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1. Introduction

Abstract. The analysis of efficiency is conducted for two vital purposes: firstly, in order to
evaluate the current level of efficiency; secondly, to provide information on how to improve
the level of efficiency, which is to provide benchmarking information. The inefficient
Decision Making Units (DMUs) are usually able to improve their performance, and Data
Envelopment Analysis (DEA) projections provide a prescription for improvement. However,
sometimes, an inefficient DMU cannot move its performance toward the best practice by
either decreasing its inputs or increasing its outputs. On the other hand, it can scarcely
reach its efficient benchmark. This research suggests a method to find an improved region
of efficiency through DEA-efficient hyperplanes by providing an algorithm for detecting
an improved efficiency path. In addition to the production of reasonable benchmarking
information, the proposed algorithm provides the general requirements that satisfy the
demands which every professional decision-maker should meet. Finally, we provide a more
detailed description of some new issues, extending the insights from this analysis of the
benchmark region from the under-evaluated inefficient DMU. Finally, numerical examples
are provided to demonstrate the results of the analysis.

(© 2018 Sharif University of Technology. All rights reserved.

Recently, some researchers have studied the per-
formance improvement in DEA to meet the decision-

The traditional Data Envelopment Analysis, as initially
proposed by Charnes et al. [1], is a relatively new
“data-oriented” approach to assessing the performance
of a set of DMUs that use multiple inputs to produce
multiple outputs. Most DEA approaches, such as
the approach introduced by [2], focus on relative
efficiencies.
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maker’s goals [3-6]. So many DEA-efficiency improve-
ment papers have certain points of view such as the
modified formulation of the DEA model where bounds
are imposed on each factor; this model was proposed
by Kao [7]. Another model was introduced by Chen
et al. [8] that modified the original DEA model by
decomposing the normalizing equation for being asso-
ciated with the different dual variables. In addition,
by means of the equation of defining hyperplanes of
PPS, one can find the region of efficiency improvement.
In 2011, Khoshfetrat and Daneshvar [9], in a paper,
proposed improving the weak efficiency frontiers in
fuzzy DEA models, where they implicitly dealt with
the knowledge of the sensitivity analysis in depth.
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This may indeed show the importance of obtaining the
defining hyperplanes of the PPS.

The studies of efficient frontiers and characteri-
zation of different types of hyperplanes have been less
intensively investigated [10,11]. The connotation of the
efficient frontier DMUs in the DEA was studied by
Jahanshahloo et al. [12]; this study found the piece-
wise linear frontier of the production function. In
the aforementioned study, the researchers developed
a way to obtain efficient frontier using 0-1 integer
programming. Despite the greater computational ef-
forts required to solve the 0-1 integer programming
for small n (number of DMUs), solving the 0-1 model
for large m is preferable to solving n linear pro-
grams; these preference relationships can be derived
as strengths. In addition, searching for the efficient
frontier in the DEA was considered by Korhonen [13].
Their approach was developed to create a free search
for the efficient frontier in Multiple-Objective Linear
Programming (MOLP) MOLP-this can also be used in
DEA. Furthermore, Jahanshahloo et al. [14] suggested
an approach to finding strong defining hyperplanes of
the PPS in DEA, in which the observed deficiency of
an alternative optimal solution of a multiplier form
has been removed. In addition, the construction of
all DEA-efficient frontiers in Generalized Data Envel-
opment Analysis (GDEA) was discussed by Yu and
Zeleny [15]. In their work, they derived a necessary
and sufficient condition for a point to be nondominated.
It provided a simple proof confirming that the set of
all nondominated extreme points is indeed connected.
They then obtained a decomposition theorem and some
necessary and sufficient conditions for a face to be
nondominated. Lotfi et al. [16] provided an algorithm
in order to find efficient hyperplanes with the Variable
Returns to Scale (VRS) assumption of technology by
using the MOLP structure. They characterized the
efficient hyperplanes that make up the DEA efficient
frontier only by finding the efficient faces of the MOLP
problem without exploring its extreme efficient points.
Sensitivity and stability analysis of the specific under-
evaluated DMU is one of the areas of interest in DEA.
In 1985, Charnes et al. [17] initiated the sensitivity
analysis of a CCR model for a specific efficient DMU
with a single output. They constructed variations in
the data for the DMU under consideration and initiated
the change in the inverse matrix used to produce
solutions in typical simplex algorithm computer codes.
Then, in 2015, Forghani et al. considered sensitivity
analysis in the two-stage DEA, and found that the
necessary and sufficient conditions for preserving a
DMU’s efficiency classification were developed when
various data changes were applied to all the DMUs [18].
Many more papers have studied sensitivity analysis
with various data types such as integer data type [3],
fuzzy data [19], etc. Another model proposed by

Huang et al. [20], later generalized by Jahanshahloo
et al. [21], showed that all the efficient surfaces of the
BCC model passing through DMU p were generated for
the case; in this model, the largest stability region
of the under-evaluated extreme efficient DMU was
constructed by the omission of DMUp from the obser-
vations set. Later, the largest stability region proposed
in their paper was improved by [22]. Today, many
algorithms have been proposed to find the efficient
region of a specified DMU simply specified by the
concept of all the possible values that remain or become
efficient [23,24].

DEA also provides benchmarking information in
order to improve the efficiency of the DMU. This
information distinguishes DEA from other efficiency
methodologies. The reference points that are used
for obtaining the benchmarking information are vital
not only for evaluating the potential performance of
the DMU, but also for providing information on how
to improve its performance, as observed by Bogetoft
and Hougaard [5]. Inappropriate selection of reference
points might lead to misleading guidance on how to
improve efficiency. The DEA model was introduced
by Farrell [25], and later developed by Charnes et
al. [1]; it uses an oriented radial measure of efficiency for
the identification of reference points on the boundary
of the PPS with the input orientation or the output
orientation of the observed unit. The main weakness
of radial efficiency measures is that they disregard
the possible existence of slacks associated with the
projected points on the production frontier (see the fol-
lowing examples: [9,19,23,26]). Many practical studies
have used non-oriented measures; for example, Colwell
and Davis [27] used an intermediation approach that
specified inputs in the form of costs and outputs in the
form of revenue. Finding the closest target has been
considered for both oriented models (see the following
examples: [28-30]) and non-oriented models (see the
following examples: [31-35]). The only question that
most DEA studies focus on is “how is a company
inefficient?”; the question of “how can a company
become efficient?” is the second case for review.
Interactive DEA (IDEA) usage was suggested by Post
and Spronk [32] in order to make the benchmarking
information sensible from the inefficient DMU’s view-
point. In addition, for obtaining the most relevant and
easily attainable benchmarking information, the least-
distance measure was proposed by Baek and Lee [36],
which provides a well-defined efficiency measure, too.
To answer the second question, this study focuses
on the best rational way for an inefficient DMU to
meet the DM’s needs, whether it is still inefficient or
not. On the flip side, the simplistic claim that the
region of efficiency improvement is more relevant than
finding their efficiency is really misleading. Applying
the results of [16,20-22,27,38], the current paper aims
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to obtain the improved region of efficiency by using
all the defining hyperplanes of PPS. Now, there is
a need to evaluate the use of DEA as a decision
aid for considering the improved region of efficiency
based on the overall value judgment; this is clarified
in [39]. The value judgment here can, therefore, be ex-
pressed in our new proposed algorithm to describe the
benchmarking region improvement concept. By means
of the new algorithm, the improvement path for an
inefficient DMU based on value judgment is thereafter
identified. In measuring the improvement region, the
incorporation of value judgment is, therefore, also very
important. The remaining parts of this paper will be
unfolded as follows. To explain the new benchmarking
region, we start with a description of obtaining the
defining hyperplanes of PPS in Section 2, which briefly
reviews a mathematical basis used for this study. In
Section 3, we illustrate our proposed algorithm to
obtain the improvement of the benchmarking region.
In Section 4, three numerical examples are documented
for intuitively describing the new algorithm in order
to find an improved region of efficiency. Section 5
provides our concluding remarks and future directions
for research.

2. Preliminaries

In this section, a brief description of the BCC input-
oriented model and the approaches to finding efficient
hyperplanes are included.

2.1. The BCC input-oriented model

The DEA-BCC model was proposed for dealing with
situations whose proportionality between the inputs
and outputs is not constant along the efficient frontier.
The BCC model [4] was initially developed by adding a
convexity restriction to the CCR [1] model envelope for-
mulation. This generated a VRS frontier. Suppose that
we have n DMUs, where each DMU;(j = 1,2,--- ,n)
produces the same s outputs in (possibly) different
amounts, y,; (r = 1,2,---,s), using the same m
inputs, and z;; (i =1,2,--- ,m) in (possibly) different
amounts. The BCC input-oriented model evaluates the
efficiency of DMU,, the DMU under consideration, by
solving the following “multiplier linear form” program:

S
max E UrYro — Uo,s
r=1
m
S.t. E ViTio = 1,
=1
s m
E UrYrj — E ViTio — Uo S 07
r=1 =1

J = ]-a' ) 10, Uo, free,
Vi, Uy 2 € >0,
221727' , M, T:1727"'787 (1)

where u; and v; are the decision variables, respectively,
that are associated with output r and input ¢, and ¢ is
a positive non-Archimedean infinitesimal.

In addition to the efficiency score, the most
practical information given by the DEA study is the
set of Pareto-efficient projection points for the under-
evaluated DMU. The coordination of a projection
point can be interpreted as the “target” levels of
performance of the inputs and outputs. The obtained
targets provide an indication of how an assessed DMU
improves its performance efficiently. Therefore, the
closer the assessed DMU is to the targets, the lesser
practical effort it needs to be efficient. The basic
DEA model in [1], which is called the CCR model,
has led to several extensions, most notably the BCC
model of [4]. Assume that there are n DMU, (DMU]j :
j =1,2,---,n) that consume X; = (21, - ,Zm; ) t0O
produce Y; = (y14,- -+ ,¥sj).- The BCC input-oriented
(BCC-I) model evaluates the efficiency of DMU, and
the considered DMU by solving the following linear
program:

min 6,

s.t. Z /\jl’i]‘ S Hl’io; v i,
J

Z )‘jy'rj Z Yro; v T,

J
D=1 v Jj,
J

Aj >0 v, (2)
where #* is the optimal solution obtained from Eq. (2).
Definition 1: (307, Moy, 27— Myy) = (0%2,,9,)

is the input-oriented projection point of DMU, on the
efficient frontier.

2.2. Finding efficient hyperplanes

A method for generating all the efficient surfaces of
the BCC model passing through DMU, was suggested
by [20,38] and improved by [22], which are as follows:

min = u,,

S m
s.t. E UrYrp — g ViZip = Ug,
r=1 i=1
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S m
E UrYrj — E Vi < U,
r=1 =1

j:]-?"'?na

zm:vi + i:ur =1,
i=1 r=1

Ch 2 g, Uy 2 g,
1=1,2,---,m, r=1,2---.s, (3)
max U,

S m
s.t. E UrYrp — E ViTip = Uo,
r=1 1=1

S m
E UrlYrj — E ViTi5 < Ug,
—1 i=1

J:1727’ 10,

m s

SUTS S

=1 r=1

vy 2 &, Up 2 E,

1=1,2,---,m, r=1,2,---,s. (4)

Note that in an optimal solution to Relations (3) and
(4), all of those observed efficient points that satisfy
their respective constraints as equalities also lie on
the efficient facet contained in the hyperplane passing
through (zp, yp). To conduct sensitivity analysis
of each efficient unit called DMU,, Jahanshahloo et
al. [21] used defining hyperplanes that are binding at
DMU, and the new frontier, which is formed by the
omission DMU,, from the observations set.

Moreover, the MOLP problem suggested by [16]
for finding efficient hyperplanes with the VRS assump-
tion of technology in DEA is as follows:

max {UYl — VX1 — ’LLO,UYQ — VX27

— U, * 7UYn_VXn_uo}7

S.t. UY; -VX; —u, <0, j=1,--,n,
1WW+1V =1,
V>1l, U?>le. (5)

Changing the inequality constraints of Model (5) to
equalities and minimizing the objective function of the

converted model are as follows:

min {51,52,"' ,Sn},

s.t. UY;-VX;—u,+S5;=0, j=1,---,n,

W41V =1,

SjZO-, j:]-a"'ana

V>1l, U?>le. (6)

Agsume that J = {1,---,n} and M = {I|I C J}.
The feasible region of Model (6) is denoted by W For
I € M; F(I) represents a face of W [15]. Note that
F(@)=W;for I € M, F(I) = @ is possible. Model
(SPr), which is similar to the model proposed by [37],
is as follows:

ijmax iTj_iSj7
j=1 j=1

s.t. UY;, -VX;, —u,+5; =0,

J=1m,
S; =15 <0, j=1--,n,
T; =0, Jjel,
WU +1V =1,
W +1v' =1,
S;>0, T;>0, j=1,---,n,
U>1e, U' > 1e,
V > 1e, V' > 1e. (7)

The algorithm for finding efficient hyperplanes with
the VRS technology in DEA, which was proposed by
Hosseinzadeh et al. [16], is as follows:

Step 1. Let k = 1, FF = @, EF* = @, and
J={1,2,--- ,n}. Subscripted sets F* and EF* are
the set of DMUs on the faces of the PPS and the
set of subscripts of the DMUs on efficient faces of
the PPS, respectively. With the VRS assumption of
technology, dictating that both sets of DMUs contain
k-element sets, proceed to Step 2;

Step 2. Evaluate M* = {I C J||I| = k}. If |J| < k
and £k =n + 1, then stop. Otherwise, go to Step 3;
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Step 3. If M* # @, select I € MF; then, proceed to s.t. Z ,ufxij—f—ti_ =Zis, i=1,---,m,
Step 4. Otherwise, go to Step 5; jeJ—{k}
Step 4. Solve SP; and set M* = M*\I. If Z; > 0, . 3 .
=k = Yaj —tg = PyYak
then F* = F* U T and proceed to Step 3. If Z; =0, . Z HiYai — tq qJdak>
then F* = F* U T and EF* = EFF UI. Suppose g€ —{k}
that (U*,V*,u%)* is the optimal solution of SP; as . N
the gradients of the efficient hyperplanes. If SP; is Z WiYrj =t = Yrk,
infeasible, proceed to Step 3; jeJ—{k}
Step 5. Let k = k+ 1, F* = 0, EFF = @, and r=1,---,s, T#q,
Ureprd = J. Proceed to Step 2.
k
p—
Owing to the finite number of DMUs and the fea- _GJX:{H'LLJ ’
JeT—{k

sibility of linear programming problem SPr, the it-

erative proposed algorithm is guaranteed to con- . .
prop & & ph >0, jelJ—{k},

verge.
Another approach to identifying the equations of >0 1
the weak defining hyperplanes of the PPS of the BCC i = EE L,
model was propo§ed b.y Jahanghahloo et al. [38]. The >0, Pl s g=1 s
summary of this identification is as follows: T=
k
Step 1. Considering each DMU, (k € J) evaluate @ free. (9)

the following models: in which ¢ is a non-Archimedean number;

- . Step 2. Form two sets I; and O,. Corresponding
min 9 —e Z S+ Z s+, v&{lth any DM[le € I E;)Jl:quL form t.he weak eiﬁaent

p o virtual, DMU;(DMU’""™), as mentioned previously.
Put the indices of the extreme efficient and weak
efficient virtual DMUs in F'. Let |F| = L;

S.t. )\kﬁl +5 = 9k$lk
jeJZ{k} I ! L Step 3. For each p,q € F in which p # ¢, evaluate
DMU,; = %DMU}, + %DMU(I; if it is efficient, then
Z )\fﬁ?ij + 87 =z, p € F, and g € I}; )
jeJ—{k} Step 4. For each (j:17"’7L)7Fj:F—Fj;
' ' Step 5. Choose the arbitrary m + s members of F
i=1-m, iFl so that none of them belongs to another F'. Call this
set D = {j1.-+- .Jm+s}. Using D, a hyperplane can
Z )\fyrj - St =y, be constructed as follows:
jeJ—{k}
1 —Iljl Tm _zmﬁ
r=1, )8, L1je — L1jy Lmgjs = Tmja
> e
jeJ—{k}
’ L1jrs = X150 77 Tmgmgs = Tmys

I = Yi—Yi o Ys — Ysi
ST >0, ST >0, r=1--,s Yz =Wt Ve T e
=0,
I= 17 : U
St>o0 i=1,---,m, 6 free. (8) Ylimea =YL 177 Ysjmgs ™ Yoia

where 1, , &, Y1, ,ys are variables, z,;, (p =
m s 1--- m;t = 1,--- ,m + s) is the pth input of the
max C‘Ol‘;—i_g Zt;—i_ztj ’ DMU]-t,and yqjt(q:17"'75;t:17"'7m+3) is
i=1 r=1 the gth output of DMU},. Suppose that the equation
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of the afore-mentioned hyperplane is in the form of
P!+ =0, where z = (@1, , Zm, Y1, Ys), P is the
gradient vector of the hyperplane, and « is a scalar;

Step 6. If P has any component that is less than
or equal to zero, proceed to Step 8; otherwise, let

w= (2, -, z2, Yy, - ,y¥) be defined as follows:
xi”:max{ébiﬂj:l,'“v”}? t1=1,---,m,
yy =min{y.;|j =1, - ,n}, r=1s

If:
Pth—l—Oz:O, j €D,
Ptzj—l—ozSO7 jJEF—-D,
Plw+a<0,

then P! 4 o = 0 is supporting; otherwise, proceed to
Step 8.

Step 7. If at least one of m + s members of D is
a weak efficient virtual DMU, then P! +a = 0is a
weak defining hyperplane. Otherwise, it is a strong
defining hyperplane;

Step 8. If another subset of F' with m + s members
can be found, go to Step 5; otherwise, stop.

3. The proposed algorithm

The proposed algorithm for finding the benchmarking
region of efficiency derived by «a percentage increase in
the pre-efficiency value of the under-evaluated ineffi-
cient DMU with the VRS technology in the DEA is as
follows:

In order to incorporate such a priori information
into the process of our algorithm, we first specify «
percentage related to the under-evaluated inefficient
DMU based on value judgment.

The benchmarking region of an efficiency im-
provement for an inefficient DMU, RE 4, is just defined
by the following equation:

=T T
iA
RE, = X < X0V 2V
Y*T
rA

The first step of this method is to find all the defin-
ing (efficient) hyperplanes of the PPS. These hyper-
planes can be found by using the algorithm proposed
in [2,3,14,18,20,22,40,41] (one of these papers can be
applied to find the defining hyperplanes of the PPS).
To check the accuracy of all these defining hyperplanes,
however, we compared all of these approaches, which
resulted in the same defining hyperplane (see Exam-
ples 1 and 2 in Section 4). Let P = {py,--- ,p2,p:} be

the set of these defining (efficient) hyperplanes. Then,
consider DMU 4 as an inefficient DMU under evaluation
to find the new benchmarking region by increasing the
efficiency (obtained from Model (2)) of DMU4 by «
percentage. {1y is considered as a set of the extreme
efficient DMUs from the PPS. Assume that &k = 1,
and by setting DMUEf) as a projection point of DMU 4
using Model (2), pi represents a hyperplane in which
the projection point satisfied hyperplane p, equation.
It is, however, to be noted that if DMU(:) satisfies
multiple hyperplanes—it is laid on the intersection of

hyperplanes—we should follow the rest of the process

for all of them. Following this, from DMU'"”

, we will

consider DMU , whose efficiency is 8% = 6% +a%. To

(k)
calculate the input/output amounts of DMU , , use the
following formula:

T (2 (k) TS
DMU, = (ZUA YA ): YA

A

. (k)
— (GA“ZA y5;~>) (10)
B

Suppose that P, is the hyperplane that passes through
DMU , and has the same normal vector as hyperplane
pi- By defining 4, we find the extreme efficient DM Us
that lie on hyperplane p; so that at least one of its
k

inputs or outputs is more than DMU(A) (in case of
the existence of more than one DMU, follow the same
process for all of them). Whether such a DMU exists
or not, the following two case studies are considered:

Case 1. If such a DMU exists, consider the new
DMU as DMU(;-H) subscript. Now, we must consider
whether DMUE;CH) belongs to RE4 or not:

i) If DMUE:H) belongs to RE,4, suppose that hy-
perplane py41 represents a defining efficient hyper-
plane in which DMU(:H) satisfies hyperplane pj41

(k+1)
Equation. Consider DMU, , whose efficiency is
B4 = 0% + a%. To calculate the input/output

amounts of DMU, | use the following formula:

—— (k+1 . ,
pxU, = Granian)

(k+1)
= (x“ 7yff“)). (11)
B

Here, we confront two cases as follows:
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(k+1)
a) If DMU , belongs to RFE 4, suppose that

hyperplane Py, is the equation which passes

(k+1)
through DMU 4 and has the same normal

vector as hyperplane pyi1; hence, start the
process from the beginning;

/-\_/(lc+1)
b) If DMU , does not belong to RE 4, suppose

that hyperplane P, is the equation which

passes through BK/ITIXCH) and has the same
normal vector as hyperplane pyy1; then, to find
a point on hyperplane P;_ ,, use the following
proposed model:

max ¢ +e(lst +1s7),
s.t. Z/\jxj =zraA—58,
j=1

> Ny =pya+sT,
=1

where UY — VX + @, = 0 is the equation of
hyperplane P/ ;.

Theorem 1. The efficiency score of each trans-
formed point of the extreme efficient DMUs is §%.

Proof. Assume DMU , with coordinates:

(k+1)
1), Y e | = La y(k+1)
DMU( +1), DMU( +1) ﬂz » YA ’

as an arbitrary transformed extreme efficient

DMU that belongs to the virtual improved fron-
(k+1)
tiers. Considering DMUA with the BCC input-

oriented model, we obtain:

min 6

DMU(AK“)’

S.t. E )\ L5 < 0/—\_/ K4+1) L —~——(K+1
J = ( ) DMU( )
j=1

_ L (k41
ctsci ()5,

F
Z/\aya yN<K+1> = y( \+1),

j=1

Aj >0, (13)
A feasible solution of this model can be:
(HDMU(Hrl) B4, /\DMU”“) 1,
——~——(k+1)

A\, =0 (j£DMU, ).
Then, the optimal 8
DMU

(Ak+1)7 i~e’7 G;SMU(AkJrl)?
is not greater than 3%.(05_ ..., < 5%).
DMU,,
Tt will be sufficient to show that ( G £

B)-
By the contradictory assumption, suppose

that (6% < (%). Hence, 6*
(DMU(AkJrl) ) DM

sy =By —¢
UA

for some ¢ > 0. By evaluating Model (13) with this
assumption, we get:

r n

Ax <9NR1ZNK1
E ;< U<+)DMU<+>

=1
_ g 1 (I\+1)
pauy, AN By

:<5A £ LK+

B4 4
(K+1)
—(1- =
(1-5)

2 Ay > Upam = 3/,(4[%1)
j=1

A =1

j=1
LA >0,

It is obvious that (1 — 5* ) < 1. In this manner, a
feasible solution for DMU(k+1) is

0

)<1 A =1

arn = ( (h+1)
DMU DMU ’
A /BA A

A =0, (j#DMUFY),

Consequently, DMUXCH)

in contrary to the assumption.
Therefore, we have HD/I\Z/U(:H) = [, thus

is inefficient and is

completing the proof. O

Let an optimal solution of Model (12) be
(p*,s7*,51*). Based on the following theorems,
this model gives us a point that firstly belongs
to RE4; secondly, this reference point of DMU 4,
ie., (xa—s ", 0*ya+sT*), dominates DMU,4 and
belongs to hyperplane Pj ;.
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Theorem 2. Given Model (12), we have:

a) (wa—s % 0 ya+sT*) is a dominating DMU 4
and, thus, (x4 — s *,©*y4 + s7*) also belongs
to RE4;

b) (xa—s"*,¢"ya+s"") lies on hyperplane P, ;

¢) Model (12) is feasible.

Proof.

(a) Since s7* > 0, s > 0, and ¢* > 0, then we
have (x4 — s " < x4) and (p*ya+sT > ya).
Considering DMU 4 as an inefficient unit,

the optimal solution of Model (12) is expressed

as (¢* > 1) or [(s~*.s7*) # 0]. Then, we have:

* + % = ?
e ya+s ) Z\ ya
which means that (x4 — s7*, @ *ya +sT*) is a

dominating DMU 4; thus, (xa — ™%, ¢"ya +
st*) also belongs to REA;

(b) Evidently, based on the fourth constraint of
Model (12), the obtained reference point from
Model (12), i.e., point (x4 — 8%, @*ya +sT*),
lies on hyperplane P/ ;: UY - VY +u,=0;

(¢) Considering that the extreme points used in
the proposed algorithm belong to RE,, if
the extreme DMU does not belong to RE4
in one step, the new obtained point from
Model (12) will be in RE 4 in the next step of
the algorithm (see Section b in Case 1). Thus,
each transformed point of the extreme efficient
DMUs will belong to RE4 (if the transformed
point of the extreme DMU does not belong to
RE, in one step, then the new obtained point
from Model (12) will be in RE,4 in the next
step of the algorithm (see Section ii) in Case
1)).

According to the algorithm procedure, the new

improved facets (the new virtual frontiers) are

obtained from the convex hull of these points.

Besides, PPS is convex and, thus, the convex hull

of these points belongs to RE 4; consequently, the

new improved facets also belong to RE 4.

This illustrates not only the fact that the
fourth constraint belongs to RE 4, but also that the
reference point of DMU 4, i.e., (4 — 7%, 0" ya +
sT*), belongs to RE4 (based on Part A of Theo-

rem 2). The model is thus always feasible. O
(k+1)
Replace the new point with DMU 4, by
(k+1)
connecting DMU4 to the new point DMU, |,
which lies on hyperplane P, (see Figure 1); this

process is finished;

7DMU4: (24,ya4)

[
» X1

Figure 1. The benchmarking region of efficiency (Case 1).

Xg A(} 4
y .f P3 A

ADMU4: (2.4,y4)

» X1
Figure 2. The benchmarking region of efficiency (Case 2.

—~——(3)
DMU, " belongs to RFE4).

i) If DMUUer ) does not belong to RE ., then the
process is the same with Part b) of Section i),
except that instead of the equation of hyperplane
Pj ., in the fourth constraint of Model (12), the
fourth constraint is replaced with hyperplane Pj.

Case 2. If such a unit does not exist, hyperplane
Pr+1 is a weak defining hyperplane. Similarly, calculate

(k1)
the output/input amounts of DMU , by Eq. (11).
belongs to RE 4, then it is sufficient to

/—\_/(Ic+1)
If DMU,
(kt1
connect DMU 4 to DMU,  (see Figure 2); otherwise,

find a point from Model (12) with the equation of
hyperplane P/, in the fourth constraint.

(k+1)
Replace the new point with DMUA and name
——~—(k+1)
it DMU, . It is then sufficient to connect DMU 4 to
—~—(k+1)
DMU, s (see Figure 3).
N(k+1)
Evidently, DMU,  lies on both hyperplanes, P]
and P . Throughout the algorithm,
1 —~=(2) (k+1)
bMU, - DMU, —---— DMU,

represents the benchmarking movement in which the

points DMUA DMUA .- .DMU 4 lie on hyper-
planes P, Py, -, P, respectively; the set of sub-
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—

\DM

S DMUy,: (za,ya)

» X1
Figure 3. The benchmarking region of efficiency (Case 2.

——(3)
DMU, does not belong to RE4).

scripts of the efficient improved faces of the PPS for

DMU 4 is considered (except the second part of Case 2
—~—(k+1)

in which DMU 4, lies on hyperplane P;). Note

that all the new shifted units of the extreme points

in the PPS have an equivalent efficiency value of 3 =

HZ(K) + a%.

(1)
Hence, starting at benchmark point DMU, ,

passing through all the obtained hyperplanes through-

out the algorithm and, eventually, stopping at
(k+1)
DMU, , one can achieve the benchmark region of

deficiency improvement.

Among the previous works, this study explores an
improved benchmark and, sequentially, an improved re-
gion of efficiency for an inefficient DMU. In comparison,
some papers find a benchmark turning the inefficient
DMU to an efficient DMU [25]. Additionally, some
other papers used the DEA sensitivity analysis just to
explore a point as a virtual benchmark for an inefficient
DMU [18].

Practically, an inefficient DMU sometimes cannot
improve its performance to the best practice by either
decreasing its inputs or increasing its outputs.

The current paper suggests an improved region
that is characterized such that the efficiency value
of each point in this region will be derived by the
hyperplane with the same normal vector of the orig-
inal PPs hyperplane. In fact, we improve all the
hyperplanes that belong to RE,4. Considering that
any change has implications, the process of finding a
suitable benchmark is constantly faced with changes
and evidently increasing costs. We, therefore, always
try to remove or reduce these changes. The strength
of the present approach is that, with considerably
little numerical effort, one can get an insight into the
improved efficiency region of a given DMU; unlike many
previous works, it is based on exact results of a well-
defined value judgment.

The proposed algorithm. The summary of the

proposed algorithm is given below. Here, DMU, is
considered as an inefficient DMU under evaluation in
order to find a new region by increasing the efficiency
(obtained by Model 2) of DMU 4 by a%.

Step 1. Find all the defining (efficient) hyperplanes
of the PPS. Let P = {p1, -+ ,p2,p:} be the set of
these defining (efficient) hyperplanes;

Step 2. Assume that k¥ = 1 and Q; = {DMU;|07 =1
and A; = 1 in assessing DMU,; by Model (2)};

Step 3. Solve Model (2) and set DMU(:) as a

projection point of DMU 4;
Step 4. Look for p; representing a hyperplane that
DMU(:) satisfies in hyperplane p; equation;

; (k)
Step 5. From DMUE:)7 consider DMU, whose

efficiency is 83 = 6% + a%. To calculate the

input/output amounts of DMU , , use the following
formulas:

For k=1,

Ao = () ak) ry
DMU, = (IA YA ): YA

A
_ () w
gy A

Step 6. Find the equation of hyperplane P] which

—(k
passes through DMU, and has the same normal
vector as hyperplane py;

Step 7. Using the definition of 91, look for extreme
efficient DMUs that lie on hyperplane p; so that
at least one of its inputs or outputs is more than
DMU(:). (In the case of the existence of more
than one DMU for all of them, follow the process
from Step 8.) If such a DMU exists, go to Step 8;
otherwise, go to Step 9;

Step 8. Subscript the new DMU as DMUXCH). If

DMU(:H) belongs to RE 4, then proceed to Step 10;
otherwise, proceed to Step 11;

Step 9. If such a unit does not exist, i.e., hyperplane
pr+1 18 a weak defining hyperplane, calculate the

/'\_/(k+1)
output/input amounts of DMU,  from Eq. (11). If
(k+1)
DMU 4 belongs to RE 4, then proceed to Step 14;
otherwise, proceed to Step 15;

Step 10. If DMUXCH) belongs to RE 4, hyperplane
pr+1 represents a defining efficient hyperplane in
which DMUXCH) satisfies hyperplane pr41 equation.
(k+1)

Consider DMU 4  whose efficiency is 8% = 0% +a%.
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(k+1)
To calculate the input/output amounts of DMU,

use the following formula:

(k+1) (k (k :L’(k-H) )
DMU, = (xﬁf“%gi{‘“’) = (‘23*7112"“’ .
A (14)

(k+1)
Here, we confront two cases: either DMU 4, be-

longs to RE 4, then proceed to Step 12; or it does not
belong to RE 4, then proceed to Step 13;

Step 11. If DMU(:H) does not belong to RE4,

then, by using Model (12), except that instead of the
equation of hyperplane P 41 in the fourth constraint
of Model (12), the fourth constraint is replaced with
the equation of hyperplane P}.

(k+1)
Replace the new point with DMU , and

(k+1)
name it DMU 4 By connecting DMU 4 to the
(k+1)

new point, ]jl\\/ITJA , which lies on hyperplane P
and has at least one input/output value of DMU 4,
this process is finished. Proceed to Step 16;

/—\_/(k+1)
Step 12. If DMU, belongs to RE 4, suppose

that hyperplane P;_ , is the equation that passes

—~—(k+1)
through DMU 4 and has the same normal vector
as hyperplane pyy1; hence, proceed to Step 7;

Step 13. If DMUE:H) does not belong to RFE4,
suppose that hyperplane P, is the equation which
passes through DMU(AHI and has the same normal
vector as hyperplane pg41; then, find a point from
Model (12) in which the fourth constraint is the
equation of hyperplane P;_ ;. Replace the new point

(k+1)

with DMU, . By connecting DMU,4 to the new
(k+1)

point, DMU, , which lies on hyperplane P, this

process is finished;

~——(k+1)
Step 14. If DMU, belongs to RE 4, then it is
(k+1)
sufficient to connect DMU4 to DMU 4
to Step 16;

. Proceed

Step 15. If MJZH) does not belong to RE 4, find

a point from Model (12) with the equation of hyper-

plane P/, in the fourth constraint. Replace the new
—~——(k+1) —~——(k+1)

point with DMU 4, and name it DMU, . Then,

it is sufficient to connect DMU 4 to DMU(:-H);

Step 16. Stop.

The PPS is a polyhedral convex set whose ver-
tices correspond to the efficient DMUs. Besides, a
polyhedron is defined as the intersection of a finite
collection of generalized halfspaces. More generally,

a half space is either of the two parts into which a
hyperplane divides an affine space. Since the number of
the defining hyperplane of a PPS is finite, the number
of the new improved hyperplanes is less than that of
the defining hyperplanes. The validity of the algorithm
is, therefore, obvious owing to the finite number of
defining hyperplanes.

4. Numerical example

This section provides a numerical example that helps
clarify the concept of the improved region of the
DMU'’s efficiency and its comparative advantage over
conventional DEA models.

In light of the growing strategic importance of
the function of managing a company’s most important
asset—its reputation—there is a need of fundamentally
evaluating the improved region of the DMU'’s efficiency
to obtain a guideline for future planning.

Example 1: Let us assume that we have eight sample
DMUs, each using one input to produce one output
with the data given in Table 1. All the virtual and
real DMUs are depicted in Figure 4. By the foregone
algorithm.

For finding the improved region by increasing
the efficiency (obtained from Model (2)) of DMU¢g by
a% = 13.75%, we first find all the maker hyperplanes
of PPS. These hyperplanes’ set is as follows:

{—z4+2=0, y—42+6=0, 2y—2—9=0, y—8=0}.

Table 1. Sample DMUs.

DMU A B C D E F G H
Input 2 3 7T 44 33 6 4 8
Output 2 6 8 6 45 5 3 4
Y
A
9
8
7
PMUY) =
6
5
4
3 DMUy’
2
1
X

Figure 4. Efficient frontiers of PPS.



2862 N. Ebrahimkhani Ghazi et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 2852-2866

Q; = {DMU4,DMUpg,DMU¢} is the set of the
extreme efficient DMUs of the data of Table 11.
By solving Model (2) and setting DMU(G)

projection point of DMU¢, we have:

as the

DMUY = (z,7) = (2.25,3).

)

From DMU(G1 , which lies on p; : y —42 4+ 6 = 0, we are

(1)
considering DMU, , whose efficiency is:

07, = 0.5685°L=18T5%: g+ — = | 0% = 0.7.

Using Eq. (10), we calculate the input/output amounts

of DMU,, :

DMUg = (x(o”yg)) — (3.2143,3).

Now, we are looking for hyperplane p}, which passes

—(1
through DMU, and has the same normal vector as
hyperplane p;; this is shown as follows:

y — dx +12.857 = 0.

DMUpg is an extreme efficient DMU that lies on
hyperplane pq; its inputs and outputs are more than
DMUY,.

Since DMUp belongs to REg, we subscript it as
DMUS,.

A defining efficient hyperplane in which mi\
satisfies hyperplane ps equation, is represented by py =

—~—2

2y—x—9=0. By Eq. (11), we calculate DMU;, whose
efficiency is 8 = 0.7, as follows:

2 -
DMUg, = (i%,98) = (4.2857,6).

The equation of the hyperplane which passes through

DMU, and has the same normal vector as hyperplane
po is as follows:

Py =2y —x—7.7143 =0,

/'\_/2
since DMU, does not belong to RE¢, based on Step 13
2
of the algorithm, we replace DMU, with the new point

(4, 5/85715) obtained from Model (12), which lies on
hyperplane Pj and has at least one input/output value
of DMUg (see Figure 4).

Since there is no other DMU in REq, there are
also no other improved hyperplanes.

Example 2: The data of 9 DMUs from Hosseinzadeh
Lotfi’s paper (2011) [19] are used as a numerical
example and consist of two inputs and one output, as
shown in Table 2.

We intend to find the improved region of the
DMU'’s efficiency using the data in Table 2. We,
therefore, use the proposed algorithm to obtain the
improved efficiency region of DMU, by increasing its
current efficiency value (6; = 0.6885246 to a% =
11/1475%).

After finding all the defining hyperplanes as
shown in Figure 5, the set of extreme efficient points of
PPS is as follows:

Q, = {DMU;, DMU4, DMUs, DMU, }.

By determining the radial projection reference point of
DMU, by Model (2) DMUS), we look for hyperplane

p1 in which DMUS) satisfies hyperplane p; equation:

DMU, = (x1,22,9) = (7,3,4) — DMUy

— (0.6885246(7), 0.6885246(3), 4),— DMU,"

= (4.8196722,2.0655738, 4),

p1 ¢ 0.352941y—0.41176521 —0.2352942241.06 =0.

(1)
Now, we intend to find DMU, , whose efficiency is

05 + a% = 0.8. The input/output amounts of DMU,
are calculated as follows:

——~—(1) (1) ~(1) ~(1
DMUZ = (x§2)7a;22)7yg ))

_ (0.6885246(7) 0.6885246(3) A
- 0.8 ’ 0.8 ’

= (6.02459025, 2.58196725, 4).

In Step 6, we find the equation of hyperplane P|

(1)
which passes through DMU,, and has the same normal
vector as hyperplane p; which is as follows:

p1 = (o, 8,7) = (0.352941, —0.411765, —0.235294),

Table 2. The data of the eight DMUs.

DMU; DMU., DMUs; DMU;s DMUs DMUg DMU, DMUg DMUy
Input 1 4 7 8 4 2 10 12 10 13
Input 2 3 3 1 2 4 1 1 1.5 2
Output 2 4 7 3 2 5 8 7 7.5
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0.4y -0.1x,-2=0

y-8=0

DMUE = (13,2,7/5)

{ DMUE = (12,1,8)

X, =1

0.352941y - 0.411765x, = 0.235294x, +1.06 =0

Figure 5. The visual description scheme.

aly —ya)+ B(x1 —x14) + (22 —224) =0 —
0.352941(y — 4) — 0.411765(y — 4)

— 0.411765(21 — 6.02459025)

—0.235294(x2 — 2.58196725) = 0,
Pl : 0.352941y — 0.411765x1 — 0.2352941

+ 1.676472806 = 0.

DMUj3 and DMUj are the extreme efficient DMUs lying
on hyperplane p; where at least one of their inputs
or outputs is more than DMUS). Based on Step 11
of the algorithm, since DMU;Z) does not belong to

RE,, we find point DMU,, = (7, 2.4687495, 5.062504)
by Model (12) in which the fourth constraint is the
equation of hyperplane PJ.

At this point, to clarify the strategy of the pro-
posed algorithm, we follow the algorithm for DMUg =
(13,2,7.5) as follows.

We solve Model (2) and find that DMUE,I) is a
projection point of DMU,; DMUS = (10,1.5,7.5).

The equation of a hyperplane is p; : 0.4y —0.121—

2 = 0, such that DMU;I) satisfies its equation.

Now, we consider ]Si\\/[Tng whose efficiency is 3§ =
05 + a% = 0.769230769 + 0.130769231 = 0.9(a% =
13.0769231%).

By Eq. (10), the following unit is calculated:

DMU, = (11.1,1.709401709, 7.5)

The equation of hyperplane P| is 0.4y —0.1z; — 1.8 =0

The extreme efficient DMU that lies on hyper-
plane p; is DMU; = DMU;Q) and its first input is
greater than DMUgl).

As DMUS) belongs to REg, based on Step 10 of
the proposed algorithm, we find two defining efficient
hyperplanes, ps and p3, in which DMU(92) satisfies their
equations as follows:

p2:y—8=0
pgix2—1=0
) —(2) .
Now, by using Eq. (11), DMU, is considered, whose

/'\_/(2) _ _
efficiency is 8§ =0.9: DMU, = (13.3,1.1,8).

——(2)
As DMU, does not belong to REy, suppose that
Py :y—8=0,P,:xy— 11 =0 are the equations of

—~—(2)
the hyperplanes that pass through DMU, and have
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the same normal vector as hyperplanes p, and ps,
respectively.

In addition, there is no other extreme efficient unit
that passes through equations of hyperplanes py and p3.
Based on Step 13, to understand the improved region
better, Model (12) is employed. In the equation of
y — 8 = 0, the obtained point is (9.73,1.26,8.0000325);
in the equation of x5 — 1.1 = 0, the obtained point
is (13,1.2,8.6750025). We replace the new points

. /'\_/(2) /'\_/(3)
with DMU,  and DMU,

——(2) ——(3)
the new points, DMUy, and DMUy , which lie on
hyperplanes Py and Pj, the process is finished. The

part of improved obtained hyperplanes P/, Py, and Pj,

: . . (1) (2) (3)
included in the points DMU, , DMU, , and DMU, |,

is the improvement benchmarking region.

Note that, in Figure 5, notations DMUJE and
DMU]I-E7 j = 1,---.n, respectively, represent the
efficient and inefficient units.

By connecting DMUyg to

5. Conclusions

As it is an issue of considerable importance, this
study sought to make the standards more flexible for
choosing the benchmarks. This standard can, however,
differ from that of decision-makers. If a company
has a specific corporate strategy or future vision, the
standards for choosing benchmarks might be more
complex. There is a central question in the evaluation
of an inefficient DMU: instead of having a benchmark
with an efficiency value of one, how can an inefficient
DMU achieve a more realistic benchmark in which the
efficiency is less than one? This means that a wide
range of knowledge on this study becomes available. A
framework for defining a benchmark region in evalu-
ating an inefficient DMU was derived from the value
judgment by increasing the current efficiency. This
paper developed a procedure for shifting the efficient
frontier toward the inefficient DMU. The procedure
yielded an exact improved region that is derived by
increasing the efficiency score of a specific inefficient
DMU by a%, and the efficiency score of each point
belonging to the new improved frontiers is different. It
is indeed a new virtual frontier that is recognized as a
realistic benchmarking region for the under-evaluated
inefficient DMU. One of the advantages of the current
analysis is the incorporation of value judgment into
the current situation of hyperplanes through specific
efficiency improvement for the under-evaluated ineffi-
cient DMU. The value judgment here can, therefore,
be represented by the improved region concept. In
addition, we used the sensitivity analysis of efficiency to
find the new region. Further research will concentrate
on the region of the MPSS (Most Productive Scale Size)
by using hyperplanes to evaluate DMUs.
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