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Abstract. The objective of this study is to develop a material-nonlinear-analysis
algorithm based on the Transfer Matrix Method (TMM). This newly developed algorithm
can be used to perform nonlinear analyses of continuous beam systems. The nonlinear
transfer matrix is derived from the general frame stiffness matrix, and the Gauss-Lobatto
integration scheme is employed for numerical integration. In the TMM, the system
equation has a constant number of system unknowns, regardless of the total degree-of-
freedom number in the structure and the system response (either linear or nonlinear).
As a result, TMM can be used efficiently, both for linear and nonlinear structural
analyses. In this study, a secant nonlinear algorithm, required in nonlinear TMM, is
employed, due to its good compromise between the convergence rate and numerical
stability. To verify the accuracy and efficiency of the developed TMM, four numerical
examples are selected and analyzed. The analysis results are compared with those
obtained by the highly accurate flexibility-based frame model, in terms of global and local
respounses.

© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Regarded as the most powerful numerical tool, the
finite element method has been widely used by re-
searchers to analyze complex structural systems. How-
ever, its use by practicing engineers is still limited,
due to the considerable experience required by users
to construct a suitable finite element mesh, interpret
analysis results, and implement a numerical model.
Furthermore, computational costs required in analyz-
ing complex structural systems are usually high, even
with recent drastic advances in computer technology.
This lies in the fact that numerous Degrees Of Free-
dom (DOFs) are required to discretize a complex
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structural system, thus, resulting in a large stiffness
matrix.

In order to remedy this problem, several tech-
niques have been developed to reduce the size of
the associated stiffness matrix in the standard finite
element method. These include, for example: the
static condensation technique [1], the sub-structuring
technique [2], etc. Alternatively, Cheung [3] proposed
the so-called “Finite Strip Method (FSM)” as a variant
of the standard finite element method to analyze
a structure with lesser system unknowns. Another
structural-analysis method requiring a smaller system
matrix was systematized by Pestel and Leckie [4],
which is known as the Transfer Matrix Method (TMM).
TMM is of particular interest in this study since the
size of the transfer matrix is usually much smaller than
that of a structural stiffness matrix and is constant,
regardless of the total degree-of-freedom number in
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the structure and the system response (either linear
or nonlinear). This feature is desirable, especially in
the framework of nonlinear structural analysis in which
high computational cost could become an issue. The
transfer matrix is derived based on the general solution
of the governing differential equation [5]. For each
element, there are two steps needed to be performed.
First, the right-end variables are related to the left-
end variables through the transfer matrix. Then, the
right-end variables of the current element are used as
the boundary conditions for the left-end variables of
the next element. These two steps are performed in
a successive manner until all system unknowns are
computed [6,7]. Since unknown variables at each nodal
point can simply be determined using the transfer
matrix, the analysis process required in the TMM has
to deal only with the transfer matrix of a constant size,
regardless of the element number used to discretize
the system. This feature renders TMM attractive
compared to the standard finite element method. One
of the earliest applications of TMM in structural
analysis was conducted by Holzer [8] to investigate the
torsional vibration problem of crankshafts. Hetenyi [9]
also used TMM to study the problem of beams on
elastic foundations. During the seventies and eighties,
the TMM was successfully applied to the vibration
problems of plates by several researchers, but was
limited to only linear elastic systems [10-12]. An early
extension of TMM to nonlinear structural analysis
was the large deflection analysis of plates [13-15]. To
the authors’ knowledge, few researchers have employed
TMM to perform inelastic structural analyses. Akintilo
and Syngellakis [16] performed inelastic analyses of
reinforced concrete coupled shear walls using TMM.
Rosignoli [17] employed TMM to analyze launched
bridges.  Pfeiffer [18] applied TMM to nonlinear
analyses of planar reinforced and prestressed concrete
frames, including axial elongation effects. Starossek et
al. [19] combined TMM with the displacement method
to perform material and geometrical nonlinear analyses
of planar reinforced concrete frames.

In this study, an efficient numerical algorithm
is developed, with TMM incorporated, for material
nonlinear analyses of frame structures. The transfer
matrix is derived from the displacement-based element
stiffness matrix. The nonlinear algorithm implemented
is based on the secant iterative scheme, which is
more stable than the widely used Newton-Raphson
iterative scheme. This is especially true when the
material is subjected to yielding and then softening
states or behaves elastic perfectly plastic. To verify the
accuracy and efficiency of the developed TMM model,
four numerical examples are investigated. Analysis
results obtained using the TMM are compared with
those obtained using the flexibility-based fibre frame
model [20] in terms of global and local responses.
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Figure 1. Transfer matrix method diagram [21].

2. Derivation of transfer matrix

2.1. General frame element stiffness equation
Three sets of governing equations used to construct
the frame element stiffness equation are compatibility,
section constitutive, and equilibrium relations. The so-
called “Tonti’s diagram” of Figure 1 is used to conve-
niently represent these governing equations [21]. The
virtual displacement principle is employed to represent
the integral statement of the element equilibrium, thus,
resulting in the element stiffness equation. In the
element stiffness equation, the element stiffness matrix
serves as the mapping operator between the element
nodal displacements and element nodal forces. Details
of the derivation of the frame element stiffness equation
can be found in any finite element textbook [22].
Figure 2 shows a 2-node planar frame element
configuration. For each node, there are three dis-
placement DOFs and their work-conjugate forces. The

L
i

F,

Jy

F;y

Figure 2. Element force and deformation.
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frame element stiffness equation is written as:
P =KU. (1)

Following the notation of Figure 2, the element nodal
displacements are:

U= {Uiui}’, (2)

where Ut = {u; v; 6;}7 and U7 = {u; v; 0;}1 are
arrays containing the displacements at nodes ¢ and j,
respectively. Their work-conjugate nodal forces are
grouped in the element force vector, P = {P!|PJ/}T.
The element stiffness matrix can be expressed as:

= TQ? T
K_AB(mUB

where B(z) is the strain-displacement matrix and k(x)
is the frame sectional stiffness matrix which collects the
axial rigidity, EA(x), and flexural rigidity, IE(x).

(z)d, (3)

2.2. Partitioned form of the element stiffness
matriz

In the TMM., the element stiffness equation is modified,
such that nodal forces and displacement quantities
at each node are grouped in the same vector and
are related together through the transfer matrix [23].
This could be accomplished by partitioning the strain-
displacement matrix, B(z), as:

2= (30 Bt o
where:

2=[% 0o,

0= T 0 o]

o=lo S5 2.
%m=@d@§”ﬁﬁfw7 -

in which Ny;(z), Ny;(z), Nyi(x), Nyj(x), Noi(x) and
Ny;j(z) are polynomial interpolation functions for a 2-
node planar frame element and are given in any finite
element textbook [22].

In accordance with Eq. (4), the element stiffness
matrix of Eq. (3) can be partitioned as:

K= i U:| 7 6
[Kji Kjj (©)

where each sub-matrix can be expressed as:

i\ T x ii\&)ax,
+ [ B @B
Kij :/LB”(.%’)TEA(I)B”(I)CL%’

T
+/LB ()" EI(x)Bj,(x)dz.

_KT

Jji — 27

K.
= ()T z)B;;(z)dz
&;LRx>wum<m

T
+/LB (z)" EI(z)B,;(z)dx. (7)

2.3. Deriwation of transfer matrix

Based on the partitioned form of the element stiffness
matrix of Eq. (6), the element stiffness equation of
Eq. (1) can be partitioned as:

Bl B
PJ Kji ij us |’

where P! = {F;, F;, M;}T and P7 = {F}, Fj, M;}T
are arrays containing the forces at nodes i and j,
respectively.

The core idea of the TMM is to modify the
stiffness equation of Eq. (8), such that the forces and
displacements at node j are expressed in terms of
forces and displacements at node ¢ through the transfer

matrix. Therefore, the transfer matrix equation can be
expressed in the following form:

V; = TMV,, (9)

where V-L' {’Lbi v; 91‘ Fm Fiy Mi}T and Vj =
{u; vj 0; Fju F;, M;}T are arrays containing the
displacements and forces at nodes ¢ and 7, respectively,
and TM is the transfer matrix, defined as:

-K, 'K K. '

™M = K;; - KK 'K; -K;;K!

(10)

2.4. Numerical integration scheme

In this study, the numerical integration required in
the TMM relies on the Gauss-Lobatto integration
scheme, which includes extreme integration points at
the element ends, as shown in Figure 3. This numerical
integration scheme is preferable to the conventional
Gauss integration scheme, since it allows sampling of
the element-end response, which, most likely, becomes
inelastic [20]. Thus, each sub-matrix of the element
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Figure 3. Gauss-Lobatto integration points.

stiffness can be written in the Gauss-Lobatto numerical
integration form as:

nlIP
K;; = Z Bu(fn)TEA(gn)Bu(gn)an

n=1

nlP

+ Z Bji(gn)TEI(fn)Bji(ﬁn).J.wn,

n=1

nlP
Ki; =Y Bii(&) EA(E)B;(6)-Jw,

n=1

nlP
+ Z Bji(fn)TE](fn)Bjj(fn).J.wm
n=1

K;; = KL

15

nlP

Kjj = Bij({)  BAG)B:; (&) Jw,

n=1

nlP

+3 Bj(&) EI(€)B;(&) Jw,,  (11)

n=1

where J is the element Jacobian; nlIP is the integration
point number; &, is the integration-point position in
the natural coordinate; and w, is the integration-point
weight.

3. TMM (Transfer Matrix Method)

In TMM, displacement and force quantities at each
node are computed by successively multiplying the
transfer matrix of each element, enforcing the nodal
compatibility with imposed boundary conditions, and
satisfying the nodal equilibrium with external loads.

3.1. Boundary condition

The boundary conditions commonly imposed on a
beam system can be classified as fixed, hinged, roller
and free conditions. The boundary condition matrix,
A, reaction-force vector, BC,,, and prescribed dis-
placement vector, R,,, associated with the boundary
condition at node n are given as [24]:

Fixed:
[1 000 0 o]
A,=10 100 0 0,
[o 010 0 oJ
BC,={0 0 0 b7 b’ pM}",
R,={r} . TZ}T. (12)
Hinged:
100000
An=1o 100 0 0
BC,={0 0 0 »¥ P 07,
R, ={r* 7} . (13)
Roller:

A,=[0 1. 0 0 0 0],
BC,={0 0 0 0 b’ o0},
R, ={}" (14)

Free:

A,=[0 00 0 0 0],
T
BC,=1{0 0 0 0 0 0},

R, = {0}", (15)

where variables b and r represent the unknown reaction
force and the prescribed displacement, respectively.

3.2. Transfer matrix

The schematic notion of the transfer matrix method
at each loading stage is conveyed in Figure 4. At a
generic node, n, the right nodal variable vector, V£,
is computed as the summation of the load vector, L,,,
and boundary condition matrix, BC,,.

VE=-L,+BC,, (16)

where the load vector, L, = {0 0 0 L LP LM}T,
collects the horizontal force, L vertical force, LT,
and moment, LY acting at the node. The left nodal
variable vector, VL, | of node n + 1 is then computed
from the right nodal variable vector, VE, of node n
through the following transfer matrix relation:

Vi, =TM,VE (17)

The compatibility between nodal and prescribed dis-
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relation:

An+1V7IZ+1 =R,i1- (18) Mg or No 7 —
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/7
R

Aendvn = Renda (19) M, or Ny

where:
|'0 0 01 0 O-I

Ag=1({0 0 0 0 1 0},

LO 0000 1J Kp,ep Koeo Ki,e1 Kosen K or e
T Figure 5. Solutions strategy.
Rena={0 0 0} . (20)

4. Material nonlinearity

In nonlinear structural analysis, the Newton-Raphson
iteration method has been widely used since it yields
a quadratic convergence characteristic. However, it
could become numerically unstable when the tangential
stiffness of a structure approaches or equals zero. This
is in the case when the post-yielding stiffness of the
force-deformation relation approaches or equals zero.
Several researchers have employed different approaches
to avoid this problem. For example, Manoharan and
Dasgupta [25] employed the modified Newton-Raphson
iteration method to perform nonlinear consolidation
analysis of elastic-perfectly plastic soil. Vecchio [26]
used the secant-stiffness iteration method to perform
inelastic analysis of RC membrane structures. The pros
and cons of various iteration methods are thoroughly
discussed in Yang and Kou [27].

In this study, the secant-stiffness iteration method
is adopted to solve the nonlinear responses of a beam
system, due to its good compromise between conver-
gence rate and numerical stability. The schematic
representation of the secant-stiffness iteration method
is shown in Figure 5. Sectional responses (axial
and flexure) are assumed to be bilinear, as shown in
Figure 5. For each section at an integration point, the
secant axial stiffness and the flexural stiffness (E Asecant
and Elgecans) are determined. The partitioned element
stiffness matrix of Eq. (6) and element transfer matrix
of Eq. (10) are computed based on these sectional se-
cant properties. The residual work concept is employed
as a convergence criterion [27].

5. Numerical examples

Four numerical examples are used to verify the accu-
racy and demonstrate the efficiency of the proposed
material nonlinear transfer matrix method. Corre-
lation studies are performed by comparing the ob-
tained numerical results with those obtained with
the flexibility-based fibre frame element [20]. This
flexibility-based fibre frame element has been widely
used in the research community and was implemented
into the Open System for Earthquake Engineering
Simulation Platform [28]. In all examples, the load-
control marching scheme is used for solution procedure,
and five Gauss-Lobatto integration points are employed
to perform the required numerical integration.

5.1. Cantilever beam

A cantilever beam of length L = 2 m is subjected
to an applied load, P, at its free end, as shown
in Figure 6. The beam has a square cross section
with dimension of b = h = 50 mm. For the
mechanical and strength properties of the beam, an
initial elastic modulus of 200 GPa, a yield strength

b

P
h
v
—e y ® 6, O
1 0.5 m 5 0.5 m 0.5 m 4 0.5 m

Figure 6. Cantilever system.
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of 400 MPa, and a strain-hardening ratio of 0.01
are assumed. Four proposed TMM elements are
used to represent the cantilever beam, as shown in
Figure 6. To ease the global and local response
comparisons, four flexibility-based frame elements are
employed to discretize this cantilever beam, even
though one flexibility-based element would be sufficient
to yield accurate results. For the flexibility-based
model, 15 fibers are used to discretize the beam
section, while, for the proposed TMM model, exact
integration is employed to derive the beam sectional
response.

Figures 7 and 8 compare the tip load-displacement
and load-rotation curves obtained with the two models.
Clearly, global responses obtained with the two models
are in good agreement, thus, confirming the accuracy
of the proposed TMM model. To investigate local
responses of both models, sectional moment-curvature
responses, sampled at the first integration point of each
element, are compared in Figure 9. The result clearly

10

Load (kN)

- - NTM: Node 5
—e— Spacone et al.: Node 5

T T

T
0.0 0.2 0.4 0.6 0.8 1.0
Displacement (m)

Figure 7. Load vs. displacement for node 5 in the
cantilever system in Figure 6.
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Figure 8. Load vs. rotation for node 5 in the cantilever
system in Figure 6.

shows that the proposed TMM model is capable of well
representing local responses.

5.2. Simply supported beam

A simply supported beam of length L = 3 m is
subjected to a four-point bending loading, as shown
in Figure 10. The beam has a rectangular cross section
and is 40 mm wide and 100 mm thick. For the
mechanical and strength properties of the beam, an
initial elastic modulus of 210 GPa, a yield strength
of 420 MPa, and a strain-hardening ratio of 0.002
are assumed. Six proposed TMM elements are used
to represent the beam, as shown in Figure 10. To
expedite the global and local response comparisons,
six flexibility-based frame elements are employed to
discretize this beam, even though a mesh with fewer el-
ements would be sufficient to produce accurate results.
Two concentrated forces are applied at nodes 3 and
5. For the flexibility-based model, 15 fibers are used
to discretize the beam section, while, for the proposed
TMM model, exact integration is employed to derive
the beam sectional response.

The load-displacement response at node 3 and
load-rotation response at node 5 obtained with the two
models are shown in Figures 11 and 12, respectively.
Clearly, there is good agreement between both models
at the global level. The investigation into the local
response obtained with both models is performed by
comparing the moment-curvature responses at integra-
tion points along element 2. As shown in Figure 13,
the proposed TMM model is capable of resembling
the local response obtained with the flexibility-based
model. The progressive yielding migration along the
element length is also well presented by the proposed
TMM model.

5.3. Continuous beam
Figure 14 shows a three-span continuous beam system
subjected to two equal concentrated forces within its
middle span. The wide-flange beam section is 300 mm
in height, 200 mm in width, 14 mm in flange thickness,
and 9 mm in web thickness. For the mechanical
and strength properties of the beam, an initial elastic
modulus of 210 GPa, a yield strength of 420 MPa, and
a strain-hardening ratio of 0.01 are assumed. Fourteen
proposed TMM elements are used to represent the
beam, as shown in Figure 14. The same number of
flexibility-based elements is also used to discretize this
continuous beam system for the sake of global and local
response comparisons. Two equal concentrated forces
are imposed at nodes 7 and 9. For the flexibility-based
model, 5, 12, and 5 fibers are used to discretize the
upper flange, web, and lower flange, respectively.

The load-displacement response at node 7 and
the load-rotation response at node 9 obtained with
the two models are compared in Figures 15 and 16,
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Figure 9. Section moment vs. curvature for elements 1, 2, 3 and 4 in the cantilever system in Figure 6.
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Figure 10. Simply supported beam system.
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Figure 11. Load vs. displacement for node 3 in the
simply supported beam system in Figure 10.
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Figure 12. Load vs. rotation for node 5 in the simply
supported beam system in Figure 10.

respectively. In general, there is good agreement be-
tween the TTM model results and the results obtained
with the flexibility-based model. Small discrepancies
between the two models are observed in the post-
yielding responses due to fiber section discretization.
It is important to note that the proposed TMM model
uses exact integration to derive the beam-section re-
sponse, while the flexibility-based model employs fiber-
section discretization to perform numerical sectional
integration. Figure 17 compares the sectional moment-
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Figure 16. Load vs. rotation for node 9 in the 3-span
continuous beam system in Figure 14.
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Figure 17. Section moment vs. curvature at the last integration point of elements 3, 4, 7, and 8 for the 3-span continuous

beam system in Figure 14.

curvature responses at the last integration point of
elements 3, 4, 7, and 8. Clearly, the proposed TMM
model is capable of representing the local response
obtained with the flexibility-based model.

5.4. Cantilever column

A cantilever column of height H = 2.5 m is subjected
to a constant axial load, P = 270 kN, and an
incrementally increasing moment, M, at its free end, as
shown in Figure 18. The column section is square with
a dimension of b = H = 300 mm For the mechanical

DIh @__0445 m
(2)|0.5m

@ 0.5 m

Figure 18. Column system.

and strength properties of the beam, an initial elastic
modulus of 20 GPa, a yield strength of 40 MPa, and a
strain-hardening ratio of 0.01 are assumed. Asshown in
Figure 18, the column is discretized into five proposed
TMM elements. One flexibility-based element is used
to model this column. For the flexibility-based model,
15 fibers are used to discretize the column section,
while, for the proposed TMM model, exact integration
is employed to derive the column sectional response.
Figure 19 shows the tip load-displacement re-
sponses obtained with the two models. Clearly, there is
excellent agreement between the two models. Figure 20
compares the axial-moment interaction diagrams con-

400

350

300 ; e

E 250
7 /
< 200
T
g 150 '
]

100

50 o — #— NTM: node 6

—e— Spacone et al.: node 6
0-f T T
0 200 400 600 800

Displacement (mm)

Figure 19. Load vs. displacement for node 6 in the
column system in Figure 18.
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Figure 20. P-M interaction diagram for the column
system in Figure 18.

Table 1. Comparison of computational time ratio.

TMM Flexibility-based

Case of analysis

Cantilever beam 1.00 1.36
Simply supported beam 1.00 1.26
Continuous beam 1.00 2.04
Cantilever column 1.00 1.35

structed by the two models and indicates that they
match quite perfectly.

The relative computational time of each analysis
is shown in Table 1. The TMM model is a minimum
of 1.26 times and a maximum of 2.04 times faster than
the flexibility-based frame model in simply supported
beams and continuous beams, respectively.

6. Conclusion

In this study, a material-nonlinear-analysis algorithm
based on the Transfer Matrix Method (TMM) is
presented. This newly developed algorithm can be
used to perform nonlinear analyses of continuous beam
systems. In the TMM, the system equation has a
constant number of system unknowns, regardless of
the total degrees-of-freedom number in a structure and
the system response (either linear or nonlinear). That
is, the TMM model is at least 1.26 times faster than
the flexibility-based frame model in the analyses. As a
result, TMM can be used efficiently both for linear and
nonlinear structural analyses. Four numerical studies
confirm the accuracy and efficiency of the proposed
TMM model. In all examples, there is good agreement
between the proposed TMM model and the flexibility-
based fiber element model, both at global and local
levels.
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