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Abstract. In weight optimizitaion of double-layer grids, various parameters, such as
members cross-sectional areas, the height between two layers, structure meshing in two
directions and the topology of the structure should be considered. In this study, for
simultaneous optimization of size, shape and topology of double-layer grids, a genetic
algorithm is employed and is modi�ed based on the fuzzy inference system. First, to
e�ciently search in design space at each stage, some solutions are generated in the
neighborhood of the best sample, which enhances searching operation in the neighborhood
of the optimum solution. Then, in order to achieve the possible solutions, penalties for
violation of constraints, and the number of violated constraints are considered in order
to choose the next generation. The value of objective function and the values of genetic
algorithm parameters have a great e�ect on the result of the algorithm. For adaptive
setting of these parameters, the fuzzy inference system is employed. The e�ciency of these
improvements has been con�rmed by presenting some examples of truss structures and
comparison with the other algorithms.
c
 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Structural optimization means the design of structures,
so that all the design criteria are considered while
the structural weight or cost is minimum. In the
recent years, many studies have been performed on
meta-heuristic algorithms to reduce the mathematical
calculations and to enhance the ability of �nding
the global solution. In order to improve the above
mentioned, many studies have been done in the �eld
of structural optimization.

Lee and Geem proposed a new structural op-
timization method by harmony search algorithm [1].
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Truss optimization was presented using Big Bang-Big
Cranch method [2]. Kaveh and Shojaei optimized
skeletal structures using ant colony algorithm [3].
Particle swarm optimization algorithm was used for
structural design optimization [4]. Modi�ed particle
swarm optimization algorithms (PSO-HPSO-PSOPC)
were presented for truss optimization [5]. DHPSACO
approach was proposed by combination of Particle
Swarm Optimization Passive Congregation (PSOPC),
Ant Colony Optimization (ACO) and Harmony Search
algorithm (HS) for truss optimization with discrete
variables [6]. A two-stage method was presented
using GA with discrete variables and was applied
for optimization of truss structures [7]. Double-layer
grids were optimized using back propagation neural
networks [8]. Salajegheh and Gholizadeh performed
optimization of space structures using modi�ed genetic
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algorithm and radial basis function neural network [9].
Gholizadeh et al. proposed shape optimization of
double-layer grids using quantum behaved particle
swarm optimization (QPSO) and neural networks [10].
Shape optimization of structures was implemented
by sequential harmony search algorithm [11]. Also,
layout optimization of truss structures was carried out
by hybridizing cellular automata and particle swarm
optimization [12].

In weight optimization of double-layer grids,
structural design variables should be assigned so
that the structure has a minimum weight. In
this study, design variables such as members cross-
sectional areas, thickness of the double layer, the
structure meshing in two directions and topol-
ogy of the structure are assigned using improved
GA. Since optimization of every system consists
of two basic steps including searching the design
space and evaluation of the search vectors, in or-
der to have a proper searching in design space,
some improvements are applied on optimization algo-
rithm.

2. Formulation of the optimization problem

The optimization problem of truss structures is de�ned
in general form by Eq. (1) in which all the design
constraints are satis�ed, and the total weight of the
structure has the lowest value [13]:

minimize : W (fXg) =
nX
i=1


iAiLi

subjected to : gi (fXg) � 0; i = 1; 2; :::;m

hi (fXg) � 0; j = 1; 2; :::; k

fXLg � fXg � fXug; (1)

where W (fXg) is total weight of the structure (objec-
tive function), n is the number of structural elements,
hi and gi are the design constraints. Some of the
design constraints in structures are limitation of the
stress, elements slenderness and node displacements.
XL and Xu are the upper and the lower bounds of
variations.

Since the genetic algorithm is used in unconstraint
optimization problems, in this study, penalty function
method is employed to transform the constrained func-
tion to unconstrained function. In penalty function, if
the constraints are in the allowable range, the penalty
rate will be zero. Otherwise, the penalty rate is
obtained from the following equations [14]:

8>><>>:
�min
i � �i � �max

i ) �i� = 0

�i < �min or �i > �max ) �i� = �i��max=min
i

�max=min
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AFWk = "1W k + "2
�
�k� + �k� + �k�

�"3 ; (5)

where �max =min
i and �i are, respectively, the existing

stress and the allowable stress in ith member; �max=min
j

and �j are, respectively, the existing and the allow-
able displacement of jth node; �max=min

n and �n are,
respectively, the existing and the allowable slenderness
of the ith member; �k�; �k� and �k� are the summation
of the penalties calculated for stress, displacement and
slenderness constraints, respectively; and "1, "2 and "3
are coe�cients of the penalty function. In this study, "1
and "3 are equal to 1, and "2 is obtained from Eq. (6).
AFWk is additional function due to addition of penalty
to the weight of the structure.

"2 = 0:015�W � i < 2�W; (6)

where W is the weight of the structure, and i is
the number of iteration loops in optimization process.
The coe�cient of penalty function, "2, is directly
proportional to the number of iteration loops and
W � i is relatively a high value. For reduction of
the penalty coe�cient, the value of 0.015, which is the
optimal value obtained by optimization of several truss
structures, is used. The 0:015�W � i value considers
a smaller penalty in initial stages of the optimization
and increases subsequently by increasing the number
of iteration loops. This procedure results in a better
search of the algorithm. To avoid a large penalty value
in higher loops, the penalty value is limited to the 2�W
value.

3. Genetic algorithm

Genetic algorithm is one of the optimization methods
which is a member of the large family of evolution-
ary algorithms. This algorithm establishes a search
method by natural inheritance principle of survival of
the stronger members and analyzing the members to
create better members. In this algorithm, variables
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are encoded by means of numerical strings in binary
system, which are called genes. By taking together
the strings of each variable, �xed-length string is gen-
erated which is called chromosome. Each chromosome
represents a solution point in the search space. In this
algorithm, the initial population is randomly selected,
and by evaluating the chromosomes, calculating the
�tness function by Eq. (7), selecting the parents, and
applying host and mutation operators, new children
are generated. Using the �tness of the chromosomes,
the population of the next generation is selected. The
algorithm will continue to approach a convergence [15].

Fi = exp
�
�� � AFWi

AFWmax + 1

�
; i = 1; 2; :::; n;

(7)

where n is the number of members of current pop-
ulation, Fi is a parameter which shows the level of
ith members �tness, and � is a selection pressure
coe�cient.

3.1. Improvement of search space in genetic
algorithm

Fundamental characteristic of meta-heuristic algo-
rithms is to search in the design space. Depending on
the manner of searching the space, algorithms exhibit
di�erent performance. The more appropriate the
manner of searching the space, the more the likelihood
of achieving the optimum solution increases. One of
the drawbacks of GA is unsuccessful mutations. For
example, if the problem has four variables, according
to Table 1, and chromosome 1 is the best possible
solution, and chromosomes 2 and 3 are random chro-
mosomes obtained in the algorithm implementation
process, objective function value will be near to the
global optimum. Applying several di�erent mutations
indicates that there is a little chance to reach the �nal
optimum. Sample space variables are as follows:

X = [1; 2; 3; :::; 31; 32] : (8)

It is to be noted that the values of Xi (i = 1; 2; :::; 4)
(all chromosomes are in the neighborhood of each
other, but comparison between chromosomes 1 and
2 and chromosomes 1 and 3 shows that to transform
chromosome 2 to chromosome 1, the number of 12 bits
and to transform chromosome 3 to chromosome 1, 6
bits of chromosomes should be changed. This case is

less likely to occur. To solve this problem, the method
of generating new children in the neighborhood of the
best solution is used. In this method, after �nding the
optimal chromosome at the end of iteration, sampling
interval for each variable by using Eq. (9) is reduced,
and new children are randomly generated from the
given distance interval.�
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where X [fav]
i i = 1; 2; 3; 4 is the value of chromosome

variables with the highest �tness; number
�
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i

�
is the number corresponding to X [fav]

i from variable
search space; number (	l

i) and number (	u
i ) are,

respectively, the upper and the lower bound number of
variable search space, and � is the distance coe�cient
which is assumed to be equal to 1. For example,
since for chromosome 2 the value and its corresponding
number in selected sampling interval are the same,
sampling interval based on � = 1 for chromosome 2
variables is obtained as follows:�

number(	l
1);number(	u

1 )
�

= [5� 1; 5 + 1] = [4; 6]�
number(	l

2);number(	u
2 )
�
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1);number(	u
1 )
�

= [17� 1; 17 + 1]

= [16; 18];�
number(	l

1);number(	u
1 )
�

= [31� 1; 31 + 1]

= [30; 32]: (10)

The sampling interval should be in the range of initial
sampling interval. It is clear that the global optimum
is located at a distance of the above sampling intervals.
So, if the sampling of chromosomes is randomly gener-
ated, the probability of obtaining the global optimum
is high. This method improves the algorithm search in
the obtained optimal neighborhood.

Table 1. Sample of chromosomes.

Chromosome Variables no. Binary state Decoding state
X1 X2 X3 X4 X1 X2 X3 X4

1 4 00011 00111 01111 11111 4 8 16 32
2 4 00100 01001 10000 11110 5 9 17 31
3 4 00011 00110 10000 11111 4 7 17 32
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3.2. Using possible solutions to choose the
next generation

In large-scale structures, due to the long duration of
structural analysis and duration of obtaining the �nal
optimum, the priority is to achieve the results that can
satisfy all the constraints. In this study, in addition
to considering the �tness function, in case of violation
of the constraints, the following three rules are used to
select the next generation.

1. Every possible solution is preferred to impossible
solution.

2. Between two possible solutions, the solution which
has a better objective function will be chosen.

3. Between two impossible solutions, the solution
which violates fewer constraints will be accepted.

This procedure makes the algorithm dependent
on the number of violated constraints in addition to its
dependence on objective function. Since the solution
obtained by the algorithm must satisfy all the required
constraints, the algorithm is greatly conducted to the
possible solutions by using penalty function and the
above three rules.

3.3. Modifying the parameters of GA using
fuzzy inference system

Selection of GA parameters and the manner to control
them have a great in
uence to �nd the best solution.
Maintaining the population diversity in GA prevents
the premature convergence and also increases the
likelihood of achieving the optimum solution. During
the implementation of the algorithm with respect to
the mean variance of �tness value, selection pressure
coe�cient, percent of elite population and mutation
rate are determined dynamically using fuzzy inference
system to increase the chances of �nding the best solu-
tion of algorithm. As the algorithm parameters change
at each iteration, the adaptation feature of algorithm
parameters reduces. As a result, the algorithm param-
eters should be kept constant for a speci�c number
of iterations (12 iterations in this study). Based on
the algorithm performance (mean value of �tness of
iterations) in this number of iterations, mutation rate
of previous stage and iteration loop counters, algorithm
parameters (selection pressure coe�cient, percent of
elite population and mutation rate) are computed.

Eq. (10) is used to calculate the variance, and
Eq. (11) is employed to determine the improvement of
algorithm performance by speci�c number of iterations.
In this equation, if the obtained value is a number
greater than zero, the algorithm has been improved or
the algorithm has a better performance; otherwise the
algorithm has a worse performance.

variance =
Gmax �Gmean

Gmax �Gmin
; (11)

AP =
Gk�1

better �Gkbetter
Gkbetter

)

8>>><>>>:
if AP > 0 then algorithm has better

performance
else if AP � 0 then algorithm has worse

performance
(12)

The membership functions are de�ned using triangular,
trapezoidal, Gaussian and bell-shaped function. Input
and output membership functions are illustrated in
Figures 1-7.

If-Then rules are used to formulate the fuzzy
conditional statements. The fuzzy rules are given in

Figure 1. Input membership function of mean-variance.

Figure 2. Input membership function of previous
iteration mutation rate.

Figure 3. Input membership function of improved
algorithm.
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Figure 4. Input membership function of loop counters.

Figure 5. Output membership function of selection
pressure coe�cient.

Table 2. All the rules are combined with \and" logical
operator. Phase-�eld model has been used for inference
system. For defuzzi�cation of the fuzzy output, the
centroid method is employed.

Figure 6. Output membership function of elite
population percent.

Figure 7. Output membership function of mutation rate.

4. Simultaneous optimization of size, shape,
and topology of double-layer grids

In double-layer grids, various parameters, such as
the member cross-sectional areas, the height between

Table 2. If-Then rules used for fuzzy inference system.

Input Output
Ave vara APb Muc Itd Beta Pee Mu

Low - - Not very high High High -
Medium - - Not very high Medium Medium -

High - - - Low Low -
- Worse Medium Low - - High
- Worse Medium Medium - - High
- Worse Medium High - - High
- Worse Medium Very high - - High
- Worse High Low - - Medium
- Worse High Medium - - Medium
- Worse High High - - Medium
- Worse High Very high - - Medium
- Worse Low Low - - Medium
- Worse Low Medium - - Medium
- Worse Low High - - Medium
- Worse Low Very high - - Low
- Better Medium - - - Medium
- Better High - - - High
- Better Low - - - Low

a Ave var = Average variance; b AP = Algorithm performance; c Mu = Mutation;
d It = Iteration; and e Pe = Percent of elite.
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two layers, the structure meshing in two directions
and topology of the structures are necessary which
should be assigned to optimize the weight of the
structure and satisfy all the design constraints. In
this study, the mentioned variables are considered
as design variables. Structural members and the
nodes are grouped to achieve the desired results and
to reduce the design space. In grouping the lower
layer nodes, the geometrically symmetrical grouping
is considered. The members are grouped based on
internal forces which obtain from FE analysis in each
iteration. Allowable domain of considered constraints
during the optimization process is obtained from the
following equations:

1. Stress constraints [16]:

��i = 0:6Fy (for tensional members) (13)

��i = ��c (for compressive members) (14)

�c =

8>>>>>><>>>>>>:

h�
1� �2

i
2C2

c

�
Fy
i
=
�

5
3 + 3�i

8Cc � �3
i

8C3
c

�
for �i < Cc

12�2E
23 for �i � Cc

Cc =
q

2�2E
Fy

(15)

In the above equations, Fy is the yield stress of
material, E is the modulus of elasticity, Cc is the
boundary slenderness between elastic and inelastic
buckling, and � is slenderness ratio of the members.

2. Slenderness ratio constraints [16]:

�i = KiLi=ri � 300 (for tensional members)
(16)

�i = KiLi=ri � 200 (for compressive members)
(17)

where ri is radius of gyration, and Ki is buckling
length coe�cient of ith member. In truss struc-
tures, the member buckling length coe�cient (Ki)
is considered equal to unit.

3. Displacement constraints: the maximum displace-
ment for double-layer grids is of small span.

To take into account the structural stability,
where determinant of the structural sti�ness matrix is
equal to zero, a large penalty value is assigned to the
structures to avoid the selection of unstable structures
in the next stages of the algorithm.

5. Numerical examples

In order to verify the e�ciency of the proposed method,
two examples of truss structures are discussed and

Figure 8. 52-bar planar truss structure.

then, one example of simultaneous optimization of
the size, shape, and topology of space structures is
presented. In all examples presented, 85 percent of
the next generation chromosomes are obtained using
host and mutation operators, and the remaining 15
percent are obtained through the generation of new
chromosomes in the neighborhood of optimum sam-
ple.

5.1. Size optimization of a 52-bar planar truss
structure

A 52-bar planar truss structure, shown in Figure 8,
had been investigated by many researchers [6,7,17,18].
Members of this structure are divided to 12 groups:
(1) A1 � A4, (2) A5 � A10, (3) A11 � A13, (4) A14 �
A17, (5) A18 � A23, (6) A24 � A26, (7) A27 � A30,
(8) A31 � A36, (9) A37 � A39, (10) A40 � A43, (11)
A44 � A49, and (12) A50 � A52. The mass density of
materials is 7860 kg/m3, and the elasticity modulus is
2:07� 105 MPa. The members have a stress limitation
of �180 MPa. The loads Px = 100 kN and Py =
200 kN are applied at nodes 17; 181; 19, and 20. A
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Table 3. List of the available cross sectional areas for 52-bar planar truss structure (in2).

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
0.111 0.141 0.196 0.25 0.307 0.391 0.442 0.563 0.602 0.766
A11 A12 A13 A14 A15 A16 A17 A18 A19 A20
0.785 0.994 1 1.228 1.266 1.457 1.563 1.62 1.8 1.99
A21 A22 A23 A24 A25 A26 A27 A28 A29 A30
2.13 2.38 2.62 2.63 2.88 2.93 3.09 1.13 3.38 3.47
A31 A32 A33 A34 A35 A36 A37 A38 A39 A40
3.55 3.63 3.84 3.87 3.88 4.18 4.22 4.49 4.59 4.8
A41 A42 A43 A44 A45 A46 A47 A48 A49 A50
4.97 5.12 5.74 7.22 7.97 8.53 9.3 10.85 11.5 13.5
A51 A52 A53 A54 A55 A56 A57 A58 A59 A60
13.9 14.2 15.5 16 16.9 18.8 19.9 22 22.9 24.5
A61 A62 A63 A64
26.5 28 30 33.5

Table 4. Comparison of optimal designs for 52-bar planar truss structure.

Elements
group

GA
[17]

HSH
[2]

PSO
[6]

PSOPC
[6]

HPSO
[6]

DHPSACO
[7]

Proposed
method

1 4658.055 4658.055 4658.055 5999.988 4658.055 4658.055 4658.055
2 1161.288 1161.288 1374.19 1008.38 1161.288 1161.288 1161.288
3 645.16 506.451 1858.06 2696.77 363.225 494.193 494.193
4 3303.219 3303.219 3206.44 3206.44 3303.219 3303.219 3303.219
5 1045.159 940 1283.87 1161.29 940 1008.385 939.998
6 494.193 494.193 252.26 729.03 494.193 285.161 494.193
7 2477.414 2290.318 3303.22 2238.71 2238.705 2290.318 2238.705
8 1045.159 1008.385 1045.16 1008.38 1008.385 1008.385 1008.385
9 285.161 2290.318 126.45 494.19 388.386 388.386 494.193
10 1696.771 1535.481 2341.93 1283.87 1283.868 1283.868 1283.868
11 1045.159 1045.159 1008.38 1161.29 1161.288 1161.288 1161.288
12 641.289 506.451 1045.16 494.19 792.256 506.451 494.193

Weight (kg) 1970.142 1906.76 2230.16 2146.63 1905.495 1904.83 1902.606

set of cross sections are selected from Table 3 for the
design variables. The results obtained from the best
20 implementations and the results of previous studies
are given in Table 4.

5.2. Size and topology optimization of a
10-bar planar truss structure

A 10-bar planar truss structure, shown in Figure 9,
has been investigated by many researchers [19,21].
Variables considered in this example are the members
cross sectional areas and the presence or absence of
structural members. The load of �100 kips is applied
at nodes 2 and 4 in the vertical direction. Mass
density of materials is 0:1 lb/in3 and the elasticity
modulus is 107 psi. The members have a stress
limitation of 25000 Psi. All nodes in y-direction have

a displacement limitation of 2.05 in. Cross sections for
the design variables are selected from Table 5. The
results obtained from the best 20 implementations and

Figure 9. 10-bar planar truss structure.
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Table 5. List of the available cross sectional areas for 10-bar planar truss structure.

No. Area (in2) No. Area (in2) No. Area (in2) No. Area (in2)

1 1.62 9 3.63 17 5.74 25 16
2 1.8 10 3.84 18 7.22 26 18.8
3 2.38 11 3.87 19 7.97 27 19.9
4 2.62 12 4.18 20 11.5 28 22
5 2.88 13 4.49 21 13.5 29 22.9
6 3.09 14 4.8 22 13.9 30 26.5
7 3.13 15 4.97 23 14.2 31 30
8 3.38 16 5.12 24 15.5 32 33.5

the results of previous studies are given in Table 6.
Figure 10 shows the optimized structure.

5.3. A double-layer grid with 57m�57m
dimensions

A double-layer grid with 57m�57m dimensions is
selected. The members cross sectional areas, the height
between two layers, the number of meshes in the x-

Table 6. Comparison of optimal designs for the 10-bar
planar truss structure.

Elements GA GA GA Proposed
group [19] [20] [21] method

1 30 30 30 26.5
2 0 0 0 0
3 19.9 26.5 19.9 26.5
4 15.5 14.2 15.5 13.9
5 0 0 0 0
6 0 0 0 0
7 7.22 7.97 7.22 5.74
8 22 19.9 19.9 22
9 22 18.8 22 19.9
10 0 0 0 0

Weight (lb) 4962.1 4921.25 4855.2 4833.832828

Figure 10. The optimum topology obtained for the
10-bar planar truss structure.

and y-direction and the presence or absence of nodes
of the lower layer are considered as the design variables.
The characteristics of the design variables are selected
from Tables 7 and 8. The nodes around the lower grid
are assumed to be connected to the supports. The
elasticity modulus of steel is 2:1�106 kg/cm2 and mass

Table 7. Characteristics of the shape variables for
double-layer grid.

No.
No. of

meshes in
x-direction

No. of
meshes in
y-direction

Diameter
of layer

(m)
1 25 25 5.25
2 23 23 5
3 21 21 4.75
4 20 20 4.5
5 19 19 4.25
6 17 17 4
7 15 15 3.75
8 14 14 3.5

Table 8. List of the available pro�les for double-layer
grid.

No. ODa Tb No. OD T No. OD T

1 4.83 0.26 12 11.43 0.36 23 21.91 0.45
2 6.03 0.29 13 13.3 0.4 24 21.91 0.45
3 7.61 0.29 14 13.3 0.4 25 24.45 0.63
4 7.61 0.29 15 13.97 0.4 26 24.45 0.63
5 8.89 0.32 16 13.97 0.4 27 27.3 0.63
6 8.89 0.32 17 15.9 0.45 28 27.3 0.63
7 10.16 0.36 18 15.9 0.45 29 32.39 0.71
8 10.16 0.36 19 16.86 0.45 30 35.56 0.8
9 10.8 0.36 20 16.86 0.45 31 40.64 0.88
10 10.8 0.36 21 19.37 0.45 32 45.72 1
11 11.43 0.36 22 19.37 0.45

a: OD: Outer Diameter (cm); b: T: Thickness.
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density is 7850 kg/m2 and external uniform distributed
load is assumed to be 180 kg/m2. The results obtained
from the best 20 implementations and the results of
previous studies are given in Tables 9 and 10. Figure 11
shows the optimized structure.

Figure 11. The topology obtained for double-layer grid
with 57m�57m dimensions: (a) Double-layer grid; (b)
upper layer; (c) diagonal layer; and (d) lower layer.

The topology obtained for double-layer grid in
terms of structural engineering is remarkable, because
this optimum topology is similar to the plate topology
demonstrated in Figure 12 which is obtained from
Ref. [23].

6. Conclusions

In this study, in order to achieve the e�cient results
for optimization of truss structures, genetic algorithm
has been improved. First, the design space has been
e�ciently searched in the neighborhood of optimum
solution by generating the new samples in the neigh-
borhood of the best obtained sample. For selecting
the next generation, in addition to considering the
�tness function of population, the possible solutions
have also been considered. This makes the algorithm
to have possible solutions which satisfy the constraints,

Figure 12. Topology optimization of plate: (a) Base
structure; and (b) optimum structure.

Table 9. Comparison of optimal designs for double-layer grid.

ACO
[22]

MMA-ACO
[22]

Proposed method

The best
weight (kg)

The best
weight (kg)

Runs no. Average
weight (kg)

The best
weight (kg)

Size optimization 97335 97335 - - -
Size & topology optimization 85036 81927 - - -

Size, shape & topology optimization - - 3 76204.47 73960.453

Table 10. Optimal characteristics for double-layer grid.

MMA-ACO (size & topology)
[22]

GA (size, shape
& topology)

Mesh no. in x-direction 19 14
Mesh no. in y-direction 19 14

Height between two layers 450 500
No. of groups of compressive members 14 12

No. of groups of tensional members 3 5
No. of nodes in initial topology 841 481

No. of nodes in optimized topology 653 410
No. of elements in initial topology 3200 1800

No. of elements in optimized topology 2552 1226
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so that there is no need to run again. This subject
looks essential in large-scale structures which require
a lot of analysis time. Also, adaptive setting of
genetic algorithm parameters, based on fuzzy inference
system, causes improvement of the algorithm to achieve
the optimum solution and to avoid the premature
convergence.

E�cient selection of design variables in double-
layer grids has a great in
uence on the weight of the
structure. The most e�ective variables in double-layer
grids are the height between two layers, the structure
meshing in two directions, presence or absence of
nodes and the members cross sectional areas. For
this purpose, simultaneous optimization of size, shape
and topology of double-layer grids has been performed
using the mentioned modi�cations on GA. The results
demonstrate that the proposed method for optimum
design of double-layer grids is e�cient and can be used
in practical problems.
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