum kinetic energy in given 
ight ranges.

RF
(m)

Launch
angle
(�)

X1

(mm)
X2

(mm)
X3

(mm)
X4

(mm)

800
20 42.22 14.71 40.02 31.17
40 42.34 14.73 40.10 31.15
60 42.41 14.74 40.08 31.18

1600
20 40.90 14.78 40.18 31.67
40 40.96 14.77 40.13 31.66
60 40.83 14.76 40.12 31.69

Figure 13. Comparison of the kinetic energies of two
tubular projectiles at di�erent launch angles.

From Table 3, we can conclude that the variation
ranges of optimal con�guration parameters, X1, X2,
X3, and X4, are 40.83-42.41 mm, 14.71-14.78 mm,
40.02-40.18 mm, and 31.15-31.69 mm, respectively.
Figure 13 shows a comparison of the kinetic energies
of end-points of both original and optimal tubular
projectiles at di�erent launch angles. As for the average
kinetic energies of three di�erent launch angles of the
original and optimal tubular projectiles, their values
are 145.03 kJ and 164.84 kJ as well as 92.07 kJ and
121.56 kJ in the given 
ight ranges of 800 m and
1600 m, respectively. Increase rates in the percentage
of the kinetic energies of the optimal tubular projectile
are respectively above 10% and 30% as compared with
those of the original tubular projectile. The optimiza-
tion results of the tubular projectile are satisfactory
and greatly improve the aerodynamic performance of
the original tubular projectile.

3.4. Comparison of aerodynamic
characteristics

Taking the optimal con�guration of the tubular pro-
jectile as an example for numerical simulation, it has
the averaged optimized parameters of X1 = 40:90 mm,
X2 = 4:77 mm, X3 = 40:14 mm, and X4 = 31:67 mm.
The comparison of pressure contours of both original
and optimal tubular projectiles at Ma = 2:5, 3.5, and
4.5 is shown in Figures 14-16.

From Figures 14-16, despite di�erent con�gura-
tions, the 
ow �elds around the two tubular projectiles
are symmetrical, and the main 
ow structures are the
same. As for the external 
ow, the oblique shock and
expansion waves are generated at the nose tip and the
boattail, respectively. Behind the expansion waves,
the pressure decreases sharply. Compared with the
external 
ow, the internal 
ow is more complicated.
The oblique shock waves interact with each other
and re
ect o� the corresponding inner walls, which
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Figure 14. The pressure contours of two tubular projectiles at Ma = 2:50.

Figure 15. The pressure contours of two tubular projectiles at Ma = 3:50.

Figure 16. The pressure contours of two tubular projectiles at Ma = 4:50.

generates a series of similar structures of oblique and
re
ected shock waves. The highest pressures around
two tubular projectiles all occur in internal 
ows.

Despite the above-described similarities, there
are some obvious di�erences between the two tubular
projectiles. On the one hand, the intensity of oblique
shock waves of the optimal one is weaker than that
of the original one at the same Mach number. Then,
the external wall pressure around the optimal tubular
projectile is much smaller than that around the original
one; hence, the optimal tubular projectile has smaller
external wall drag. In addition, the location and
pressure of the �rst intersection point of oblique shock
waves are di�erent. The location of the optimal one is
farther from the nose tip, and its value of pressure is
also smaller. However, for Ma = 2:5, the pressure of
the second intersection point of oblique shock waves of
the optimal one is a slightly higher than the internal
pressure of the original one.

Flow structures of the two tubular projectiles also
vary with Mach number. According to Figures 14-16,
it is observed that the higher the Mach number, the

smaller the oblique angle of shock wave at the nose,
and the pressure shows an opposite trend. In addition,
the �rst intersection point of oblique shock waves moves
toward the boattail with the increase of Mach number.

The total drag coe�cients of both original and
optimal tubular projectiles at di�erent Mach numbers
are shown in Figure 17. As observed, Cd of both
original and optimal tubular projectiles decreases with
the increase of Mach number for supersonic 
ow, which
agrees well with the variation of normal projectiles.
The value of Cd of the optimal tubular projectile is
much smaller, and its decrease percentage at Ma =
2.5-4.5 is above 29%.

The comparison of drag coe�cients of each por-
tion of two tubular projectiles is presented in Fig-
ures 18-20, where Cde, Cdi, and Cdb denote the external
wall, inner wall, and base drag coe�cients, respectively.
The external wall drag accounts for the most of the
total drag, approximately 60-70%. The inner wall drag
is comparatively lower, and the base drag is the least.
Therefore, the optimization of external con�guration
mainly causes the decrease of the total drag. Both Cde
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Figure 17. Comparison of total drag coe�cients of two
tubular projectiles.

Figure 18. Comparison of the external wall drag
coe�cients of two tubular projectiles.

Figure 19. Comparison of the inner wall drag coe�cients
of two tubular projectiles.

Figure 20. Comparison of the base drag coe�cients of
two tubular projectiles.

and Cdb of the two tubular projectiles decrease with
the increase of Mach number, while it is not the same
for Cdi due to the complexity of the internal 
ow.

4. Conclusions

A method for aerodynamic con�guration optimization
of a supersonic tubular projectile using DOE and
surrogate model was proposed and validated in this
paper. The whole process of the DOE was conducted
automatically with the use of commercial software
products, such as UG, ICEM CFD, and FLUENT.
The method incorporates a SQP algorithm that, when
coupled to the blind kriging surrogate model, produces
an optimal con�guration design of the tubular projec-
tile with respect to the objectives of minimum drag
coe�cient and maximum kinetic energy.

The optimal design of our previously studied
30 mm tubular projectile is taken as an example. The
computational results show that optimal aerodynamic
con�gurations with minimum drag coe�cient are di�er-
ent at di�erent Mach numbers; however, the variations
of the con�gurations are small. This changing trend
is also true for optimal aerodynamic con�gurations
with maximum kinetic energy in di�erent 
ight ranges.
Meanwhile, the comparison of drag coe�cients of each
portion of the original and optimal tubular projectiles
was made, and the optimization of the external con�gu-
ration was mainly the cause of total drag decrease. The
method proposed in this paper can provide important
guidances for the aerodynamic con�guration design of
projectiles.
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Nomenclature

B(k) Positive de�nite matrix
Cd Drag coe�cient

Ĉd Predicted drag coe�cient
Cdb Base drag coe�cient
Cde External wall drag coe�cient
Cdi Inner wall drag coe�cient
d Search direction
EK Kinetic energy (kJ)
f(x) Objective function
gi(x) Linear or nonlinear function
li Indicator vector for linear term
m Number of basis functions
M Size of the sample
ne Number of equality constraints
nt Number of equality and inequality

constraints
N Number of testing sample
p Number of input dimensions
qi Indicator vector for quadratic term
R Diagonal matrix
RF Flight range (m)
t Number of candidate functions
ui ith candidate function
U Model matrix of all candidate variables
vi(x) ith basis function
vm Model matrix of currently chosen

candidate variables
x Vector of design variables

x(k) Current iterate
�x(k) Di�erence in x(k)

xjl Linear component of the jth factor
xjq Quadratic component of the jth factor
y Data vector
yi(x) Actual value after removing the ith

sample point
ŷi(x) Predicted value at after removing the

ith sample point
Z(x) Stochastic process
�k Positive scalar stepsize
� Vector containing �0; � � � ; �t
�i ith Lagrange multiplier

� Vector of Lagrange multipliers
�(x) Trend function
�i ith coe�cient
�̂m Vector containing �̂0; � � � ; �̂m
�2
m Variance of Z(x)

�2
mR Prior variance-covariance matrix of �
 Correlation matrix
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