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Abstract. Strengthening reinforced concrete members by bonding �ber reinforced plastics
on the tension face has become a viable alternative to address strength de�ciency problems.
This paper investigates rectangular composite slabs subjected to a distributed load using
Abaqus �nite element software. A parametric study, using appropriate constitutive models,
is generated to stimulate the nonlinear material behavior of the reinforced concrete
and FRP. The numerical analysis examines the behavior and maximum capacity of the
composite slabs. The paper presents the �nite element analysis results for concrete
slabs strengthened with FRP material. The proposed �tted equation is applicable in the
preliminary investigation for engineering applications.
c 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Examination of the structural behavior of FRP-
strengthened reinforced concrete structures, including
beams, columns and slabs, has been carried out ex-
perimentally and theoretically. Laboratory testing is
indeed necessary to obtain the actual behavior and
failure modes of structures, but it is expensive and
time consuming. Moreover, the existing structures are
di�cult to test to the point of ultimate failure. Since
the scope of FRP utilization needs to be expanded, and
e�cient designs need to be provided, numerical studies
are essential.

Finite Element (FE) analysis is an e�cient and
cost-e�ective numerical tool to model the structural
behavior of RC members. It has been employed
successfully to investigate the inuences of a series
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of parameters on the structural behavior of concrete
structures [1] . The behavior model of the structures
is necessary to obtain adequate results [4]. Most
research has assumed FRP to be linear, but unidirec-
tional �brous composites exhibit severe nonlinearity in
regard to their inplane shear stress-strain relations [5].
However, the degree of nonlinearity is not comparable
to that observed with inplane shear, since deviation
from linearity is observed with inplane transverse
loading [5,6]. As a result, the nonlinear behavior of
FRP should be modeled properly [7].

FRP laminates act as external reinforcements for
concrete structures. Laminates that adhere to the
tension face of structural elements provide additional
exural strength. There are a number of factors
a�ecting the performance of the bonding mechanism
between FRP and concrete, such as RC dimensions and
mechanical properties, �ber orientation, �ber length,
shape and composition of �bers, and the adhesion or
bond between the �bers and RC [8]. Contribution
of the stress strain relationship of FRP in composite
elements, which are usually dramatically linear up
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to failure, without a discernible yield point, causes
the non-plastic ultimate state of composite elements.
Therefore, the key to designing a composite is to
take advantage of the anisotropic nature of the FRP
material and oriented �bers, and provide maximum
sti�ness with minimum materials [8].

To investigate the e�ect of nonlinear material be-
havior on composite slabs, analytical and mathematical
models are adopted in this paper. The consequences
of some factors, such as the aspect ratio of the slabs,
FRP percentages and the orientation of the lamina
angle on the ultimate load, are studied to observe the
behavior and the maximum capacity of the compos-
ite slabs under speci�c circumstances. Furthermore,
reliable veri�ed factors are proposed for generating a
preliminary investigation into the interactive design of
general rectangular RC slabs strengthened with FRP.

2. Constitutive material laws

2.1. Concrete design model
Under multiaxial combinations of loading, the failure
strengths of concrete are di�erent from those observed
under uniaxial conditions. However, the maximum
strength envelope under multiple stress conditions
seems to be largely independent of the load path [9]. In
Figure 1, a Mohr-Coulomb type compression surface,
together with a crack detection surface, is used to
model the failure surface of concrete. When the
principal stress components of concrete are in a biaxial
compression zone, the response of the concrete is mod-
eled by an elastic-plastic theory with an associated ow
and an isotropic hardening rule. When the principal
stress components of concrete are in either a biaxial
tension zone or a biaxial tension-compression zone,
cracking of the concrete is de�ned to occur via the crack

Figure 1. Concrete failure surface in plane stress.

detection surface. Once the cracking of concrete takes
place, the orientation of the crack is stored. Damaged
elasticity is then used to model the existing crack [10].

When plastic deformation occurs, there should be
a speci�c parameter to guide the expansion of the yield
surface. A commonly used approach is to relate the
multidimensional stress and strain conditions to a pair
of quantities, namely, e�ective stress �c and e�ective
strain "c, such that results obtained following di�erent
loading paths can all be correlated by means of the
equivalent uniaxial stress-strain curve. For concrete
nonlinear behavior, Saenz's stress-strain curve [11] is
used. This relationship has been widely adopted as the
uniaxial stress-strain curve for concrete, and it has the
following form:

�c=
Ec"c

1+(R+RE�2)
�
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"o

��(2R�1)
�
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where:

R =
RE(R� � 1)
(R" � 1)2 � 1

R"
;

RE =
Ec
Eo

;

Eo =
f 0c
"o
;

and R� = 4, and R" = 4 are used [12]. In the
analysis, Eq. (1) is taken as the equivalent uniaxial
stress-strain curve for concrete. The value of "o is
0.003, as suggested by the ACI Committee 318 [13].
The initial modulus of the elasticity of concrete, Ec,
can be calculated with reasonable accuracy from the
empirical equation [13].

When cracking of concrete takes place, a smeared
model is used to represent the discontinuous macro
crack behavior. Tension sti�ening, in which the cracked
concrete of the RC element can still carry some tensile
stress in the direction normal to the crack [14], is
utilized by a simple descending line to model this
tension sti�ening phenomenon (Figure 2). The default

Figure 2. Tension sti�ening model.
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value of the strain, "�, at which the tension sti�ening
stress reduces to zero, is 0.001 [10].

During the post cracking stage, the cracked RC
can still transfer shear forces through aggregate inter-
lock or shear friction, which is termed shear retention.
Assuming that the shear modulus of intact concrete
is Gc, then the reduced shear modulus Ĝ of cracked
concrete can be expressed as:

Ĝ = �Gc and � = (1� "="max);

where " is the strain normal to the crack direction,
and "max is the strain at which the parameter �
reduces to zero. Numerous analytical results have
demonstrated that the particular value chosen for �
(between 0 and 1) does not appear to be critical, but
that values greater than zero are necessary to prevent
numerical instabilities [14,15]. In Abaqus, "max is
usually assumed to be a very large value, i.e. � = 1
(full shear retention). In this investigation, the default
values for tension sti�ening parameter, "� = 0:001, and
for shear retention parameter, � = 1, are used [10].

2.2. Steel reinforcement
The elastic modulus of the steel reinforcement is as-
sumed to be Es = 200 GPa. The elastic perfectly plas-
tic is assumed to exemplify the stress-strain curve of
the reinforcing bar. The steel reinforcement is treated
as an equivalent uniaxial material smeared throughout
the element section, and assumes a perfectly bond-slip
model between concrete and steel. To properly model
the constitutive behavior of the reinforcement, the
cross sectional area, spacing, position and orientation
of each layer of the steel bar within each element needs
to be speci�ed.

2.3. FRP reinforcement
For FRP (Figure 3), each lamina can be considered to
be an orthotropic layer under a plane stress condition.
It is well known that unidirectional �brous composites
exhibit severe nonlinearity in their inplane shear stress-
strain relation. To model the nonlinear inplane shear

Figure 3. Material, element and structure coordinates of
�ber reinforced plastics.

behavior, the nonlinear strain-stress relation for a
composite lamina suggested by Hahn and Tsai [5] is
adopted as follows:8><>:
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The FRP strain, "1, "2 and 12, in longitudinal,
transverse, and in-plane shear directions, respectively,
can be calculated from the relationship between the
sti�ness matrix and the FRP stress, �1, �2 and �12,
in longitudinal, transverse and in-plane shear direction
and the nonlinearity strain. In this model, only
one constant, S6666, is required to account for the
inplane shear nonlinearity. The value of S6666 can be
determined by a curve �t to various o�-axis tension test
data [5].

The incremental stress-strain relations for nonlin-
ear orthotropic lamina can be given as follows:

�f�0g = [Q01]�f"0g; (3)

�f� 0tg = [Q02]�f0tg; (4)

where:

�f�0g = �f�1; �2; �12gT ;
�f� 0tg = �f�13; �22gT ;
�f"0g = �f"1; "2; 12gT ;
�f0tg = �f13; 22gT ;

and:
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#
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The terms �1 and �2 are the shear correction factors,
and are taken to be 0.83 [16]. Furthermore, it is
assumed that the transverse shear stresses always
behave linearly and do not a�ect the nonlinear behavior
of any inplane shear.

Among existing failure criteria, the Tsai-Wu cri-
terion [17] has been extensively used in the literature
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and is adopted in this analysis. Under plane stress
conditions, this failure criterion has the following form:

F1�1 + F2�2 + F11�2
1 + 2F12�1�2 + F22�2

2

+F66�2
12 = 1; (7)

with:

F1 =
1
X

+
1
X 0 ; F2 =

1
Y

+
1
Y 0 ;

F11 =
�1
XX 0 ; F22 =

�1
Y Y 0 ; F66 =

1

S2 :

The X, Y and X 0, Y 0 are the lamina longitudinal
and transverse strengths in tension and compression,
respectively, and S is the shear strength of the lamina.
Although it is di�cult to determine the stress interac-
tion term, F12, in Eq. (7), it has been suggested that
F12 can be set equal to zero for practical engineering
applications [18]. Therefore, F12 = 0 is used in this
investigation.

During the numerical calculation, incremental
loading is applied to composite slabs until failures
in one or more of the individual plies are indicated
according to Eq. (7). Since the Tsai-Wu criterion does
not distinguish failure modes, the following two rules
are used to determine whether the ply failure is caused
by debonding failure or FRP rapture [19]:

1. If a ply fails, but the stress in the �ber direction
remains less than the uniaxial strength of the
lamina in the �ber direction, i.e. X 0 < �1 < X,
the ply failure is assumed to be resin induced.
As a result, the laminate loses its capability to
support transverse and shear stresses, but remains
able to carry longitudinal stress. In this case, the
constitutive matrix of the lamina becomes:

[Q01] =

24E11 0 0
0 0 0
0 0 0

35 : (8)

2. If a ply fails with �1 exceeding the uniaxial strength
of the lamina, the ply failure is caused by �ber
breakage, and a total ply rupture is assumed. In
this case, the constitutive matrix of the lamina
becomes:

[Q01] =

240 0 0
0 0 0
0 0 0

35 : (9)

During FE analysis, the constitutive matrix of
composite materials at the integration points of shell el-
ements must be calculated before the sti�ness matrices
are assembled from the element level to the structural

level. For composite materials, the incremental consti-
tutive equations of a lamina in the element coordinates
(x; y; z) can be written as:

�f�g = [Q1]�f"g; (10)

�f�tg = [Q2]�ftg; (11)

where:

�f�g = �f�X ; �Y ; �XY gT ;
�f�g = �f�XZ ; �Y ZgT ;
�f"g = �f"X ; "Y ; "XY gT ;
�fg = �fXZ ; Y ZgT ;

and:

[Q1] = [T1]T [Ql1][T1]; (12)

[Q2] = [T2]T [Ql2][T2]; (13)

[T1] =24 cos2 � sin2 � sin � cos �
sin2 � cos2 � � sin � cos �

�2 sin � cos � 2 sin � cos � cos2 � � sin2 �

35 ;
(14)

[T2] =
�

cos � sin �
� sin � cos �

�
: (15)

The � is measured counterclockwise from the element
local x axis to the material 1-axis (Figure 5). Let
�f"0g = �f"X0; "Y 0; "XY 0gT be the incremental in-
plane strains at the mid-surface of the shell section
and �f�g = �f�X ; �Y ; �XY gT be the incremental
curvatures. The incremental inplane strains at distance
z from the mid-surface of the shell section become:

�f"g = �f"0g+ z�f�g: (16)

Let h be the total thickness of the composite shell
section. The incremental stress resultants, �fNg =
�fNX ; NY ; NXY gT , �fMg = �fMX ;MY ;MXY gT ,
and �fV g = �fVX ; VY gT , can be de�ned as:8><>:

�fNg
�fMg
�fV g

9>=>; =
Z h=2

�h=2

8><>:
�f�g
z�f�g
�f�tg

9>=>; dz: (17)

Substituting Eqs. (10), (11) and (12) into the above
expression, one can obtain the sti�ness matrix for the
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�ber composite laminate shell at the integration point
as:8><>:

�fNg
�fMg
�fV g

9>=>; =
Z h=2

�h=2

264 [Q1] z[Q1] [0]
z[Q1] z2[Q1] [0]
[0]T [0]T [Q2]

375
8><>:

�f"0g
�f�g
�ftg

9>=>; dz; (18)

where [0] is a 3 by 2 null matrix. After Eq. (18) is devel-
oped in the element curvilinear coordinate (x; y; z), it
is automatically transformed into the global coordinate
(X;Y; Z) by Abaqus to proceed with the assembly of
the system. This transformation procedure involves
element geometry, shape functions and a Jacobian
matrix, which are speci�ed in the Abaqus Theory
Manual [10].

3. Numerical models

A large number of parameters were investigated to ob-
serve the behavior of the composite rectangular slabs.
The slab models refer to experimental investigation by
Mosallam and Mosalam [1]. The models, as illustrated
in Figure 4, were subjected to uniform static pressure.
The top surface was subjected to tensile stress, since
the pressure was applied to the bottom surface of the
slab. An equal spacing in the two orthogonal direc-
tions, #3@305 mm, was used for tension reinforcement

Figure 4. Detail of Mosallam-Mosalam specimens for
reinforced concrete slab.

with grade 60. The yielding stress (fy) was 413.7 MPa,
and the compressive strength of the concrete (f 0c)
was 32.87 MPa. Simply supported RC slab models
were further generated with seven length aspect ratio
models. The aspect ratio (a=b) is the length ratio that
puts the length in the X and Y directions in contrast.
The two types of designed slabs discussed herein were
one-way slabs (i.e. a=b = 2:5, a=b = 3, a=b = 3:5 and
a=b = 4) and two-way slabs (a=b = 1, a=b = 1:5, and
a=b = 2).

The constitutive models from Section 2 were
implemented into Abaqus to conduct failure analysis
and to obtain the possible maximum ultimate load.
Reliable constitutive models applicable to steel rein-
forcing bars and concrete are available in the Abaqus
material library. For the FRP model, Abaqus has
inbuilt failure criteria, such as Tsai-Wu, that has
been used in much research [20-22]. However, these
failure criteria only include the linear behavior of FRP.
Therefore, FORTRAN language was used as a subrou-
tine, UMAT, in Abaqus, to code nonlinear constitutive
equations for including a nonlinear material library to
model FRP. All the validity of the material models
for steel, FRP and RC have been veri�ed individually
by testing against experimental data [4,10] and were
not duplicated here. For rectangular RC slabs with
and without FRP, the slabs have been veri�ed against
experimental data [4] , and for square RC slabs with
and without FRP, veri�cation and numerical studies
have also been performed [23] and were not duplicated
here.

Since slabs have two planes of symmetry, only a
1/4 portion of the slab was analyzed, and symmet-
ric boundary conditions were placed along the two
symmetric planes. The RC rectangular slabs and
FRP were modeled by eight-node quadrilateral shell
elements with six degrees of freedom per node in a
reduced integration rule. The mesh schemes for each
case can be seen in Table 1. It can be seen that the
FRPs are adhered from the center to the edge. E�ects
associated with the rebar/concrete interface, such as
bond slip and dowel action, are modeled approximately
by introducing some \tension sti�ening" into the con-
crete cracking model to simulate load transfer across
cracks through the rebar. Contribution of the adhesive
layer to exural capacity was neglected, and thus, it is
assumed that there is perfect bonding between the FRP
and the slab. This `no slip' assumption has also been
used by many investigators [24-26]. A very important
aspect of bonded behavior is that there exists an
e�ective bond length, beyond which an extension of
the bond length cannot increase the bond strength,
as well as the ultimate load, of the strengthened
concrete structure. As long as the criterion for the
e�ective bond length has been ful�lled, it is quite
justi�able to use the perfect bonding assumption. An
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Table 1. Dimension of numerical reinforced concrete slab strengthened by FRP.

Model Aspect ratio Dimension Number of elements (nx � ny)
Lx

(mm)
Ly

(mm)
RC slab Adhered FRP under speci�c ratios

4% 16% 36% 64% 100%

Type 2
a=b = 1 2640 2640 5� 5 1� 1 2� 2 3� 3 4� 4 5� 5

a=b = 1:5 3960 2640 10� 5 2� 1 4� 2 6� 3 8� 4 10� 5

a=b = 2 5280 2640 10� 5 2� 1 4� 2 6� 3 8� 4 10� 5

Type 1

a=b = 2:5 6600 2640 15� 5 3� 1 6� 2 9� 3 12� 4 15� 5

a=b = 3 7920 2640 15� 5 3� 1 6� 2 9� 3 12� 4 15� 5

a=b = 3:5 9240 2640 20� 5 4� 1 8� 2 12� 3 16� 4 20� 5

a=b = 4 10560 2640 20� 5 4� 1 8� 2 12� 3 16� 4 20� 5

incremental-iterative Riks method [10] with automated
load increment was used to solve the nonlinear �nite
element equations and to model the nonlinear struc-
tural behavior e�ectively. This method is necessary
to obtain nonlinear static equilibrium solutions for
unstable problems.

The FRP was adhered to the top side using
a 0.58 mm thickness for each layer. The material
properties of carbon FRP were adopted from the exper-
imental specimens of Mosallam and Mosalam [1]. The
tensile strength (Xut) was 1208.7 MPa and the elastic
modulus (E11) was 100.75 GPa [1]. The following
parameters were assumed to take the Tsai-Wu criterion
into account:

E22 = 1 GPa; G12 = 1 GPa;

Xuc = �12 MPa; Yut = 12 MPa;

Yuc = �12 MPa; S = 12 MPa;

S6666 = 0; v12 = 0:3:

It is necessary to point out that a parameter of "utf ,
the ultimate strain of FRP in the �ber direction, was
used. The value of "utf was limited to 0.008 [27]. To
study the behavior of FRP in strengthened RC slabs,
�ve cases of FRP ratio: 4%, 16%, 36%, 64%, and 100%,
were measured. The FRP ratio was calculated as the
ratio between the surface area of the slab, that was
adhered using FRP, and the total area of the slab.
To take advantage of the FRP material, a numerical
analysis was conducted to simulate �ve combinations
of angle laminates within two layers of FRP. The
combinations were [0=0]n, [15;�15]n, [30;�30]n, [45=�
45]n, and [90=0]n in which the �ber angle of the lamina
was measured counterclockwise from the X-axis to the
Y-axis and in which n was the number of layers; in this
case, either one or two layers.

4. Parametric studies

4.1. E�ect of aspect ratios on the maximum
applied load of pure reinforced concrete
slabs

Totally, seven models are discussed to represent two
types of RC slab behavior: one-way, in which the slabs
are designed to transfer their loads to only two opposite
supports, and two-way, in which the slabs are designed
to transfer their loads to all four sides. Type 1 is made
up of three models of slabs with aspect ratios greater
than two (one-way), and type 2 is made up of four
models of slabs with aspect ratios less than, or equal
to, two (two-way). The purposes are to evaluate the
capacity of slabs with di�erent aspect ratios and to
observe the behavior of each di�erent slab case. The
results for the pure RC slabs become the baseline for
the strengthening cases.

Figure 5 shows the curves for the applied total
load and displacement at the center for pure RC slabs.
A very good correlation can be observed between the
numerical result (a=b = 1) and the experimental results
of Mosallam and Mosalam. These good correlations be-
tween numerical predictions and experimental results
demonstrate the validity of the nonlinear constitutive
material models and the perfect bonding assumption
between FRP and the slab. Contrasting the numerical
curve for a=b = 1 and the experimental results, the
numerical results can represent the sti�ness of a real
structure. Although the simulation cannot approach
maximum displacement, the small percentage of stan-
dard error of 0.23% can be obtained for the ultimate
load. In one-way slabs, Figure 5(a) for a=b > 2, the
ultimate load and the sti�ness increase as the aspect
ratio becomes higher, while the sti�ness of two-way
slabs is relatively similar for di�erent results of ultimate
loads. Figure 5(b) shows that two-way slabs can resist
higher load per unit area (P=A) if compared to one-
way slabs. For one-way slabs, as the aspect ratio
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Figure 5. Load and mid-span displacement curves of RC
slabs in di�erent aspect ratios.

becomes higher, the resisted load becomes lower. From
all di�erent a=b, the square slab (a=b = 1) exhibited the
best performance, which had the highest ductility and
the highest ultimate load.

4.2. E�ect of �ber reinforced concrete
percentages on strengthening composite
slabs

In this study, the FRP shape remains rectangular for
all aspect ratios, while the length is variable. The
purposes are to evaluate whether FRP can strengthen
the slabs under consideration and to examine whether
adding more FRP can inuence the ultimate load of
the slabs. The applied total load and displacement
at the center of the slab were plotted into curves to
observe the e�ect of FRP in regard to strengthening the
composite slabs. The plots illustrate the relationship
using various cases of FRP ratios for di�erent aspect
ratios in [90=0]2 combinations.

A higher FRP ratio indicates more reinforcement
on the composite. Figure 6 demonstrates that increas-
ing the FRP ratio results in a higher ultimate load.
Taking a=b = 1:5 as an example, the maximum total
loads increase to 189 kN, 225 kN, 300 kN, 442 kN,
and 521 kN for FRP ratios of 4%, 16%, 36%, 64%,
and 100%, respectively. In this case, 4% FRP can
higher the total applied load into 1.1x from the slab
without FRP, where 100% FRP can higher it into
3.03x. Such di�erent increments can be obtained as the
%FRP is increased. For load per unit area (a=b = 1:5),
P=A increases to 72 kN/m2, 86 kN/m2, 115 kN/m2,
169 kN/m2, and 199 kN/m2 for FRP ratios of 4%,
16%, 36%, 64%, and 100%, respectively. If P=A
results for each di�erent a=b are compared, Figure 6
shows that, as a=b becomes higher, the P=A result
becomes lower. For example, the two-way slabs that
are strengthened with 100% FRP can resist P=A as
328 kN/m2 for a=b = 1, 199 kN/m2 for a=b = 1:5,
and 189 kN/m2 for a=b = 2. Similar results can be
observed from one-way slabs. The P=A results for
the slabs strengthened with 4% FRP are 47 kN/m2

for a=b = 2:5, 44 kN/m2 for a=b = 3, 41 kN/m2 for
a=b = 3:5, and 39 kN/m2 for a=b = 4. As FRP ratios
increase, the ultimate loads increase gradually for a=b
less than 2, and have signi�cant increments for a=b
greater than 2. Type 1 slabs with greater FRP ratios
produce more signi�cant ultimate loads, as compared
to type 2 slabs.

Higher FRP ratios provide higher sti�ness, but
this is sometimes followed by lower ductility, which
a�ects the brittleness of composite slabs. This indi-
cation is shown in Figure 6 for a=b = 1, a=b = 1:5,
and a=b = 2 where, compared with pure RC, most of
the composite slabs have higher sti�ness and higher
ultimate load but lower ductility. On the other hand,
higher sti�ness and higher ductility can be found for
a=b greater than two. The composition of the FRP
should be designed carefully to prevent member failure
accordingly. Nevertheless, engineers need to consider
how to provide higher ultimate load with a minimum
amount of FRP material.

4.3. E�ect of the �ber angle in composite slabs
The performance of a composite may be a�ected by
�ber orientation. The purposes of this analysis are to
examine whether the angle direction can increase the
load increment ratio, and a�ect the nonlinearity of FRP
behavior in composite slabs. Considering Figure 7, the
nonlinear shear of the FRP does not appear to have
signi�cant results. For example, in a=b = 1, the curves
for [15=� 15]2, [30=� 30]2, and [45=� 45]2 are roughly
parallel with [0]4 and [90=0]2, which have no nonlinear
shear e�ects. The nonlinear e�ect is barely shown in all
aspect ratios. Owing to the small failure shear strain of
the composite slabs, the material nonlinearity of FRP,
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Figure 6. Load and mid-span displacement curves of the strengthened slabs in di�erent aspect ratios for various FRP
ratios with angle of lamina [90=0]2.

in regard to the inplane shear stress-strain relationship
of the ply, does not have too much inuence on the
behavior of the composite square slabs.

For type 1 (Figure 7 for a=b > 2), only the
combination of ply [90=0]2 obtains signi�cant results,
high ultimate load, high sti�ness and high ductility.
Other ply combinations only strengthened the slabs,
without optimal results. Figure 7 for a=b � 2, two-
way slabs, presents di�erent ultimate loads for each
combinations of ply orientation. The best combina-
tions for sti�ness and ultimate load di�er for each case
of aspect ratios. For example, the best combination
for a=b = 1, a=b = 1:5, and a=b = 2, for the
highest sti�ness and highest load, are shown to be
[45= � 45]2, [45= � 45]2, and [90=0]2, respectively.
Since other combinations are also relevant, with regard
to application in two-way composite slabs, the best
combination of ply orientation is essential to optimize
the FRP application.

One-way slabs demonstrate structural strength
in the shortest direction since the loads are resisted
by the slab in one direction only. As a result, only
a �ber orientation parallel to the distributed load of
90� is observed to have signi�cant results. On the
contrary, the loads resisted by all four sides in two-
way slabs generate di�erent optimum combinations of
�ber orientation.

4.4. E�ect of number of layers in composite
slabs

In this section, two-layer FRP laminates are compared
to one layer of FRP. The results are discussed with
regard to observing the e�ect of the number of layers
and thicknesses, on the increment ratio. Figure 7
demonstrates the results for the composite slabs with
di�erent numbers of FRP layers. The results are
generated from �ber orientation of [0=90] for one layer
FRP and [90=0]2 for two-layer FRP. Adding more layers
of FRP generates higher ultimate load. A signi�cant
increment appears in one-way slabs with higher FRP
ratios. As a=b becomes lower, the signi�cant e�ect of
adding layers and �ber orientation can be disregarded.

The e�ect of FRP layer and %FRP combined into
FRP reinforcement ratio (�f ) can be derived as:

�f =
Af
b:d

; (19)

with the total area of FRP (Af ) calculated from the
number of FRP layers (nf ), width of FRP (bf ), and
thickness of each FRP layer (tf ) as Af = nfbf tf .
The �f for 4% FRP, 16% FRP, 36% FRP, 64% FRP,
and 100% FRP are 0.0018, 0.0037, 0.0055, 0.0073,
and 0.0091 (the composite slabs with one FRP layer),
respectively, and 0.0037, 0.0073, 0.0110, 0.0146, and
0.0183 (the composite slabs with one FRP layer),
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Figure 7. Comparison of the increasing ultimate load ratio for varied FRP ratio in di�erent �ber laminates.

respectively. Figure 8 presents the results for 16%
FRP [90=0], which are similar to the results for 4%
FRP [90=0]2, and the results for 64% FRP [90=0] are
similar to the results for 16% FRP [90=0]2. Adhering
further FRP layers into RC slabs is equivalent to adding
more reinforcement to the slabs. They can increase
the ultimate load of the composite until a certain
limit, after which, adhering more FRP will not cause
signi�cant results.

5. Results and discussion

To indicate a \tough" composite, the energy stored
at failure is presented by calculating the area under
the load and displacement curves. Excellent composite
slabs are those having an energy value that is as
high as possible. Figure 9 demonstrates that the
energy stored at failure gradually increases as FRP
ratio increases. To develop high-quality composite, the
important thing is not only to obtain composites with
a higher degree of sti�ness, but also to determine a
method by which a composite can be utilized with
a minimum amount of material. Engineers should

be aware that attaching more FRP will not create
impressive sti�ness, especially in the case of two-way
slabs. Thus, determining how to design the right
combination of ply orientation with an appropriate
FRP ratio is more important.

Most of the results (Figure 9 for a=b > 2) show
that the energy stored at failure is occupied by �ber
orientation [90=0]2. The result in Figure 8 also shows
that it is not recommended to attach ply other than
[90=0]2 for a=b > 2. Therefore, the higher FRP ratios
in one-way slabs may not provide signi�cant increases
in the energy stored at failure without any proper
combination of �ber orientation.

A higher FRP ratio creates higher strain energy.
Figure 9 illustrates the strain energy results for each
simulation case. Unexpected indications show that
the composite slabs can have the same or lower strain
energy than pure RC slabs. Especially, in the case
of a=b � 2, \tough" composites were slabs with FRP
ratios greater than 36% with proper ply combinations.
For a=b > 2, the strain energy of composite slabs was
shown to be broadly the same as, or greater than,
pure RC. The results in [90=0]2 orientation showed
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Figure 8. Comparison of the increasing ultimate load ratio for varied FRP ratio in di�erent number of layers.

tremendously greater strain energy for an FRP ratio
of more than 64%. Although other combinations of
�ber orientation can result in higher sti�ness, the best
orientation, in regard to producing higher strain energy
and resisting higher ultimate load, was found to be
[90=0]2.

Figure 10 shows e�ciency of the composite slabs
with di�erent aspect ratios and �ber orientation. It
demonstrates that higher FRP ratios have lower ef-
�ciency in return. In contrast, most of the \tough"
composite slabs were shown to have lower e�ciency. In
general, FRP ratios more than 16% are recommended.
The slabs that adhered more than 16% FRP had high
strain energy and acceptable e�ciency. It should be
noted that in the case of one-way slabs, since attaching
more than 16% FRP in [90=0]2 orientation provides
roughly the same e�ciency, the design consideration
must depend on targeted ultimate loads. For two-
way slabs, the best combination of ply orientation and
targeted ultimate loads are essential in the design.

Finally, the numerical results were plotted to
develop an innovative curve for investigation of the
composite slabs. MATLAB [28] was used as a tool. A
curve �tting toolbox provides an application and func-
tions for �tting curves and surfaces to data that can

perform data analysis, and preprocess and post-process
data. A three-dimensional curve was associated with
the FRP reinforcement ratio (�f ) in the x direction,
aspect ratio (a=b) in the y direction, and increment
ratio (Pu=PRC) in the z direction. The R-square for
the �tting curve was 91.25%, which indicates that
the �tting can predict the estimated increment ratio
closely �t to the numerical data. Figure 11 presents
the curve �tting to optimize the recommendation for
strengthening the RC slabs by carbon FRP. The �tting
begins with the equation for two-way slabs, 1 � a=b �
2, as:

Pu=PRC = 1:6� 100� (�f )� 0:3� (a=b)

+7454� (�f )2 + 45� (�f )� (a=b): (20)

For di�erent values of a=b in the range of 2 < a=b � 4,
the following expressions are used.

Pu=PRC = 1:075� 26� (�f ) + 8215� (�f )2

for a=b = 2:5; (21)

Pu=PRC = 1:150� 42� (�f ) + 8977� (�f )2

for a=b = 3; (22)
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Figure 9. Comparison of the energy stored at failure of di�erent aspect ratios for varied FRP ratio in di�erent �ber
laminates.

Pu=PRC = 1:225� 58� (�f ) + 9739� (�f )2

for a=b = 3:5; (23)

Pu=PRC = 1:300� 74� (�f ) + 10500� (�f )2

for a=b = 4: (24)

Figure 12(a) demonstrates the relationship between
FRP reinforcement ratios and increasing ratios for
various a=b. An increasing ratio can be described as
quadratic with a positive slope for which the increasing
ratios will be higher if more FRPs are attached to
the RC slabs. On the other hand, the relationships
between a=b and PU=PRC are not always increased as
a=b increases. It is shown in Figure 12(b) that the
PU=PRC will have a negative slope for 1 � a=b � 2
(two-way slab) and a positive slope 2 < a=b � 4 (one-
way slab) at lower FRP reinforcement ratios (�f <
0:0073). On the contrary, as the ratios become higher,
the trends are reversed, indicating a positive slope
for one-way slabs and a negative slope for two-way
slabs.

Eqs. (21) to (24) would be suitable for practical
engineering. These empirical equations are limited to

the preliminary investigation for composite rectangular
slabs (1 � a=b � 4) strengthened by two-layer carbon
FRP with a ply orientation of [90=0]n in which n
equals one or two. They can estimate either the in-
crement of the ultimate load using FRP reinforcement
ratio assessment or the minimum requirement of FRP
reinforcement ratios to attain a certain increment of
ultimate load for certain aspect ratios. Nevertheless,
a detailed design should be performed before the
composite slab is applied in engineering practices, and
the best combination of �ber orientation needs to be
found in two-way slabs in order to obtain optimum
design.

6. Conclusions

In this paper, nonlinear �nite element analyses for
strengthening rectangular RC slabs by bonding FRP
are performed. Based on the numerical results, the
following conclusions may be drawn:

1. In the case of pure RC slabs, the square slab (a=b =
1) has the best performance in regard to ductility
and ultimate load.

2. Adding further areas of FRP in composite slabs
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Figure 10. Comparison of the e�ciency of di�erent aspect ratios for varied FRP ratios in di�erent �ber laminates.

Figure 11. The summary results of strengthening of RC
square slabs in di�erent aspect ratios and FRP ratios.

o�ers higher sti�ness, but may be followed by lower
ductility. Compared with two-way slabs (2 < a=b �
4), attaching more FRPs in one-way RC slabs (1 �
a=b � 2) produces better results for higher ultimate
load, sti�ness, and ductility.

3. Owing to the small failure shear strain of the
composite slabs, the material nonlinearity of FRP

in an inplane shear stress-strain relation does not
have a signi�cant inuence on the behavior of the
composite square slabs.

4. In one-way slabs (1 � a=b � 2), a �ber orientation
normal to the longitudinal direction of the slab
(90�) is recommended, since the load is resisted
in one direction only. However, in two-way slabs
(2 < a=b < 4), the loads are distributed in
both directions, so the best combination of �ber
orientation needs to be found.

5. Adhering further FRP layers into composite slabs
is equivalent to adding more reinforcement into
the composites. The FRPs in the tensile surface
can strengthen the composite slab until a certain
limit after which adhering more FRP will not cause
signi�cant results in increasing the ultimate load.

6. A \tough" composite has lower e�ciency. The more
FRP is adhered to the composite slabs, the more
ultimate load can be obtained, but lower e�ciency
is a result. It is essential to design the right
combination of �ber orientation in an appropriate
FRP ratio.

7. Generalizations in preliminary investigative ap-
proaches are generated for strengthening rectangu-
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Figure 12. The relationship among increasing ratio
(Pu=PRC), aspect ratio (a=b) and FRP reinforcement ratio
(�f ).

lar RC slabs (1 � a=b � 4) with two-layer carbon
FRP. A detailed design should be analyzed carefully
before FRP is applied in engineering practices. Due
to simplicity, a perfect bond is assumed in this
numerical modeling, however, in real structures,
debonding might be a dominant failure mode and,
so, should be formulated in further research.
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