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Abstract. The analysis of e�ciency is conducted for two vital purposes: �rstly, in order to
evaluate the current level of e�ciency; secondly, to provide information on how to improve
the level of e�ciency, which is to provide benchmarking information. The ine�cient
Decision Making Units (DMUs) are usually able to improve their performance, and Data
Envelopment Analysis (DEA) projections provide a prescription for improvement. However,
sometimes, an ine�cient DMU cannot move its performance toward the best practice by
either decreasing its inputs or increasing its outputs. On the other hand, it can scarcely
reach its e�cient benchmark. This research suggests a method to �nd an improved region
of e�ciency through DEA-e�cient hyperplanes by providing an algorithm for detecting
an improved e�ciency path. In addition to the production of reasonable benchmarking
information, the proposed algorithm provides the general requirements that satisfy the
demands which every professional decision-maker should meet. Finally, we provide a more
detailed description of some new issues, extending the insights from this analysis of the
benchmark region from the under-evaluated ine�cient DMU. Finally, numerical examples
are provided to demonstrate the results of the analysis.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The traditional Data Envelopment Analysis, as initially
proposed by Charnes et al. [1], is a relatively new
\data-oriented" approach to assessing the performance
of a set of DMUs that use multiple inputs to produce
multiple outputs. Most DEA approaches, such as
the approach introduced by [2], focus on relative
e�ciencies.
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Recently, some researchers have studied the per-
formance improvement in DEA to meet the decision-
maker's goals [3-6]. So many DEA-e�ciency improve-
ment papers have certain points of view such as the
modi�ed formulation of the DEA model where bounds
are imposed on each factor; this model was proposed
by Kao [7]. Another model was introduced by Chen
et al. [8] that modi�ed the original DEA model by
decomposing the normalizing equation for being asso-
ciated with the di�erent dual variables. In addition,
by means of the equation of de�ning hyperplanes of
PPS, one can �nd the region of e�ciency improvement.
In 2011, Khoshfetrat and Daneshvar [9], in a paper,
proposed improving the weak e�ciency frontiers in
fuzzy DEA models, where they implicitly dealt with
the knowledge of the sensitivity analysis in depth.
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This may indeed show the importance of obtaining the
de�ning hyperplanes of the PPS.

The studies of e�cient frontiers and characteri-
zation of di�erent types of hyperplanes have been less
intensively investigated [10,11]. The connotation of the
e�cient frontier DMUs in the DEA was studied by
Jahanshahloo et al. [12]; this study found the piece-
wise linear frontier of the production function. In
the aforementioned study, the researchers developed
a way to obtain e�cient frontier using 0-1 integer
programming. Despite the greater computational ef-
forts required to solve the 0-1 integer programming
for small n (number of DMUs), solving the 0-1 model
for large n is preferable to solving n linear pro-
grams; these preference relationships can be derived
as strengths. In addition, searching for the e�cient
frontier in the DEA was considered by Korhonen [13].
Their approach was developed to create a free search
for the e�cient frontier in Multiple-Objective Linear
Programming (MOLP) MOLP-this can also be used in
DEA. Furthermore, Jahanshahloo et al. [14] suggested
an approach to �nding strong de�ning hyperplanes of
the PPS in DEA, in which the observed de�ciency of
an alternative optimal solution of a multiplier form
has been removed. In addition, the construction of
all DEA-e�cient frontiers in Generalized Data Envel-
opment Analysis (GDEA) was discussed by Yu and
Zeleny [15]. In their work, they derived a necessary
and su�cient condition for a point to be nondominated.
It provided a simple proof con�rming that the set of
all nondominated extreme points is indeed connected.
They then obtained a decomposition theorem and some
necessary and su�cient conditions for a face to be
nondominated. Lot� et al. [16] provided an algorithm
in order to �nd e�cient hyperplanes with the Variable
Returns to Scale (VRS) assumption of technology by
using the MOLP structure. They characterized the
e�cient hyperplanes that make up the DEA e�cient
frontier only by �nding the e�cient faces of the MOLP
problem without exploring its extreme e�cient points.
Sensitivity and stability analysis of the speci�c under-
evaluated DMU is one of the areas of interest in DEA.
In 1985, Charnes et al. [17] initiated the sensitivity
analysis of a CCR model for a speci�c e�cient DMU
with a single output. They constructed variations in
the data for the DMU under consideration and initiated
the change in the inverse matrix used to produce
solutions in typical simplex algorithm computer codes.
Then, in 2015, Forghani et al. considered sensitivity
analysis in the two-stage DEA, and found that the
necessary and su�cient conditions for preserving a
DMU's e�ciency classi�cation were developed when
various data changes were applied to all the DMUs [18].
Many more papers have studied sensitivity analysis
with various data types such as integer data type [3],
fuzzy data [19], etc. Another model proposed by

Huang et al. [20], later generalized by Jahanshahloo
et al. [21], showed that all the e�cient surfaces of the
BCC model passing through DMUP were generated for
the case; in this model, the largest stability region
of the under-evaluated extreme e�cient DMU was
constructed by the omission of DMUP from the obser-
vations set. Later, the largest stability region proposed
in their paper was improved by [22]. Today, many
algorithms have been proposed to �nd the e�cient
region of a speci�ed DMU simply speci�ed by the
concept of all the possible values that remain or become
e�cient [23,24].

DEA also provides benchmarking information in
order to improve the e�ciency of the DMU. This
information distinguishes DEA from other e�ciency
methodologies. The reference points that are used
for obtaining the benchmarking information are vital
not only for evaluating the potential performance of
the DMU, but also for providing information on how
to improve its performance, as observed by Bogetoft
and Hougaard [5]. Inappropriate selection of reference
points might lead to misleading guidance on how to
improve e�ciency. The DEA model was introduced
by Farrell [25], and later developed by Charnes et
al. [1]; it uses an oriented radial measure of e�ciency for
the identi�cation of reference points on the boundary
of the PPS with the input orientation or the output
orientation of the observed unit. The main weakness
of radial e�ciency measures is that they disregard
the possible existence of slacks associated with the
projected points on the production frontier (see the fol-
lowing examples: [9,19,23,26]). Many practical studies
have used non-oriented measures; for example, Colwell
and Davis [27] used an intermediation approach that
speci�ed inputs in the form of costs and outputs in the
form of revenue. Finding the closest target has been
considered for both oriented models (see the following
examples: [28-30]) and non-oriented models (see the
following examples: [31-35]). The only question that
most DEA studies focus on is \how is a company
ine�cient?"; the question of \how can a company
become e�cient?" is the second case for review.
Interactive DEA (IDEA) usage was suggested by Post
and Spronk [32] in order to make the benchmarking
information sensible from the ine�cient DMU's view-
point. In addition, for obtaining the most relevant and
easily attainable benchmarking information, the least-
distance measure was proposed by Baek and Lee [36],
which provides a well-de�ned e�ciency measure, too.
To answer the second question, this study focuses
on the best rational way for an ine�cient DMU to
meet the DM's needs, whether it is still ine�cient or
not. On the ip side, the simplistic claim that the
region of e�ciency improvement is more relevant than
�nding their e�ciency is really misleading. Applying
the results of [16,20-22,27,38], the current paper aims
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to obtain the improved region of e�ciency by using
all the de�ning hyperplanes of PPS. Now, there is
a need to evaluate the use of DEA as a decision
aid for considering the improved region of e�ciency
based on the overall value judgment; this is clari�ed
in [39]. The value judgment here can, therefore, be ex-
pressed in our new proposed algorithm to describe the
benchmarking region improvement concept. By means
of the new algorithm, the improvement path for an
ine�cient DMU based on value judgment is thereafter
identi�ed. In measuring the improvement region, the
incorporation of value judgment is, therefore, also very
important. The remaining parts of this paper will be
unfolded as follows. To explain the new benchmarking
region, we start with a description of obtaining the
de�ning hyperplanes of PPS in Section 2, which briey
reviews a mathematical basis used for this study. In
Section 3, we illustrate our proposed algorithm to
obtain the improvement of the benchmarking region.
In Section 4, three numerical examples are documented
for intuitively describing the new algorithm in order
to �nd an improved region of e�ciency. Section 5
provides our concluding remarks and future directions
for research.

2. Preliminaries

In this section, a brief description of the BCC input-
oriented model and the approaches to �nding e�cient
hyperplanes are included.

2.1. The BCC input-oriented model
The DEA-BCC model was proposed for dealing with
situations whose proportionality between the inputs
and outputs is not constant along the e�cient frontier.
The BCC model [4] was initially developed by adding a
convexity restriction to the CCR [1] model envelope for-
mulation. This generated a VRS frontier. Suppose that
we have n DMUs, where each DMUj(j = 1; 2; � � � ; n)
produces the same s outputs in (possibly) di�erent
amounts, yrj (r = 1; 2; � � � ; s), using the same m
inputs, and xij (i = 1; 2; � � � ;m) in (possibly) di�erent
amounts. The BCC input-oriented model evaluates the
e�ciency of DMUo, the DMU under consideration, by
solving the following \multiplier linear form" program:

max
sX
r=1

uryro � uo;

s.t.
mX
i=1

vixio = 1;

sX
r=1

uryrj �
mX
i=1

vixio � uo � 0;

j = 1; � � � ; n; uo; free;

vi; ur�">0;

i=1; 2; � � � ;m; r=1; 2; � � � ; s; (1)

where ui and vi are the decision variables, respectively,
that are associated with output r and input i, and " is
a positive non-Archimedean in�nitesimal.

In addition to the e�ciency score, the most
practical information given by the DEA study is the
set of Pareto-e�cient projection points for the under-
evaluated DMU. The coordination of a projection
point can be interpreted as the \target" levels of
performance of the inputs and outputs. The obtained
targets provide an indication of how an assessed DMU
improves its performance e�ciently. Therefore, the
closer the assessed DMU is to the targets, the lesser
practical e�ort it needs to be e�cient. The basic
DEA model in [1], which is called the CCR model,
has led to several extensions, most notably the BCC
model of [4]. Assume that there are n DMUs (DMUj :
j = 1; 2; � � � ; n) that consume Xj = (x1j ; � � � ; xmj) to
produce Yj = (y1j ; � � � ; ysj). The BCC input-oriented
(BCC-I) model evaluates the e�ciency of DMUo and
the considered DMU by solving the following linear
program:

min �;

s.t.
X
j

�jxij � �xio; 8 i;
X
j

�jyrj � yro; 8 r;
X
j

�j = 1; 8 j;

�j � 0; 8 j; (2)

where �� is the optimal solution obtained from Eq. (2).

De�nition 1: (
Pn
j=1 �

�
jxj ;

Pn
j=1 �

�
jyj) = (��xo; yo)

is the input-oriented projection point of DMUo on the
e�cient frontier.

2.2. Finding e�cient hyperplanes
A method for generating all the e�cient surfaces of
the BCC model passing through DMUp was suggested
by [20,38] and improved by [22], which are as follows:

min uo;

s.t.
sX
r=1

uryrp �
mX
i=1

vixip = uo;



N. Ebrahimkhani Ghazi et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 2852{2866 2855

sX
r=1

uryrj �
mX
i=1

vixij � uo;

j = 1; � � � ; n;
mX
i=1

vi +
sX
r=1

ur = 1;

vi � "; ur � ";
i = 1; 2; � � � ;m; r = 1; 2; � � � ; s; (3)

max uo;

s.t.
sX
r=1

uryrp �
mX
i=1

vixip = uo;

sX
r=1

uryrj �
mX
i=1

vixij � uo;

j = 1; 2; � � � ; n;
mX
i=1

vi +
sX
r=1

ur = 1;

vi � "; ur � ";
i = 1; 2; � � � ;m; r = 1; 2; � � � ; s: (4)

Note that in an optimal solution to Relations (3) and
(4), all of those observed e�cient points that satisfy
their respective constraints as equalities also lie on
the e�cient facet contained in the hyperplane passing
through (xp, yp). To conduct sensitivity analysis
of each e�cient unit called DMUp, Jahanshahloo et
al. [21] used de�ning hyperplanes that are binding at
DMUp and the new frontier, which is formed by the
omission DMUp from the observations set.

Moreover, the MOLP problem suggested by [16]
for �nding e�cient hyperplanes with the VRS assump-
tion of technology in DEA is as follows:

max fUY1 � V X1 � uo; UY2 � V X2;

� uo; � � � ; UYn � V Xn � uog;
s.t. UYj � V Xj � uo � 0; j = 1; � � � ; n;

1U + 1V = 1;

V � 1"; U � 1": (5)

Changing the inequality constraints of Model (5) to
equalities and minimizing the objective function of the

converted model are as follows:

min fS1; S2; � � � ; Sng;
s.t. UYj�V Xj�uo+Sj=0; j = 1; � � � ; n;

1U + 1V = 1;

Sj � 0; j = 1; � � � ; n;
V � 1"; U � 1": (6)

Assume that J = f1; � � � ; ng and M = fIjI � Jg.
The feasible region of Model (6) is denoted by W For
I 2 M ; F (I) represents a face of W [15]. Note that
F (�) = W ; for I 2 M , F (I) = � is possible. Model
(SPI), which is similar to the model proposed by [37],
is as follows:

ZI = max
nX
j=1

Tj �
nX
j=1

Sj ;

s.t. UYj � V Xj � uo + Sj = 0;

j = 1; � � � ; n;
U 0Yj � V 0Xj � u0o + Tj = 0;

j = 1; � � � ; n;
Sj � Tj � 0; j = 1; � � � ; n;
Tj = 0; j 2 I;
1U + 1V = 1;

1U 0 + 1V 0 = 1;

Sj � 0; Tj � 0; j = 1; � � � ; n;
U � 1"; U 0 � 1";

V � 1"; V 0 � 1": (7)

The algorithm for �nding e�cient hyperplanes with
the VRS technology in DEA, which was proposed by
Hosseinzadeh et al. [16], is as follows:

Step 1. Let k = 1, F k = �, EF k = �, and
J = f1; 2; � � � ; ng. Subscripted sets F k and EF k are
the set of DMUs on the faces of the PPS and the
set of subscripts of the DMUs on e�cient faces of
the PPS, respectively. With the VRS assumption of
technology, dictating that both sets of DMUs contain
k-element sets, proceed to Step 2;
Step 2. Evaluate Mk = fI � JkIj = kg. If jJ j < k
and k = n+ 1, then stop. Otherwise, go to Step 3;
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Step 3. If Mk 6= �, select I 2Mk; then, proceed to
Step 4. Otherwise, go to Step 5;

Step 4. Solve SPI and set Mk = MknI. If ZI > 0,
then F k = F k [ I and proceed to Step 3. If ZI = 0,
then F k = F k [ I and EF k = EF k [ I. Suppose
that (U�; V �; u�o)k is the optimal solution of SPI as
the gradients of the e�cient hyperplanes. If SPI is
infeasible, proceed to Step 3;

Step 5. Let k = k + 1, F k = �, EF k = �, and
[I2FkI = J . Proceed to Step 2.

Owing to the �nite number of DMUs and the fea-
sibility of linear programming problem SPI , the it-
erative proposed algorithm is guaranteed to con-
verge.

Another approach to identifying the equations of
the weak de�ning hyperplanes of the PPS of the BCC
model was proposed by Jahanshahloo et al. [38]. The
summary of this identi�cation is as follows:

Step 1. Considering each DMUk (k 2 J) evaluate
the following models:

min �kl � "
 

mX
i=1

S�i +
sX
r=1

S+
r

!
;

s.t.
X

j2J�fkg
�kjxlj + S�l = �kl xlk;

X
j2J�fkg

�kjxij + S�i = xik;

i = 1; � � � ;m; i 6= l;X
j2J�fkg

�kj yrj � S+
r = yrk;

r = 1; � � � ; s;X
j2J�fkg

�kj = 1;

�kj � 0 (j 2 J = f1; � � � ; ng)� fkg;
S�i � 0; S�l � 0; r = 1; � � � ; s;
l = 1; � � � ;m;

S+
r � 0 i = 1; � � � ;m; �kl free: (8)

max 'kq + "

 
mX
i=1

t�i +
sX
r=1

t+r

!
;

s.t.
X

j2J�fkg
�kjxij+t

�
i =xik; i = 1; � � � ;m;

X
j2J�fkg

�kj yqj � t�q = 'kqyqk;

X
j2J�fkg

�kj yrj � t+r = yrk;

r = 1; � � � ; s; r 6= q;X
j2J�fkg

�kj = 1;

�kj � 0; j 2 J � fkg;
t�i � 0; i = 1; � � � ;m;
t+r � 0; r = 1; � � � ; s; q = 1; � � � ; s;
'kq free: (9)

in which " is a non-Archimedean number;
Step 2. Form two sets Il and Oq. Corresponding
with any DMUj 2 Il (or Oq), form the weak e�cient
virtual, DMUl

j(DMUm+q
j ), as mentioned previously.

Put the indices of the extreme e�cient and weak
e�cient virtual DMUs in F . Let jF j = L;
Step 3. For each p; q 2 F in which p 6= q, evaluate
DMUk = 1

2DMUp + 1
2DMUq; if it is e�cient, then

p 2 Fq and q 2 Fp;
Step 4. For each (j = 1; � � � ; L), �Fj = F � Fj ;
Step 5. Choose the arbitrary m + s members of F
so that none of them belongs to another �F . Call this
set D = fj1: � � � :jm+sg. Using D, a hyperplane can
be constructed as follows:������������

x1 � x1j1 � � � xm � xmj1
x1j2 � x1j1 � � � xmj2 � xmj1

: : :
: : :
: : :

x1jm+s � x1j1 � � � xmjm+s � xmj1
y1 � y1j1 � � � ys � ysj1
y1j2 � y1j1 � � � ysj2 � ysj1

: : :
: : :
: : :

y1jm+s � y1j1 � � � ysjm+s � ysj1

������������
= 0;

where x1; � � � ; xm, y1; � � � ; ys are variables, xpjt (p =
1 � � � ;m; t = 1; � � � ;m + s) is the pth input of the
DMUjt , and yqjt(q = 1; � � � ; s; t = 1; � � � ;m + s) is
the qth output of DMUjt . Suppose that the equation
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of the afore-mentioned hyperplane is in the form of

P t +� = 0, where z = (x1; � � � ; xm; y1;
...; ys), P is the

gradient vector of the hyperplane, and � is a scalar;
Step 6. If P has any component that is less than
or equal to zero, proceed to Step 8; otherwise, let
w = (xw1 ; � � � ; xwm; yw1 ; � � � ; yws ) be de�ned as follows:

xwi = maxfxij jj = 1; � � � ; ng; i = 1; � � � ;m;
ywr = minfyrj jj = 1; � � � ; ng; r = 1; � � � ; s:

If:

P tzj + � = 0; j 2 D;
P tzj + � � 0; j 2 F �D;
P tw + � < 0;

then P t + � = 0 is supporting; otherwise, proceed to
Step 8.
Step 7. If at least one of m + s members of D is
a weak e�cient virtual DMU, then P t + � = 0 is a
weak de�ning hyperplane. Otherwise, it is a strong
de�ning hyperplane;
Step 8. If another subset of F with m+ s members
can be found, go to Step 5; otherwise, stop.

3. The proposed algorithm

The proposed algorithm for �nding the benchmarking
region of e�ciency derived by � percentage increase in
the pre-e�ciency value of the under-evaluated ine�-
cient DMU with the VRS technology in the DEA is as
follows:

In order to incorporate such a priori information
into the process of our algorithm, we �rst specify �
percentage related to the under-evaluated ine�cient
DMU based on value judgment.

The benchmarking region of an e�ciency im-
provement for an ine�cient DMU, REA, is just de�ned
by the following equation:

REA =

8><>:
0@X�TiA
Y �TrA

1AT ��X�TiA � XT
iA; Y

�T
rA � Y TrA

9>=>; :

The �rst step of this method is to �nd all the de�n-
ing (e�cient) hyperplanes of the PPS. These hyper-
planes can be found by using the algorithm proposed
in [2,3,14,18,20,22,40,41] (one of these papers can be
applied to �nd the de�ning hyperplanes of the PPS).
To check the accuracy of all these de�ning hyperplanes,
however, we compared all of these approaches, which
resulted in the same de�ning hyperplane (see Exam-
ples 1 and 2 in Section 4). Let P = fp1; � � � ; p2; ptg be

the set of these de�ning (e�cient) hyperplanes. Then,
consider DMUA as an ine�cient DMU under evaluation
to �nd the new benchmarking region by increasing the
e�ciency (obtained from Model (2)) of DMUA by �
percentage. 
1 is considered as a set of the extreme
e�cient DMUs from the PPS. Assume that k = 1,
and by setting DMU(k)

A as a projection point of DMUA
using Model (2), pk represents a hyperplane in which
the projection point satis�ed hyperplane pk equation.

It is, however, to be noted that if DMU(k)
A satis�es

multiple hyperplanes{it is laid on the intersection of
hyperplanes{we should follow the rest of the process
for all of them. Following this, from DMU(k)

A , we will

consider D̂MU
(k)
A whose e�ciency is ��A = ��A+�%. To

calculate the input/output amounts of D̂MU
(k)
A , use the

following formula:

D̂MU
(k)
A =

�
~x(k)
A ; ~y(k)

A

�
=

 
�x(k)
A
��A

; y(k)
A

!
=

 
��Ax

(k)
A

��A
; y(k)
A

!
: (10)

Suppose that P 0k is the hyperplane that passes through

D̂MU
(k)
A and has the same normal vector as hyperplane

pk. By de�ning 
1, we �nd the extreme e�cient DMUs
that lie on hyperplane pk so that at least one of its
inputs or outputs is more than DMU(k)

A (in case of
the existence of more than one DMU, follow the same
process for all of them). Whether such a DMU exists
or not, the following two case studies are considered:

Case 1. If such a DMU exists, consider the new
DMU as DMU(k+1)

A subscript. Now, we must consider
whether DMU(k+1)

A belongs to REA or not:

i) If DMU(k+1)
A belongs to REA, suppose that hy-

perplane pk+1 represents a de�ning e�cient hyper-
plane in which DMU(k+1)

A satis�es hyperplane pk+1

Equation. Consider D̂MU
(k+1)
A , whose e�ciency is

��A = ��A + �%. To calculate the input/output

amounts of D̂MU
(k+1)
A , use the following formula:

]DNU
(k+1)
A =

�
~x(k+1)
A ; ~y(k+1)

A

�
=

 
x(k+1)
A
��A

; y(k+1)
A

!
: (11)

Here, we confront two cases as follows:
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a) If D̂MU
(k+1)
A belongs to REA, suppose that

hyperplane P 0k+1 is the equation which passes

through D̂MU
(k+1)
A and has the same normal

vector as hyperplane pk+1; hence, start the
process from the beginning;

b) If D̂MU
(k+1)
A does not belong to REA, suppose

that hyperplane P 0k+1 is the equation which

passes through D̂MU
(k+1)
A and has the same

normal vector as hyperplane pk+1; then, to �nd
a point on hyperplane P 0k+1, use the following
proposed model:

max '+ "(1s+ + 1s�);

s.t.
nX
j=1

�jxj = xA � s�;

nX
j=1

�jyj = 'yA + s+;

nX
j=1

�j = 1;

�U
�
'yA+s+�� �V

�
xA�s��+�uo=0;

�j � 0; (12)

where �UY � �V X + �uo = 0 is the equation of
hyperplane P 0k+1.

Theorem 1. The e�ciency score of each trans-
formed point of the extreme e�cient DMUs is ��A.

Proof. Assume D̂MU
(k+1)
A with coordinates:�

x
D̂MU

(k+1)
A

; y
D̂MU

(k+1)
A

�
=

 
x(k+1)
A
��A

; y(k+1)
A

!
;

as an arbitrary transformed extreme e�cient
DMU that belongs to the virtual improved fron-

tiers. Considering D̂MU
(k+1)
A with the BCC input-

oriented model, we obtain:

min �
D̂MU

(K+1)
A

;

s.t.
nX
j=1

�jxj � �D̂MU
(K+1)
A

x
D̂MU

(K+1)
A

= �
D̂MU

(K+1)
A

��
1
��A

�
x(K+1)
A

�
;

nX
j=1

�jyj � yD̂MU
(K+1)
A

= y(K+1)
A ;

nX
j=1

�j = 1;

�j � 0; (13)

A feasible solution of this model can be:
(�

D̂MU
(k+1)
A

= ��A; �
D̂MU

(k+1)
A

= 1;

�j = 0 (j 6= D̂MU
(k+1)
A )):

Then, the optimal �
D̂MU

(k+1)
A

, i.e., ��
D̂MU

(k+1)
A

,

is not greater than ��A:(��D̂MU
(k+1)
A

� ��A).

It will be su�cient to show that (��
D̂MU

(k+1)
A

�
��A).

By the contradictory assumption, suppose
that (��

D̂MU
(k+1)
A

< ��A). Hence, ��
D̂MU

(k+1)
A

= ��A� "
for some " > 0. By evaluating Model (13) with this
assumption, we get:8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

nX
j=1

�jxj � �D̂MU
(K+1)
A

x
D̂MU

(K+1)
A

= ��
D̂MU

(K+1)
A

��
1
��A

�
x(K+1)
A

�
=
�
��A � "
��A

�
x(K+1)
A

=
�

1� "
��A

�
x(K+1)
A

nP
j=1

�jyj � yD̂MU
(K+1)
A

= y(K+1)
A

nP
j=1

�j = 1

�j � 0;

It is obvious that (1 � "
��A

) < 1. In this manner, a

feasible solution for DMU(k+1)
A is:

�DMU(k+1)
A

= (1� "
��A

) < 1; �DMU(k+1)
A

= 1;

�j = 0; (j 6= DMU(k+1)
A ):

Consequently, DMU(k+1)
A is ine�cient and is

in contrary to the assumption.
Therefore, we have �

D̂MU
(k+1)
A

= ��A, thus
completing the proof. �

Let an optimal solution of Model (12) be
('�; s��; s+�). Based on the following theorems,
this model gives us a point that �rstly belongs
to REA; secondly, this reference point of DMUA,
i.e., (xA�s��; '�yA+s+�), dominates DMUA and
belongs to hyperplane P 0k+1.
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Theorem 2. Given Model (12), we have:

a) (xA� s��; '�yA + s+�) is a dominating DMUA
and, thus, (xA � s��; '�yA + s+�) also belongs
to REA;

b) (xA�s��; '�yA+s+�) lies on hyperplane P 0k+1;
c) Model (12) is feasible.

Proof.

(a) Since s�� � 0, s+� � 0, and '� � 0, then we
have (xA� s�� � xA) and ('�yA + s+� � yA).

Considering DMUA as an ine�cient unit,
the optimal solution of Model (12) is expressed
as ('� > 1) or [(s��:s+�) 6= 0]. Then, we have:��(xA � s��)

'�yA + s+�
�
�
6=

��xA
yA

�
;

which means that (xA � s��; '�yA + s+�) is a
dominating DMUA; thus, (xA � s��; '�yA +
s+�) also belongs to REA;

(b) Evidently, based on the fourth constraint of
Model (12), the obtained reference point from
Model (12), i.e., point (xA� s��; '�yA + s+�),
lies on hyperplane P 0k+1: �UY � �V Y + �uo = 0;

(c) Considering that the extreme points used in
the proposed algorithm belong to REA, if
the extreme DMU does not belong to REA
in one step, the new obtained point from
Model (12) will be in REA in the next step of
the algorithm (see Section b in Case 1). Thus,
each transformed point of the extreme e�cient
DMUs will belong to REA (if the transformed
point of the extreme DMU does not belong to
REA in one step, then the new obtained point
from Model (12) will be in REA in the next
step of the algorithm (see Section ii) in Case
1)).

According to the algorithm procedure, the new
improved facets (the new virtual frontiers) are
obtained from the convex hull of these points.
Besides, PPS is convex and, thus, the convex hull
of these points belongs to REA; consequently, the
new improved facets also belong to REA.

This illustrates not only the fact that the
fourth constraint belongs to REA, but also that the
reference point of DMUA, i.e., (xA � s��; '�yA +
s+�), belongs to REA (based on Part A of Theo-
rem 2). The model is thus always feasible. �

Replace the new point with D̂MU
(k+1)
A by

connecting DMUA to the new point D̂MU
(k+1)
A ,

which lies on hyperplane P 0k+1 (see Figure 1); this
process is �nished;

Figure 1. The benchmarking region of e�ciency (Case 1).

Figure 2. The benchmarking region of e�ciency (Case 2.

D̂MU
(3)
A belongs to REA).

ii) If DMU(k+1)
A does not belong to REA, then the

process is the same with Part b) of Section i),
except that instead of the equation of hyperplane
P 0k+1 in the fourth constraint of Model (12), the
fourth constraint is replaced with hyperplane P 0k.

Case 2. If such a unit does not exist, hyperplane
pk+1 is a weak de�ning hyperplane. Similarly, calculate

the output/input amounts of D̂MU
(k+1)
A by Eq. (11).

If D̂MU
(k+1)
A belongs to REA, then it is su�cient to

connect DMUA to D̂MU
(k+1)
A (see Figure 2); otherwise,

�nd a point from Model (12) with the equation of
hyperplane P 0k+1 in the fourth constraint.

Replace the new point with D̂MU
(k+1)
A and name

it D̂MU
(k+1)
A . It is then su�cient to connect DMUA to

D̂MU
(k+1)
A s (see Figure 3).

Evidently, D̂MU
(k+1)
A lies on both hyperplanes, P 0k

and P 0k+1. Throughout the algorithm,

D̂MU
(1)
A ! D̂MU

(2)
A ! � � � ! D̂MU

(k+1)
A

represents the benchmarking movement in which the

points D̂MU
(1)
A :D̂MU

(2)
A : � � � :D̂MU

(k+1)
A lie on hyper-

planes P 01; P 02; � � � ; P 0k+1, respectively; the set of sub-
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Figure 3. The benchmarking region of e�ciency (Case 2.

D̂MU
(3)
A does not belong to REA).

scripts of the e�cient improved faces of the PPS for
DMUA is considered (except the second part of Case 2

in which D̂MU
(k+1)
A lies on hyperplane P 0k). Note

that all the new shifted units of the extreme points
in the PPS have an equivalent e�ciency value of ��A =
��(K)

A + �%.

Hence, starting at benchmark point D̂MU
(1)
A ,

passing through all the obtained hyperplanes through-
out the algorithm and, eventually, stopping at

D̂MU
(k+1)
A , one can achieve the benchmark region of

de�ciency improvement.
Among the previous works, this study explores an

improved benchmark and, sequentially, an improved re-
gion of e�ciency for an ine�cient DMU. In comparison,
some papers �nd a benchmark turning the ine�cient
DMU to an e�cient DMU [25]. Additionally, some
other papers used the DEA sensitivity analysis just to
explore a point as a virtual benchmark for an ine�cient
DMU [18].

Practically, an ine�cient DMU sometimes cannot
improve its performance to the best practice by either
decreasing its inputs or increasing its outputs.

The current paper suggests an improved region
that is characterized such that the e�ciency value
of each point in this region will be derived by the
hyperplane with the same normal vector of the orig-
inal PPs hyperplane. In fact, we improve all the
hyperplanes that belong to REA. Considering that
any change has implications, the process of �nding a
suitable benchmark is constantly faced with changes
and evidently increasing costs. We, therefore, always
try to remove or reduce these changes. The strength
of the present approach is that, with considerably
little numerical e�ort, one can get an insight into the
improved e�ciency region of a given DMU; unlike many
previous works, it is based on exact results of a well-
de�ned value judgment.

The proposed algorithm. The summary of the

proposed algorithm is given below. Here, DMUA is
considered as an ine�cient DMU under evaluation in
order to �nd a new region by increasing the e�ciency
(obtained by Model 2) of DMUA by �%.

Step 1. Find all the de�ning (e�cient) hyperplanes
of the PPS. Let P = fp1; � � � ; p2; ptg be the set of
these de�ning (e�cient) hyperplanes;
Step 2. Assume that k = 1 and 
1 = fDMUj j��j = 1
and �j = 1 in assessing DMUj by Model (2)g;
Step 3. Solve Model (2) and set DMU(k)

A as a
projection point of DMUA;
Step 4. Look for pk representing a hyperplane that
DMU(k)

A satis�es in hyperplane pk equation;

Step 5. From DMU(k)
A , consider D̂MU

(k)
A whose

e�ciency is ��A = ��A + �%. To calculate the

input/output amounts of D̂MU
(k)
A , use the following

formulas:

For k = 1;

D̂MU
(k)
A =

�
~x(k)
A ; ~y(k)

A

�
=

 
�x(k)
A
��A

; y(k)
A

!
=

 
��Ax

(k)
A

��A
; y(k)
A

!
:

Step 6. Find the equation of hyperplane P 0k which

passes through D̂MU
(k)
A and has the same normal

vector as hyperplane pk;
Step 7. Using the de�nition of 
1, look for extreme
e�cient DMUs that lie on hyperplane pk so that
at least one of its inputs or outputs is more than
DMU(k)

A . (In the case of the existence of more
than one DMU for all of them, follow the process
from Step 8.) If such a DMU exists, go to Step 8;
otherwise, go to Step 9;

Step 8. Subscript the new DMU as DMU(k+1)
A . If

DMU(k+1)
A belongs to REA, then proceed to Step 10;

otherwise, proceed to Step 11;
Step 9. If such a unit does not exist, i.e., hyperplane
pk+1 is a weak de�ning hyperplane, calculate the

output/input amounts of D̂MU
(k+1)
A from Eq. (11). If

D̂MU
(k+1)
A belongs to REA, then proceed to Step 14;

otherwise, proceed to Step 15;

Step 10. If DMU(k+1)
A belongs to REA, hyperplane

pk+1 represents a de�ning e�cient hyperplane in
which DMU(k+1)

A satis�es hyperplane pk+1 equation.

Consider D̂MU
(k+1)
A whose e�ciency is ��A = ��A+�%.
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To calculate the input/output amounts of D̂MU
(k+1)
A ,

use the following formula:

D̂MU
(k+1)
A =

�
~x(k+1)
A ; ~y(k+1)

A

�
=

 
x(k+1)
A
��A

; y(k+1)
A

!
:
(14)

Here, we confront two cases: either D̂MU
(k+1)
A be-

longs to REA, then proceed to Step 12; or it does not
belong to REA, then proceed to Step 13;

Step 11. If DMU(k+1)
A does not belong to REA,

then, by using Model (12), except that instead of the
equation of hyperplane P 0k+1 in the fourth constraint
of Model (12), the fourth constraint is replaced with
the equation of hyperplane P 0k.

Replace the new point with D̂MU
(k+1)
A and

name it D̂MU
(k+1)
A . By connecting DMUA to the

new point, D̂MU
(k+1)
A , which lies on hyperplane P 0k

and has at least one input/output value of DMUA,
this process is �nished. Proceed to Step 16;

Step 12. If D̂MU
(k+1)
A belongs to REA, suppose

that hyperplane P 0k+1 is the equation that passes

through D̂MU
(k+1)
A and has the same normal vector

as hyperplane pk+1; hence, proceed to Step 7;

Step 13. If D̂MU
(k+1)
A does not belong to REA,

suppose that hyperplane P 0k+1 is the equation which

passes through D̂MU
(k+1)
A and has the same normal

vector as hyperplane pk+1; then, �nd a point from
Model (12) in which the fourth constraint is the
equation of hyperplane P 0k+1. Replace the new point

with D̂MU
(k+1)
A . By connecting DMUA to the new

point, D̂MU
(k+1)
A , which lies on hyperplane P 0k+1, this

process is �nished;

Step 14. If D̂MU
(k+1)
A belongs to REA, then it is

su�cient to connect DMUA to D̂MU
(k+1)
A . Proceed

to Step 16;

Step 15. If D̂MU
(k+1)
A does not belong to REA, �nd

a point from Model (12) with the equation of hyper-
plane P 0k+1 in the fourth constraint. Replace the new

point with D̂MU
(k+1)
A and name it D̂MU

(k+1)
A . Then,

it is su�cient to connect DMUA to D̂MU
(k+1)
A ;

Step 16. Stop.

The PPS is a polyhedral convex set whose ver-
tices correspond to the e�cient DMUs. Besides, a
polyhedron is de�ned as the intersection of a �nite
collection of generalized halfspaces. More generally,

a half space is either of the two parts into which a
hyperplane divides an a�ne space. Since the number of
the de�ning hyperplane of a PPS is �nite, the number
of the new improved hyperplanes is less than that of
the de�ning hyperplanes. The validity of the algorithm
is, therefore, obvious owing to the �nite number of
de�ning hyperplanes.

4. Numerical example

This section provides a numerical example that helps
clarify the concept of the improved region of the
DMU's e�ciency and its comparative advantage over
conventional DEA models.

In light of the growing strategic importance of
the function of managing a company's most important
asset{its reputation{there is a need of fundamentally
evaluating the improved region of the DMU's e�ciency
to obtain a guideline for future planning.

Example 1: Let us assume that we have eight sample
DMUs, each using one input to produce one output
with the data given in Table 1. All the virtual and
real DMUs are depicted in Figure 4. By the foregone
algorithm.

For �nding the improved region by increasing
the e�ciency (obtained from Model (2)) of DMUG by
�% = 13:75%, we �rst �nd all the maker hyperplanes
of PPS. These hyperplanes' set is as follows:

f�x+2 = 0; y�4x+6=0; 2y�x�9=0; y�8=0g:
Table 1. Sample DMUs.

DMU A B C D E F G H

Input 2 3 7 4.4 3.3 6 4 8
Output 2 6 8 6 4.5 5 3 4

Figure 4. E�cient frontiers of PPS.
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1 = fDMUA;DMUB ;DMUCg is the set of the
extreme e�cient DMUs of the data of Table 1.

By solving Model (2) and setting DMU(1)
G as the

projection point of DMUG, we have:

DMU(1)
G = (�x; �y) = (2:25; 3):

From DMU(1)
G , which lies on p1 : y�4x+ 6 = 0, we are

considering D̂MU
(1)
G , whose e�ciency is:

��G = 0:5685�%=13:75%:���������!��G = ��G + �% = 0:7:

Using Eq. (10), we calculate the input/output amounts

of D̂MU
(1)
G :

D̂MU
(1)
G =

�
~x(1)
G ; ~y(1)

G

�
= (3:2143; 3):

Now, we are looking for hyperplane p01, which passes

through D̂MU
(1)
G and has the same normal vector as

hyperplane p1; this is shown as follows:

y � 4x+ 12:857 = 0:

DMUB is an extreme e�cient DMU that lies on
hyperplane p1; its inputs and outputs are more than
DMU(1)

G .
Since DMUB belongs to REG, we subscript it as

DMU2
G.
A de�ning e�cient hyperplane in which DMU2

A
satis�es hyperplane p2 equation, is represented by p2 =
2y�x�9 = 0. By Eq. (11), we calculate D̂MU

2
G, whose

e�ciency is � = 0:7, as follows:

D̂MU
2
G =

�
~x2
G; ~y2

G
�

= (4:2857; 6):

The equation of the hyperplane which passes through

D̂MU
(2)
G and has the same normal vector as hyperplane

p2 is as follows:

P 02 = 2y � x� 7:7143 = 0;

since D̂MU
2
G does not belong to REG, based on Step 13

of the algorithm, we replace D̂MU
2
G with the new point

(4, 5/85715) obtained from Model (12), which lies on
hyperplane P 02 and has at least one input/output value
of DMUG (see Figure 4).

Since there is no other DMU in REG, there are
also no other improved hyperplanes.

Example 2: The data of 9 DMUs from Hosseinzadeh
Lot�'s paper (2011) [19] are used as a numerical
example and consist of two inputs and one output, as
shown in Table 2.

We intend to �nd the improved region of the
DMU's e�ciency using the data in Table 2. We,
therefore, use the proposed algorithm to obtain the
improved e�ciency region of DMU2 by increasing its
current e�ciency value (��2 = 0:6885246 to �% =
11=1475%).

After �nding all the de�ning hyperplanes as
shown in Figure 5, the set of extreme e�cient points of
PPS is as follows:


1 = fDMU3;DMU4;DMU5;DMU7g:
By determining the radial projection reference point of
DMU2 by Model (2) DMU(1)

2 , we look for hyperplane
p1 in which DMU(1)

2 satis�es hyperplane p1 equation:

DMU2 = (x1; x2; y) = (7; 3; 4)! DMU(1)
2

= (0:6885246(7); 0:6885246(3); 4);!DMU(1)
2

= (4:8196722; 2:0655738; 4);

p1 : 0:352941y�0:411765x1�0:235294x2+1:06=0:

Now, we intend to �nd D̂MU
(1)
2 , whose e�ciency is

��2 + �% = 0:8. The input/output amounts of D̂MU
(1)
2

are calculated as follows:

D̂MU
(1)
2 =

�
~x(1)

12 ; ~x
(1)
22 ; ~y(1)

2

�
=
�

0:6885246(7)
0:8

;
0:6885246(3)

0:8
; 4
�

= (6:02459025; 2:58196725; 4):

In Step 6, we �nd the equation of hyperplane P 01
which passes through D̂MU

(1)
2 and has the same normal

vector as hyperplane p1 which is as follows:

p1 = (�; �; ) = (0:352941;�0:411765;�0:235294);

Table 2. The data of the eight DMUs.

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9

Input 1 4 7 8 4 2 10 12 10 13
Input 2 3 3 1 2 4 1 1 1.5 2
Output 2 4 7 3 2 5 8 7 7.5



N. Ebrahimkhani Ghazi et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 2852{2866 2863

Figure 5. The visual description scheme.

�(y � yA) + �(x1 � x1A) + (x2 � x2A) = 0!
0:352941(y � 4)� 0:411765(y � 4)

� 0:411765(x1 � 6:02459025)

� 0:235294(x2 � 2:58196725) = 0;

P 01 : 0:352941y � 0:411765x1 � 0:235294x2

+ 1:676472806 = 0:

DMU3 and DMU5 are the extreme e�cient DMUs lying
on hyperplane p1 where at least one of their inputs
or outputs is more than DMU(1)

2 . Based on Step 11
of the algorithm, since DMU(2)

2 does not belong to

RE2, we �nd point D̂MU
(2)
A = (7; 2:4687495; 5:062504)

by Model (12) in which the fourth constraint is the
equation of hyperplane P 01.

At this point, to clarify the strategy of the pro-
posed algorithm, we follow the algorithm for DMU9 =
(13; 2; 7:5) as follows.

We solve Model (2) and �nd that DMU(1)
9 is a

projection point of DMU9; DMU(1)
9 = (10; 1:5; 7:5).

The equation of a hyperplane is p1 : 0:4y�0:1x1�
2 = 0, such that DMU(1)

9 satis�es its equation.

Now, we consider D̂MU
(1)
9 whose e�ciency is ��9 =

��9 + �% = 0:769230769 + 0:130769231 = 0:9(�% =
13:0769231%).

By Eq. (10), the following unit is calculated:

D̂MU
(1)
9 = (11:�1; 1:709401709; 7:5)

The equation of hyperplane P 01 is 0:4y�0:1x1�1:�8 = 0
The extreme e�cient DMU that lies on hyper-

plane p1 is DMU7 = DMU(2)
9 and its �rst input is

greater than DMU(1)
9 .

As DMU(2)
9 belongs to RE9, based on Step 10 of

the proposed algorithm, we �nd two de�ning e�cient
hyperplanes, p2 and p3, in which DMU(2)

9 satis�es their
equations as follows:(

p2 : y � 8 = 0
p3 : x2 � 1 = 0

Now, by using Eq. (11), D̂MU
(2)
9 is considered, whose

e�ciency is ��9 = 0:9 : D̂MU
(2)
9 = (13:�3; 1:�1; 8).

As D̂MU
(2)
9 does not belong to RE9, suppose that

P 02 : y � 8 = 0; P 03 : x2 � 1:�1 = 0 are the equations of

the hyperplanes that pass through D̂MU
(2)
9 and have
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the same normal vector as hyperplanes p2 and p3,
respectively.

In addition, there is no other extreme e�cient unit
that passes through equations of hyperplanes p2 and p3.
Based on Step 13, to understand the improved region
better, Model (12) is employed. In the equation of
y� 8 = 0, the obtained point is (9:7�3; 1:2�6; 8:0000325);
in the equation of x2 � 1:�1 = 0, the obtained point
is (13; 1:2; 8:6750025). We replace the new points

with D̂MU
(2)
9 and D̂MU

(3)
9 . By connecting DMU9 to

the new points, D̂MU
(2)
9 and D̂MU

(3)
9 , which lie on

hyperplanes P 02 and P 03, the process is �nished. The
part of improved obtained hyperplanes P 01, P 02, and P 03,

included in the points D̂MU
(1)
9 , D̂MU

(2)
9 , and D̂MU

(3)
9 ,

is the improvement benchmarking region.
Note that, in Figure 5, notations DMUE

j and
DMUIE

j , j = 1; � � � ; n, respectively, represent the
e�cient and ine�cient units.

5. Conclusions

As it is an issue of considerable importance, this
study sought to make the standards more exible for
choosing the benchmarks. This standard can, however,
di�er from that of decision-makers. If a company
has a speci�c corporate strategy or future vision, the
standards for choosing benchmarks might be more
complex. There is a central question in the evaluation
of an ine�cient DMU: instead of having a benchmark
with an e�ciency value of one, how can an ine�cient
DMU achieve a more realistic benchmark in which the
e�ciency is less than one? This means that a wide
range of knowledge on this study becomes available. A
framework for de�ning a benchmark region in evalu-
ating an ine�cient DMU was derived from the value
judgment by increasing the current e�ciency. This
paper developed a procedure for shifting the e�cient
frontier toward the ine�cient DMU. The procedure
yielded an exact improved region that is derived by
increasing the e�ciency score of a speci�c ine�cient
DMU by �%, and the e�ciency score of each point
belonging to the new improved frontiers is di�erent. It
is indeed a new virtual frontier that is recognized as a
realistic benchmarking region for the under-evaluated
ine�cient DMU. One of the advantages of the current
analysis is the incorporation of value judgment into
the current situation of hyperplanes through speci�c
e�ciency improvement for the under-evaluated ine�-
cient DMU. The value judgment here can, therefore,
be represented by the improved region concept. In
addition, we used the sensitivity analysis of e�ciency to
�nd the new region. Further research will concentrate
on the region of the MPSS (Most Productive Scale Size)
by using hyperplanes to evaluate DMUs.
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