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KEYWORDS Abstract. In conventional elastic-plastic constitutive models for clays, elastic strains
Clay: are usually calculated by isotropic hypo-elastic models. However, this class of elasticity
Ani}s,(’)tro ) has two major deficiencies: (a) It ignores the influence of shear stress-induced anisotropy
Elasticitp'% and; (b) It does not conserve energy. Another class of the elasticity theory, the so-
Gibbs frze’z enereyv: called hyper-elasticity theory, is capable of eliminating both deficiencies simultaneously.
Plasticity = In this study, constitutive equations of a recently proposed elastic-plastic platform for

clays named SANICLAY are generalized in order to enable it to consider the possibility
of the anisotropic response in the elastic domain.

The generalized formulation allows

shear-volumetric coupling not existing in the basic platform. Then, the elastic moduli
obtained from a hyper-elastic model are implemented within the generalized SANICLAY
formulation. The refined model predictions are directly compared with the experimental
data of various clays. It is shown that more realistic stress paths are achieved from the

refined model.

© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

During the last decades, a considerable amount of ex-
perimental studies regarding the mechanical behavior
of cohesive soils was published in the literature [1-7].
Besides, a large number of elastic-plastic constitutive
models for clayey soils have been introduced [8-18]
among which there exist complex constitutive models
that can realistically predict soil behavior under various
stress paths (e.g. [11,15]). Nevertheless, for solving
boundary value problems, the simpler constitutive
models that succeeded to set a balance between simplic-
ity and correctness of predictions are always appealed.
In this regard, the Modified Cam-Clay (MCC) family,
an extended class of constitutive models developed
based on the theory of plastic work hardening, has
been widely used in the literature. Essential advantages
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of this family are: (a) They are established based
on the critical state soil mechanics; (b) They use
a small number of parameters with clear physical
meanings. These parameters can be determined using
conventional equipment in soil mechanics laboratory;
and (c¢) The performance of the original frame (i.e.,
the MCC model) has been thoroughly evaluated within
the last 45 years [11]. The MCC model was originally
proposed by Roscoe and Burland [8]. Dafalias [9]
reported a formulation for the extension of MCC
from isotropic to anisotropic response. Using the
critical state soil mechanics concepts in conjunction
with rotational hardening and non-associated flow rule,
Newson and Davies [10] proposed an extension to MCC
known as CARMEL. Assuming an associated flow rule,
Wheeler et al. [12] and Karstunen et al. [13] introduced
the S-Clayl as an anisotropic generalization of the
MCC model. Unlike previous models (i.e., [8-11]),
evolution of the yield function orientation in S-Clayl
is controlled by both plastic volumetric and plastic
deviator strains. Employing a non-associated flow rule,
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rotational /distortional hardening, and the so-called
attractor concept for asymptotic states, Dafalias et
al. [16] introduced the SANICLAY model. Unlike other
members of the MCC family, this model is capable
of simulating the peak point observed in the deviator
stress of highly anisotropically consolidated samples
subjected to undrained shear. Recently, Papadimitriou
et al. [17] have studied the influence of yield function
shape on the simulative capacity of SANICLAY. More
recently, Taiebat et al. [18] suggested a modified
SANICLAY model that is capable of considering de-
structuration. It is worthy to note that the difference
between the models named above (i.e., [8-10,12-14,16])
returns back essentially to constitutive equations de-
scribing the evolution of hardening internal variables
and flow rule.

Elastic strains in the majority of clay constitutive
models are conventionally calculated using hypo-elastic
models (e.g., [19-21]). However, it has been shown that
hypo-elasticity theories do not conserve energy. This
drawback eventually leads to irreversibility of elastic
strains that is a flaw [22,23]. To avoid this deficiency,
the application of another class of the elasticity theory,
the so-called hyper-elasticity, is essential. In this class
of the elasticity, constitutive equations for calculation
of elastic strain components are obtained from partial
differentiation of the Gibbs/Helmholtz free energy
functions. This approach guarantees to conserve en-
ergy in every closed-loop stress path. Besides, Einav &
Puzrin [24] have shown that soil hyper-elastic models
can predict the shear stress-induced anisotropy in a
natural unforced way. In the recent years, few hyper-
elastic models have been introduced for reconstituted
clays [23-25].

When subjected to shear stress, both the yield
and the plastic flow mechanisms in the SANICLAY
grow to be increasingly anisotropic. However, hypo-
elastic constitutive equations describing the elastic
response of the soil always remain isotropic that is not
realistic [26,27]. In this study, the most general form of
constitutive equations for anisotropic response of soils
is implemented within the SANICLAY platform. Then,
the elastic moduli based on the Gibbs energy function
of Einav & Puzrin [24] are obtained and employed in
the SANICLAY model. The modified model conserves
energy for the elastic portion of the behavior. Besides,
it is shown that the refined model provides reasonable
predictions for the undrained behavior of highly over-
consolidated clays.

2. Non-linear elasticity for clays

Unlike metals, the elastic moduli of soils are pressure
dependent. Further, in reconstituted samples, elastic
moduli become gradually anisotropic alongside with
shear stress. Generally, the elastic response of soils

in triaxial space is described by [26-28]:

p= K¢, + Jeg; q = Je,, +3Geg, (1)
where, p and ¢ are mean principal effective stress
and deviator stress. K, G, and J are, respectively,
the elastic bulk, shear, and coupling moduli. ¢ and
eg are elastic volumetric and elastic deviator strains,
respectively.
For isotropic media, J = 0 and Eq. (1) is reduced

to:

p=KEe&; q=3Ge,. (2)
From Eq. (2), it can be observed that the change in
the mean principal effective stress is only related to the
change in volumetric elastic strain in isotropic elastic
soils. In a similar fashion, variation of the deviator
stress is just affected by the rate of deviator strain.
In the opposite side, J # 0 holds for anisotropic soils.
The presence of non-zero J terms in Eq. (1) causes the
so-called shear-volumetric coupling effect to happen in
which p and ¢ are also dependent on both &7 and ¢ [26-
28].

2.1. Non-linear isotropic hypo-elasticity for
clays [19-21]

In isotropic compression (consolidation) of reconsti-
tuted clays, void ratio varies almost in a linear manner
when it is drawn in the e-ln(p) plane. In theoretical and
practical applications, it is very common to calculate
the elastic shear and bulk moduli of clays through the
following hypo-elastic constitutive equations [19-21]:

k= (dtem) G:?’(l—?“)K, (3)

k ’ 2\ 1+

where, e;,, v and k are, respectively, initial void ratio,
Poisson’s ratio, and the slope of unloading/re-loading
curve in e-In(p) plane. In this elasticity model, J =0
is a result of the assumption of isotropy. The above
definition for K leads to the linear change in void
ratio in e-ln(p) plane under isotropic compression.
Furthermore, G is directly related to K by means of a
constant Poisson’s ratio. The above elasticity belongs
to the hypo-elasticity family and hence, it does not
conserve energy in a general closed-loop stress path [22-
24]. Tt has been shown that the application of hypo-
elasticity may lead to unrealistic design in a number
of geotechnical engineering problems such as tunnels
and excavations [24]. In these cases, elastic unloading,
in conjunction with the reduction of mean principal
effective stress, highlights the significance of hyper-
elasticity [23]. Generally, hyper-elasticity necessitates
a coupling effect between shear and volumetric strains.
As a consequence, the balance between the volumetric
elastic and plastic strains in constant volume shear
can lead to a remarkable change in the elastic-plastic
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regime of behavior [24]. For instance, Einav &
Puzrin [24] conducted elasto-plastic numerical studies
on the engineering behavior of tunnels constructed in
over-consolidated clays under undrained condition. In
their analyses, the vertical settlements obtained from
the hyper-elastic theory are larger than those of the
conventional hypo-elastic theory (i.e., Eqs. (3)) when
the stress state is located within the yield function.
On the other hand, the hyper-elasticity in conjunction
with the conventional plasticity dictates larger stress
components at the yield state compared to a similar
analysis in combination with hypo-elasticity. As a
consequence, plastic settlements in the elasto-plastic
regime of behavior are usually over-predicted when the
elastic branch of behavior is simulated using a hypo-
elastic model [24].

2.2. A non-linear hyper-elasticity model for
clays [24]

In the hyper-elasticity theory proposed by Einav &

Puzrin [24], elastic strains are calculated by means

of the following Gibbs {ree energy function, I'(p,q),

defined by:

2 6
7. 'y q DPref

F(pq) =Fp (L)~ 1) + ( )
(p Q) p( (pin) ) 6Gpref P

0
_ Gin(2gpin — Oginp) <pf) i
6Gp12‘ef Pin ’

(4)

where, G, 0 and k are the hyper-elastic model parame-
ters and pyof = 100 kPa is a normalizing pressure. The
physical meanings behind G, 8 and k are discussed after
Eqgs. (9). A 3-D view of free strain energy of Eq. (4) is
shown in Figure 1. The stored energy should be zero at
(p,q) = (0,0) and hence, the surface shown in Figure 1
passes through the origin. Besides, soil elastic moduli
must be zero at p = 0. As a consequence, the Gibbs
free energy surface has a vertical asymptote at p = 0
plane.

Gibbs free energy,
T (kPa)

100

50 o eﬁeC‘B"Ve
e T
Figure 1. A 3-D representation of Gibbs free strain
energy function of Einav & Puzrin [24] whose
mathematical expression is presented in Eq. (4)
(parameters are given in Table 2 for LCT clay and
pin = 1 kPa).

Using Eq. (4), elastic strain components become:

e _Il(p,q)

P 6 Prer)’ "
— :]%1 _ 2 2 re
K dp ! <pin> 6G (77 ( P )

o 9Lp.g) 1 (q_%n) (5)

- Sépl—e pe pion

ref

where, n(= ¢/p) is stress ratio and 7, = ¢n/Pin-
Considering Eq. (5), both volumetric and deviator
elastic strains are zero when p = p;, and ¢ = ¢in.

Further differentiation of Eq. (5) yields the rate
form of elastic strains:

e _9(g) . O (pyq)
Y opap © dpdq

];/' 6(9"’ 1) 2 (pref>0 .
= -+ —= -
(10 6Gp1‘ef g p P

_ 0 n (pref> o q
3Gpref p

ar2(p,q) .

2
ge O (p.q) .

4 dqdp p 9qdq

[4 [4
(! n(l’ref) o[ (Pf> i
3Gpref p 3C;pref D (6)

Solving Eq. (6) with respect to p and ¢ gives:

P= 1-— 9(9_1)1,2( P )0 ((%) L+ («917%) gg) ,

6Gk Pref
. 1 < oD z¢
q = 0(60—1 . ( nj) 81}
L= PG\ TR

0
- D 0+1) 5p)\ ..
+ (3Gpref (pref) ) ) (7)

Now, one can find the elastic moduli by comparing
Egs. (1) and (7):

G P 0 0(60+1) 2p
_ Dref Prot + Tn k&

G =
1-0
00=1) 2 ( _p
1="gzzn (p,.ef)

)

EalS]

K =

1-0°
_000-1) of p
1 6GE (prnf)
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onk
J= T _ — K. (8)
000-1), 5 ( p \"*
- ()

6Gk Pref

For isotropic stress condition (i.e., p # 0; ¢ = 0 and
then n =0), Eq. (8) is reduced to:

[4
G = Gpref (p) 5 K= J =0. (9)

ElllaS]

ref

By setting k = 17—, the hyper-elasticity of Einav &

Puzrin [24] becomes capable of replicating the linear
variation of void ratio in the e-ln(p) plane under
isotropic compression (consolidation). According to
Egs. (9), G is a non-dimensional parameter that scales
the magnitude of the elastic shear modulus at ex-
tremely low shear stress levels. The non-linear manner
of the change in G with p is defined through the
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exponent 6, and, k is the slope of unloading/reloading
paths in the e-In(p) plane.

2.3. Comparison of elasticity models in a
closed-loop elastic stress path

For a closed-loop stress path, elastic strains predicted
by the hypo-elastic model of references [19-21] are
shown through parts (b)-(e) of Figure 2. Considering
parts (c) and (e) of Figure 2, it can easily be found that
deviator elastic strain is irreversible ((¢5)a # (ef)r) in
the closed-loop stress path A — B — C — D — E(=
A). For the same stress path, elastic strains obtained
from the hyper-elastic model of Einav & Puzrin [24]
are illustrated in parts (b)-(e) of Figure 3. It can be
observed that in all cases, both volumetric and deviator
elastic strains calculated by the hyper-elastic model are
reversible upon the complete reversal of the stress.
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Figure 2. Numerical studies of elastic strains calculated by the hypo-elastic model [19-21] during a closed-loop stress path
(ein = 0.769, & = 0.009, v = 0.20, and prer = 100 kPa): (a) Demonstration of the stress path; (b) &, vs. p; (c) g4 vs. p; (d)

€y vs. q; and (e) g4 vs. q.
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Figure 3. Numerical studies of elastic strains calculated by the hypo-elastic model [24] during a closed-loop stress path
(ein = 0.769, k = 0.009; G = 70, n = 0.65, and p,ef = 100 kPa): (a) Demonstration of the stress path; (b) €, vs. p; (¢) g4

vs. p; (d) €, vs. ¢; and (e) 4 vs. q.

Comparison of the corresponding parts of Fig-
ures 2 and 3 reveals that a noticeable difference between
the manners of elastic strains generated in each fraction
of the closed-loop stress path exists. Prevention of
drainage in constant volume (i.e., undrained) stress
paths dictates a balance between the volumetric elastic
and volumetric plastic strain rates (i.e., é0 = —¢&¢
because €5 +¢P = ¢, = 0). Considering the latter point,
the diversity in patterns of elastic strains illustrated in
Figures 2 and 3 necessitates a distinction between the
generated plastic strains and the evolution of hardening
variables in undrained stress paths.

3. Formulation of a simple anisotropic
elastic-plastic model for clays

Recently, Dafalias et al. [16] introduced a Simple
ANIsotropic CLAY model, SANICLAY, as an exten-

sion of the MCC model. The model is based on the crit-
ical state soil mechanics and non-associated flow rule.
Thus, the mathematical expressions of the yield and
plastic potential functions are not identical. The sizes
of the yield and plastic potential functions are changed
as a result of isotropic hardening. Further, they
may be subjected to rotational/distortional hardening
as a direct consequence of the stress-induced fabric
anisotropy (see Figure 4). Through Eqs. (10)-(17),
a brief review of the formulation of the SANICLAY
model is presented in Table 1. In its original form with
isotropic hypo-elasticity (see Section 2.1), SANICLAY
has 8 parameters (i.e., M., M., N, A\, k, v, C, x)
that may be determined systematically (see [16]). M,
and M, are slopes of critical state lines drawn in the
q—p plane under the compression and extension modes
of triaxial, respectively. N is a parameter in the
yield function that plays the same role as M in the
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Table 1. Outline of the SANICLAY formulation [16].

Description Constitutive equation Parameter(s) Equation
number
Yield function f=(q—pB3)?—(N?*=p3%ppo—p) =0 N (10)
Plastic potential function g = (¢ — pa)? — (M?* — a*)p(pe — p) =0 M (M. or M.) (11)
Evolution of internal variables po = (A)po = (A) (%) Po (g—i) Ak (12)

—zal(a® — a
In I(

dg
Op

a=wa= () e(z)

77/1;>a—>o<b:Mc; n/x<a—>ab:—]we

Ak Coz Mo, M. (13)

B=wa= ) (%) o (2)|%]m- a1 - ) N "

n>B—@=N; n/f—p =-N
Plastic hardening modulus K, = — (%p_o + %B) =p [(N? = B*)po + 2(q — po3) 3] - (15)
Loading index A= (g{p + g{q) = 2 p [(V? = ?)p + 2(n — H)i] - (16)
Volumetric and devVIator -y _ 081 — (A)p(M = 1); 2 = (A) 52 = 2(A)p(n — ) - a7

plastic strain rates

0.8 4

model of Dafalias et al. [16] is simply reduced to the
classic MCC model.

)

4. The explicit stress-strain rates relationship

While the plastic ingredients of SANICLAY (e.g., yield
and plastic potential functions and hence plastic hard-
ening modulus and volume change response) may sig-
nificantly be affected by the stress-induced anisotropy,
constitutive equations describing the elastic branch of
the behavior always remain isotropic in the original
SANICALY model (see [16]). The hyper-elasticity
frame has the capability to consider the influence of
stress-induced anisotropy on elasticity in a natural
unforced way [24]. In the following lines, the most

Yield function (f = 0)
-0.2 4

Normalized deviator stress, ¢/0q—max

-0.4 : — . ‘ general constitutive equations enabling the original
0-0 0-2 04 06 0-8 SANICLAY to adopt anisotropic elasticity theories
Normalized mean principal effective siress, B Fu—me= -} (including various hyper-elastic theories) are obtained.
Figure 4. Schematic view of yield and plastic potential By considering Eqs. (1) and (2), as well as Eq. (16)
functions in SANICLAY [16]. in Table 1, one has:
lasti ~ . ~ NEIAYAN
plastic potential function. A and k are, respectively, K, (A) =K () (gv _ <A>>
the slopes of normal compression and unloading/re- Ip p

loading lines depicted in the e-ln(p) plane. v is

the Poisson’s ratio. C' is a parameter that controls +7 (8f> (éq — (A>89>
the pace of rotation of yield and plastic potential dq
functions. For samples anisotropically consolidated

in the compression side, an increase in C leads to +J (8]") (éq — <A>8g>
a tendency to contraction for subsequent undrained p
towards the extension side. Finally, x provides a bound

for rotation of the plastic potential function. Setting +3G (5‘]‘3) (éq - <A>3g) ) (18)
Pa =po, N =M, a=0and 8 =0, the SANICLAY 9q
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(1(50)+3G(5)) 24+ (K(B)+I(5D)) <,
A= af pa qa P 8fp P - o7 og, =0 (19)
K+ K(35)(38)+7 (B0(ZH)+(ZE)(3D)) +3G(3H)(5)
Box 1

Assuming A > 0 (when plastic strains are generated,
A gains a positive value), Eq. (19), shown in Box I, is
obtained.

J = 0 holds in the case of isotropic elasticity for
which Eq. (19) is reduced to:

3G(5L)¢, + K(8L)e,
~r9f of Z 0. (20)
I& + K (G55 +3G(50(3)
Eqs. (18)-(20) are general and applicable to a large

number of elastic-plastic constitutive models built
within the MCC family. For SANICLAY model,
considering Eqgs. (10) and (11) yields:

17 17

L= =0

0 . )

ai;i = p(M? 1), ag =2p(n - a) (21)

Implementing Eqgs. (21) in Eq. (19) yields Eq. (22) as
shown in Box II. For the case of isotropic elasticity (i.e.,
J =0), Eq. (20) with respect to Eqgs. (21) becomes:

_ K(N? —n?)é, + 6G(n — B)é,
Ky /pHK (N2 —n2)p(M? =12 ) +12pG (n—3) (n—)

(23)

> 0.

Now, considering Eqs. (1) and (22), the explicit con-
stitutive equations relating rates of stress and strain
components are obtained which is shown in Box III,
For media with isotropic elasticity, combining Egs. (1)
and (23) results in Eqs. (26) and (27) as shown in
Box IV.

5. Evaluation of the refined model

In this section, straightforward methods for calibration
of the hyper-elastic parameters (i.e., G and ) are
described first. Then, to show the influence of using
hyper-elasticity theories on improvement of the predic-
tive capacity of the SANICLAY model, the modified
model simulations are compared with experimental
data of four clayey soils in the following sub-sections.
Parameters used by the original SANICLAY and the
refined SANICLAY of this study are presented in
Table 2.

5.1. The calibration procedure for G and 0

k, G and # are parameters of the hyper-elasticity of
Einav & Puzrin [24] through Eqs. (4)-(9). k& can
be determined from the data of unloading/reloading
compression paths obtained from triaxial or oedometer
tests. Considering Eq. (9), the elastic shear modulus of
Einav & Puzrin [24] is reduced to G = GPre(p/Dret)’
under extremely low values of shear stress where py.of is

Table 2. Parameters used in simulations by the refined SANICLAY of this study.

Parameter
Soil M. M. N x C X K ot GY 68
LCT 1.18 0.86 091 1.56 16 0.063 0.009 0.20 70 0.65
BBC 1.32 1.02 0932 3.11 15 0.18 0.022 0.28 70 0.90
Cloverdale clay  1.29 - 1.0 1.7 3 0.21 0.03 020 50 0.65

AGC 1.07 0.80 0.77 2.0 25 0.282 0.049 0.20 45 0.90

F n Bas. (40(9), k= 1.

{: Used only in the isotropic hypo-elastic constitutive equations (i.e., Egs. (2) and (3)).

§: Used only in the hyper-elastic constitutive equations (i.e., Egs. (1) and (4)-(9)).

B (N2 =) (Ké, + Jé,) +2(n — B)(Jé, + 3GE,) >0 (22)
Ky/p+ (N? = n?) [pK(M? = n?) + 2pJ (n — )] + 2(n — B) [pT(M? = %) + 6pG(n — )] =

Box II
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(-

J 3G R

[(K J) h(A) (pK(Mz—n?)[K(NQ—UQ)+2J(77—[3)] pK (M?—n?) [J(N?—n*)+6G(n—p)]
6pG(n—a) [K(N?=n?)+2J(n—j)]

6pG(n—a) [J(N?—n*)+6G(n—3)] )]X{Z}(zzx)

where h is the Heaviside’s step function: h(A) = 1 if A > 0, and zero otherwise. R is defined by:

R =FK,/p+ (N> =n*) [pK(M* = n*) + 2pJ (n — )] +2(n — B) [pT(M? = 1*) + 6pG(n — )] . (25)

Box III

where:

B)-105 &)~ oy

oot )] * ) >

Rx = K, /p+ pK(N? = *)(M? — ) + 12pG(n — a)(n — B). (27)

Box IV

a normalizing pressure (e.g., 100 kPa). Now, G under
extremely low shear stress levels can be written in the
following form:

logG = 10g(Gpref) + 010g(p/Prer)- (28)

Eq. (28) indicates that # and log(Gp..f) are, respec-
tively, the slope and the intercept of the best straight
line fitted to the data of logG depicted versus the
corresponding log(p/pref) values. Such experimental
data are usually obtained from the resonant column
or bender element tests. It is worth noting that the
value of G depends on p.s (see Eq. (28)). However
identical simulations can be obtained from any arbi-
trary pairs (Ga, prerz) and (Gy, prepy) provided that
GZ = Gl (prefl/pref2)1_9~

According to Viggiani & Atkinson [29] and Ram-
pello et al. [30], # is usually less than unity and in-
creases with the Plasticity Index (PI). In the lack of the
results of the resonant column or bender element tests,
one can estimate 6 by using the result of the existing
data presented in Figure 5. Once 6 is estimated, G
can be determined by constructing tangents to the
beginning parts of ¢ —¢, curves of drained or undrained
triaxial tests.

5.2. Simulation of Lower Corner Till (LCT)
behavior
Using triaxial apparatus, Gens [1] studied the mechan-

ical behavior of normal and over-consolidated samples
of LCT that is a silty clay with LL (Liquid Limit)
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g
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o
is
0.4 : ‘ ‘ :
0 20 40 60 80

Plasticity index, PI (%)
Figure 5. Variation of the exponent 6 with Plasticity

Index (PI) (experimental data from Viggiani &
Atkinson [29] and Rampello et al. [30]).

= 25%, and PI (Plasticity Index) = 13%. Prior to
shearing, samples were subjected to both isotropic
(ie., K(= on/0,) = 1, where o), and o, are, respec-
tively, the horizontal and vertical effective stresses) and
anisotropic (i.e., K(= o, /0,) # 1) consolidation.

For 11 samples of LCT subjected to the compres-
sion and extension modes of triaxial, an extensive series
of comparisons between various models including the
modified SANICLAY model of this study is presented
in Figure 6. The experimental program covers a wide
range of over-consolidation ratios in the range of 1-20.
In parts (a) and (b) of Figure 6, predictions by the
MCC model are depicted against experimental data.
Considering stress paths shown in part (a), a significant
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deviation in the MCC model predictions from the
experimental data is observed. Similar comparisons
using the original SANICLAY model of [16] are shown
in Figure 6(c) and (d). Compared to the MCC model
predictions, a noticeable improvement for normally
consolidated and lightly over-consolidated (i.e., OCR
< 4) is observed. However, for highly over-consolidated
samples (i.e., OCR > 4), the improvement is not
remarkable. Having two parameters more than the
original model of Dafalias et al. [16], a distorted ellip-
soid is used as yield function in the refined SANICLAY
model of Papadimitriou et al. [17]. Predictions ob-
tained from the SANICLAY of Papadimitriou et al. [17]
are illustrated together with the data in Figure 6(e)
and (f). It can be observed that the predictions by
the SANICLAY of Dafalias et al. [16] and the modified
version of Papadimitriou et al. [17] are nearly identical.
Another change by Papadimitriou et al. [17] concerns
the selection of distorted lemniscate as yield function.
Pestana & Whittle [11] were the first to suggest that
distorted lemniscate can be used as yield function in
soil constitutive modeling. This approach requires one
new parameter compared to the original SANICLAY
model. Distorted ellipsoid and distorted lemniscate
yield functions are, respectively, defined by Eqgs. (29)
and (30) and illustrated schematically in Figures 7
and 8 (see [11,17,31]):

f=(g—pB)* - Kml +2(1 _ml)P)mzNz B 52}

DPo

x (ppo — p*) =0, (29)

f=(a—pB)* = (mi+p* - 28n)p* {1— (;) m} :(306)

where, my, mo, m3 and my4 are soil parameters. It
is worth noting that Papadimitriou et al. [17] only
changed the yield function while the other constitutive
equations and the model parameters were identical
with those of the original SANICLAY model.

In parts (g) and (h) of Figure 6, predictions
calculated by the latter approach are drawn against
the experiments. For those samples with OCR=1 — 4
sheared in the compression side, shear strength has a
peak, which is not supported by the data. Besides, the
shear strengths in the extension side are larger than the
corresponding values in the compression side which is
not a realistic response. Finally, for the modified model
of this study, comparisons are presented in Figure 6(i)
and (j). Putting side by side the previous approaches,
the modified model of this study can provide more
reasonable predictions particularly for samples with
OCR > 4.

For the eight anisotropically consolidated sam-
ples, comparisons are illustrated in Figure 9. Due
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Figure 7. Tllustration of ellipsoid (N = 0.91,
po = 100 kPa) and distorted ellipsoid (N = 0.91,
m1 = 0.8, ma = 0.9, po = 100 kPa) yield functions: (a)
Isotropic stress condition (3 = 0); and (b) anisotropic
stress condition (3 = 0.7).

to the lack of rotational/distortional hardening in
the Modified Cam-Clay (MCC) model, a remarkable
deviation between predictions of this model and data
occurs and thus, predictions of the MCC model are not
shown in Figure 9. Similar to the last case discussed in
Figure 6, the difference between the predictions of the
original SANICLAY [16] and the modified SANICLAY
with distorted ellipsoid [17] is negligible (see Figure 9(c)
and (f)). Once again, the application of the distorted
lemniscate as yield function in Papadimitriou et al. [17]
leads to the weakening of predictions in Figure 9(g)
and (h). Finally, simulations obtained from the modi-
fied model of this study are depicted with data in parts
(i) and (j) of Figure 9. Compared to the previous cases,
a concrete improvement in the simulations of stress
paths is achieved.

The MCC model is incapable of considering ro-
tational/distortional hardening required for rigorous
simulation of the mechanical behavior of anisotropi-
cally consolidated samples. Therefore, in the following
sub-sections, predictions by the MCC model are not
included. Furthermore, predictions by the version of
SANICLAY in which a distorted ellipsoid plays the
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role of yield function are nearly identical to those of
the original SANICLAY. Besides, it has been observed
that using distorted lemniscates as yield function in
the SANICLAY platform results in undesirable simula-
tions. Considering these points, the predictive capacity
of the latter versions of SANICLAY is not discussed in
sequel.

By using the same parameters obtained for sim-
ulation of the tests presented in Figures 6 and 9,
the mechanical behavior of anisotropically consolidated
samples of LCT is simulated here. In Figure 10,
predictions by the modified SANICLAY model of this
study are depicted against experimental data of 7
undrained tests of isotropically and anisotropically
consolidated samples of LCT with OCR=1. Similar
comparisons under drained condition are conducted in
Figure 11.

Through Figures 6 and 9-11, a noticeable im-
provement in simulation of stress paths was obtained.
However, the modified model predictions for deviator
stress versus deviator strain response were less favor-
able due to the unrealistic increase in shear stiffness for
highly over-consolidated samples. A possible reason for
this deficiency is discussed in Section 6.

In the original SANICLAY model, the initial void
ratio is calculated by using normal compression line
in conjunction with elastic unloading/reloading lines.
The Gibbs free energy function, Eq. (4), leads to
a linear unloading/reloading lines in e — Inp plane
identical to that of the conventional critical state soil
mechanics [24]. As a result, the initial void ratio in the
modified model can be calculated similar to that of the
original SANICLAY. Alternatively, stress state may be
set to (p,q) = (po,qo) and then unloaded to (pin,gin)
within the yield function using the hyper-elastic model.
The first approach is followed in this study. Finally, it
is worth noting that a number of triaxial tests shown
in Figures 9, 12, 13, and 15 were conducted after K-
unloading. For these tests, the desired initial stress
states are assigned in the computer codes used for
prediction of the experiments. Simulation of a Kj-
unloading test is discussed in Sub-section 5.6.

5.3. Sitmulation of Boston Blue Clay (BBC)
behavior

The physical and the mechanical properties of BBC,
a natural low plasticity marine clay of moderate sen-
sitivity (LL = 42%, PI = 21%, and S (Sensitivity) =
3 ~7), have been extensively studied at Massachusetts
Institute of Technology (MIT), and various construc-
tion projects in the region (e.g., [2-4]). Experiments
are mainly conducted on anisotropically consolidated
samples in order to replicate the in-situ state of stress.
For 7 tests reported by Ladd & Varallyay [2] and
Fayad [3], the mechanical behaviors are simulated by
the original SANICLAY and the modified SANICLAY
of this study and the results are compared with the
corresponding experimental data in Figure 12. Shea-
han [4] conducted a series of experiments on BBC clay
sheared in the compression side. Evaluations of the
original and modified SANICLAY models against this
set of data are presented in Figure 13. Comparison of
predictions with experiments shown through Figures 12
and 13 reveals that a tangible improvement is achieved
when conservation of energy in elasticity is taken into
account.

In simulation of the mechanical behavior of BBC
clay, M. > N is noticeable. The use of M, > N may
potentially lead to a softening response in undrained
triaxial extension, following anisotropic consolidation
towards the compression side; this especially occurs if
the C value is low.

5.4. Simulation of Cloverdale clay behavior

Zergoun [5] and Zergoun & Vaid [6] studied the
mechanical behavior of Cloverdale clay under triaxial
condition. Cloverdale clay is a sensitive undisturbed
marine silty clay with LL = 50%, PI =24%, A (Activ-
ity) = 0.55, and S = 16. In Figure 14, behaviors of three
isotropically consolidated samples of Cloverdale clay
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Figure 9. Comparison of experimental data of anisotropically consolidated samples of LCT and predictions obtained
from: (a) and (b) the original SANICLAY [16]; (c) and (d) SANICLAY + distorted ellipsoid as yield function [17]; (e) and
(f) SANICLAY + distorted lemniscate as yield function [17]; (g) and (h) this study: SANICLAY + hyper-elasticity of

Einav & Puzrin [24] (experimental data from [1]).

are simulated using the original SANICLAY and the
modified SANICLAY of this study. It can be observed
that the modified model gives more realistic predictions
for moderate-large over-consolidated (OCR = 2.1, and
3.3) samples.

It is worth noting that only the mechanical be-
havior of Cloverdale clay subjected to the compression

mode of triaxial is studied in [5,6] and hence, M, is not
reported in Table 2.

5.5. Simulation of Average Gulf Clay (AGC)

For five major groundwater projects in the Gulf of
Mexico, the mechanical behavior of lower Pleistocene
deposits have been studied [7,32]. Deposits are mainly
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Puzrin [24] (experimental data from [1]).

clay sediments with PI=60 ~ 40% for samples taken
from depths 30 and 150 m, respectively, and S ~ 2.
For 7 anisotropically consolidated samples taken from
5 sites, predictions by the original and the refined SAN-
ICLAY models are compared with data in Figure 15.
It can be observed that the modified model gives more
realistic predictions for the over-consolidated samples.

5.6. Stmulation of Kg-unloading
When subjected to IKj-unloading, clay behavior is
primarily elastic. As a result, Ky-unloading is suitable
for evaluation of constitutive equations describing the
elastic response of clayey soils. By using Eq. (1), stress
increments under Ky-unloading become:

p=(2G + J)&y; ¢ =(K+2/3J). (31)
For the original SANICLAY with isotopic hypo-
elasticity, G and K are given in Eq. (3), and J = 0.
For the case of modified SANICLAY of this study with
hyper-elasticity, G, J, and K can be found in Eq. (8).
Simulations by isotropic hypo-elastic and hyper-elastic
models are depicted against experimental data in Fig-
ure 16. A slightly better agreement between the hyper-
elastic model simulation and the experimental data can
be observed in the figure.
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OCR values and predictions obtained from the model of
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Puzrin [24] (experimental data from [1]).

5.7. The model normalized response

According to the conventional critical state soil me-
chanics (e.g., [20]), the mechanical behavior of recon-
stituted clayey soils subjected to either drained or
undrained triaxial shearing can be normalized with
respect to the pre-consolidation stress. The mechanical
behavior predicted by both the MCC and SANICLAY
models can be normalized with respect to py as a
direct consequence of the linear dependence of K and
G on p. Recent experimental findings have indicated
that K of clays varies linearly with p; however, G
changes with (p/prer)? (e.g., [29,30]). 6 is usually less
than unity and changes with Plasticity Index (PI);
see Figure 5. The hyper-elastic theory of Einav &
Puzrin [24] can take into account the latter observation.
Nevertheless, a unique normalized response may not be
obtained by implementation of the hyper-elastic theory
of Einav & Puzrin [24] in the MCC or SANICLAY
frameworks. In parts (a) and (b) of Figure 17, the
normalized predicted response of four tests on normally
consolidated samples (OCR=1) with p;, = 100, 200,
400 and 1000 kPa are presented for the 6§ = 0.65 case.
For four highly over-consolidated samples (OCR=4), a
similar comparison is presented in Figure 17(¢) and (d).
Figure 17 indicates that the difference between the
critical state strength of the samples with p,, = 100
and 1000 kPa is less than 7%. Mathematically the



1656 A. Lashkari and M. Mahboubi/Scientia Iranica, Transactions A: Civil Engineering 22 (2015) 1643-1660

0.8 4

0.4

SANICLAY + isotropic hypo-elasticity

OCR=3.5, K=0.625 S5
00

0.0

Normalized deviator stress,
q/0a—max (-)

-0.4-

0.8 -

0.4+

0.0 0.8

Normalized mean principal effective stress,

P/ a—max (-)
(a)
SANICLAY + hyper-elasticity of Einav & Puzrin (2004)

OCR=3.5, K=0.625 o9
3 o ! w

0.0

Normalized deviator stress,
q/0a—max (-)

Normalized mean principal effective stress,
P/ a—max (-)

()

Normalized deviator stress,

‘Normalized deviator stress,

q/0a—max (-)

Q/o'a —max (‘)

T T T 1

4 6 8 10

2 o
- @ 6 TR wend A g

Absolute value of axial strain, |e,| (%)

(d)

Figure 12. Experimental data of anisotropically consolidated samples of BBC versus predictions obtained from: (a) and
(b) the original SANICLAY [16]; (c¢) and (d) this study: SANICLAY + hyper-elasticity of Einav & Puzrin [24]

(experimental data from [2,3]).

Normalized deviator stress,
q/aa—max (‘)

0.6

031 =1

0.0

0.9. SANICLAY + isotropic hypo-elasticity -

OCR=1, K=0.48

©%

OCR=2, K=0.64 \o°°° o
0023

OCR=4.5, K=1

OCR=T,

0.0 0.2 0.4 0.6 0.8
Normalized mean principal effective stress,

P/0a—max (-)

(a)
%" 0.9, SANICLAY + hyper-elasticity of Einav & Puzrin (2004)
o
& OCR=1, K=0.48
® o~
=l v ®%
=2, K=0.64 o
5 o6l OCR=2, K=0.6 e s
3 < 022 °
o B OCR=4.5, K=1 b
o | : @
T3 a
v OCR=7 g
2% 0.3 - H
8T K=1
e
=) %
|5 X
%
2 0.0 ‘ , ‘ \
0.0 0.2 0.4 0.6 0.8

Normalized mean principal effective stress,
P/ a—max (-)

(e)

INormalized deviator stress,

MNormalized deviator stress,

q/0a—max (-)

q/0a—max (-)

0.9 SANICLAY + isotropic hypo-elasticity

6 8 10

Absolute value of axial strain, |e,| (%)

(b)

0.9 1 SANICLAY + hyper-elasticity of Einav & Puzrin (2004)

6 8 10

Absolute value of axial strain, |e,| (%)

(d)

Figure 13. Experimental data of anisotropically consolidated samples of BBC versus predictions obtained from: (a) and
(b) the original SANICLAY [16]; (c¢) and (d) this study: SANICLAY + hyper-elasticity of Einav & Puzrin [24]

(experimental data from [4]).



A. Lashkari and M. Mahboubi/Scientia Iranica, Transactions A: Civil Engineering 22 (2015) 1643-1660

] 0.9 SANICLAY + isotropic hypo-elasticity
2
bl
0w o~
5 <
*g E 0.6{ OCR=2.1 LT OCR=1
< ! B
o5 A
‘g = 0.3]OCR=3.3
Ei
=]
5 A
Z 0.0 , — . . =l s
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Normalized mean principal effective stress,
P/0a—max (-)
(a)
g" 0.94 SANICLAY + hyper-elasticity of Einav & Puzrin (2004)
2
bl
0w o~
5 <
z % 0.64 OCR=2.1 o'f OCR=1
< i
o |
Se
g = 0.3 OCR=3.3 y
=
e \
g
-
A
2 0.0 : : : : b ‘
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Normalized mean principal effective stress,
P/0a—max (-)
()

Normalized deviator stress,
4/ a—max (-)

Normalized deviator stress,
4/0a—max (-)

0.9 SANICLAY + hyper-elasticity of Einav & Puzrin (2004)

0.6 R
e M
" S — y—" w— =S H————n
> o © D0 O O U U (v T
o
0.3
0.04 - - - - .
0 2 4 6 8 10

Absolute value of axial strain, |eq] (%)
(b)

0.9 SANICLAY + hyper-elasticity of Einav & Puzrin (2004)

L
At —————————=
U A
4 6 8 10
Absolute value of axial strain, |e,| (%)
(d)

1657

Figure 14. Experimental data of isotropically consolidated samples of Cloverdale clay versus predictions obtained from:

(a) and (b) the original SANICLAY [16]; (c) and (d) this study: SANICLAY + hyper-elasticity of Einav & Puzrin [24]

(experimental data from [5]).
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(b) the original SANICLAY [16]; (c¢) and (d) this study: SANICLAY + hyper-elasticity of Einav & Puzrin [24]

(experimental data from).
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and the hyper-elastic model.

mechanical response may not be normalized; however,
from a practical view the disparity is not larger than
that of the conventional experimental data. For each
simulation shown in Figure 17, the initial void ratio was
calculated by means of normal compression and elastic
unloading-reloading lines in conjunction with the initial
value of mean principal effective stress.
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6. Conclusions

The SANICLAY model in its original form employs
ellipsoid constitutive surfaces. Recent attempts to
improve the predictive capacity of SANICLAY by
changing the shape of its yield/plastic potential func-
tions have been disappointing. For example, it has
been shown that the implementation of yield functions
in the shape of distorted lemniscate does not result in
favorable simulations. Besides, the application of yield
function in the shape of distorted ellipsoid results in a
minor improvement in simulations. However, consid-
ering that the latter approach requires two parameters
more compared to the original platform, the progress
may become trivial.

Elastic strains are obtained from an isotropic
hypo-elastic model in previous SANICLAY models.
This assumption ignores the influence of anisotropy on
elasticity and does not guarantee to conserve energy.
It is clear that both outcomes are unattractive.

In this study, constitutive equations of the SAN-
ICLAY platform were generalized in order to enable it
to consider the possibility of the anisotropic response
of the elasticity. The generalized formulation allows
shear-volumetric coupling that does not exist in the
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Figure 17. Numerical studies regarding the influence of initial stress state on the predicted response: (a) and (b)
normally consolidated samples (OCR=1); (c) and (d) highly over-consolidated samples (OCR=4).
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basic platform. Elastic strains were calculated, after-
wards, using a hyper-elastic model proper for cohesive
soils. As a result, the following benefits were realized:

e The conservation of energy is guaranteed in purely
elastic domain of behavior and as a direct conse-
quence, elastic strains are fully recoverable.

e The model performance was evaluated against 52
tests on four different types of clayey soils. For
moderately to highly over-consolidated samples, a
noticeable improvement in simulated stress paths
was observed.

e The influence of stress-induced anisotropy on the
elastic portion of the behavior is taken into account
in a natural unforced way. In the modified model,
both the elastic and plastic ingredients are affected
consistently by stress-induced anisotropy.

Compared to the original framework, the modified
model requires one new parameter (i.e., 8) for calcula-
tion of the pressure-dependent elastic shear modulus of
clays. While a noticeable improvement in simulation of
stress paths was obtained, the modified model predic-
tions for deviator stress versus deviator strain response
were less favorable due to the unrealistic increase in
shear stiffness for highly over-consolidated samples. In
SANICLAY platform, the elastic and plastic strain
rates were calculated independently; however, it is
known that the elastic and plastic branches of the
mechanical behavior of geomaterials are coupled [33-
38]. For sands, it has been shown that considering the
elastic-plastic coupling may lead to the improvement of
predictions (e.g., [36-38]). In this regard, considering
the influence of over-consolidation on the elastic moduli
of clays should be studied in future studies.
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