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Abstract. The nonlinear behavior of reinforced concrete columns subject to biaxial
bending and consideration of bond-slip at the steel-concrete interface are investigated.
Separate degrees of freedom are used for the steel and concrete parts to allow for the
di�erence in displacement between the reinforcing bars and the surrounding concrete. The
e�ect of bond-slip is investigated on the numerical bearing capacity of a reinforced concrete
column subject to axial and biaxial bending forces. The axial force-bending moment (P-
M) interaction surface of the reinforced concrete column under two conditions (with and
without bar slip) is calculated, and compared also with ACI criteria. The results show that
although ACI criteria is based on perfect bond assumption, the results are conservative
anyway, due to the fact that the bene�cial e�ect of stirrup con�nement on concrete
compressive strength is neglected, and the use of reduction factor ' does not make any
modi�cation necessary for considering the bond-slip e�ect on the ultimate capacity of the
RC section.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Columns are the most critical part of any building or
any structural skeletal frame system. A Reinforced
Concrete (RC) column may be subject to biaxial
bending, or to an axial load acting eccentrically, with
respect to both principal axes of the cross section. The
design of the column then requires computation of the
failure surface of the cross section, expressed in terms
of the resisting axial load and of the components of the
resisting bending moment about the principal axes.

To date, many numerical methods have been
proposed by researchers for calculating the bearing
capacity of RC sections and for determination of the
interaction diagram, which is commonly known as the
P-M interaction curve or surface, under any uniaxial
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or biaxial bending conditions. Most design charts
available today are only for the uniaxial bending of
columns. The development of design charts for the
biaxial bending of columns will provide structural
designers with an alternative way to analyze and design
such column sections. This will not only make the
design easier, but will also increase accuracy, which,
in turn, will provide greater structural safety. In the
course of developing the design charts, a better under-
standing of the behavior of biaxially loaded columns
will be achieved. It is possible to simplify the problem
of biaxial design and analysis by generating the failure
surface by means of suitable numerical formulations.
Most of these methods assume that the bond between
the reinforcing bars and the surrounding concrete is
perfect and the slip is neglected [1-9]. This assumption,
however, is not very appropriate and realistic, and
causes a considerable di�erence between numerical and
experimental results [10].

Using analytical relations and simplifying as-
sumptions, the P-M interaction surface can be calcu-
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lated based on the biaxial behavior. In the present
study, for stocky concrete columns that are not a�ected
by second-order e�ects, the role played by bond-slip
on the axial force-biaxial bending moment interaction
surface, is investigated. The interaction surface is
calculated by considering or neglecting the bond-slip
e�ect and the results of these two assumptions are
compared; comparisons are also carried out with the
criteria provided by ACI [11].

Based on ACI criteria [11], the column capacity
interaction surface is numerically described by a series
of discrete points that are generated on the three-
dimensional interaction failure surface. A typical
interaction surface is shown in Figure 1. The coor-
dinates of these points are determined by considering a
suitable number of linear distributions of the normal
strain on the section of the element, as shown in
Figure 2. The linear strain diagram is limited by
the maximum concrete strain, "c, at the extremity

Figure 1. A typical axial force-biaxial bending moment
interaction surface.

Figure 2. Idealized strain distribution for generation of
interaction surface.

of the section, to 0.003. This formulation is based
consistently upon the general principles of ultimate
strength design. The stress in the steel is given by
the product of the steel strain and the steel modulus of
elasticity, "sEs, and is limited by the yield stress of the
steel, fy. The area associated with each reinforcing
bar is assumed to be placed at the actual location
of the center of the bar, and the algorithm does not
assume any further simpli�cations, with respect to
distributing the area of steel over the cross-section of
the column.

The concrete compression stress block is assumed
to be rectangular, according to Whitney's rectangular
block, with a stress value of 0:85f 0c, as shown in
Figure 3. Complementary parameters are described
in ACI318-11. The interaction algorithm provides
correction to account for the concrete area that is
replaced by reinforcement in the compression zone.
The e�ect of the reduction factor, ', is included in
the generation of the interaction surface for calculating
the ultimate capacity of the section. The value of '
used in the interaction diagram varies between 0.65
and 0.90, under compression controlled to tension
controlled conditions [11].

Following the indications of ACI318-11, P-M
interaction curves are calculated on the basis of the
following assumptions:
p

The strain distribution on the reinforced concrete
cross section is linear.p
The shear deformations are considered negligible.p
There is a perfect bond between the reinforcing bars
and the surrounding concrete.

In this way, the P-M interaction surface, based
on the perfect compatibility between concrete and
bar deformations in an RC section, will be calculated
(Figure 3(c)). In other words, the bond between the
concrete and bars is assumed to be perfect and the
slip is disregarded. In real columns, however, the bond
between concrete and steel is not perfect, and the
ensuring slip may a�ect bearing capacity estimation
(Figure 3(d)).

2. Nonlinear modelling of RC columns with
bond-slip e�ect

Many numerical models have been devised for nonlin-
ear analysis of reinforced concrete frames. One of the
most commonly used methods is the �ber model [12].
In this method, an element is divided into a number
of concrete and steel �bers, and the element section
speci�cations are worked out by adding up the e�ects
of �ber behavior. This method assumes a perfect bond
between the concrete and the bar. Limkatanyu and
Spacone have used the �ber model, but they have
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Figure 3. Idealization of stress and strain distribution in a rectangular RC section.

Figure 4. Free body diagram of in�nitesimal segment of beam-column element and its components.

removed the perfect bond assumption [13]. In order
to achieve this goal, they have separated the degrees
of freedom of the concrete from those of the bars
in the beam-column elements under uniaxial bending.
Hashemi et al. used a similar approach and developed
it for biaxial bending. They have also used a joint
element, which is compatible for assembly with beam-
column elements [14,15].

The free body diagram of an in�nitesimal seg-
ment, dx, of the beam-column element is shown in
Figure 4. Each element is introduced as a combination
of one 2-node concrete frame element and n elements
of 2-node bars with bond interfaces. All equilibrium
conditions are written by taking into account the usual
small deformation assumption. Consideration of the
axial equilibrium of the concrete element and steel bars,
as well as the vertical and moment equilibriums of
segment, dx, leads to the matrix form of equations that
are given in Eq. (1):

@TBDB(x)� @Tb Db(x)�P(x) = 0; (1)

where:

DB(x) =
n

D(x) : ��D(x)
oT

;

is the vector containing the section forces on the beam-
column element.

D(x) = fN(x) Mz(x) My(x) Mx(x)gT ;
is the vector containing the section forces on the
concrete element.

D(x) = fN1(x):::Nn(x)gT ;
is the vector of the axial forces in the bars.

Db(x) = fDb1(x):::Dbn(x)gT ;
is the vector of bond section forces.
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P(x) = f0 py(x) pz(x) T (x) 0:::0gT ;
is the force vector of the beam-column element.

Moreover, n is the number of longitudinal bars in
the cross section, py(x) and pz(x) are external loads in
y and z directions, respectively, T (x) is the torsion load
on the element, and @B , @b are di�erential operators,
which are de�ned in the following way:

@B =

2666666666664

d
dx 0 0 0 0 � � � 0

0 d2

dx2 0 0 0 � � � 0

0 0 d2

dx2 0 0 � � � 0

0 0 0 d
dx 0 � � � 0

� � � � � � � � � � � � � � � � � � � � �
0 0 0 0 0 0 d

dx

3777777777775
; (2)

@b =

2664�1 y1
d
dx z1

d
dx 0 1 � � � 0

� � � � � � � � � � � � � � � � � � � � �
�1 yn d

dx zn d
dx 0 0 � � � 1

3775 ; (3)

8where, (yn; zn) is the coordinate of the nth bar in the
section.

The slips of bars in the section of the RC element
are determined by the following relation between the
bar and concrete element displacements:

ubi(x) = ui(x)� u1(x) + yi
du2(x)
dx

+ zi
du3(x)
dx

; (4)

where, ui(x) is bar axial displacement, and u1(x),
u2(x), and u3(x) are displacements in axial, trans-
verse in y, and z directions of the concrete element,
respectively. The weak form of the displacement based
�nite element formulation is determined through the
principle of stationary potential energy. The nodal
displacement of the beam-column element, shown in
Figure 5, serves as primary element unknowns, and
the section displacements are related to it through the
displacement shape function matrix.

A joint element is used as the footing connection
of the column. In this element, the e�ect of pull-out

can be considered as the relative displacement between
the steel bar and surrounding concrete, and bond stress
is referred to as the shear stress acting parallel to an
embedded steel bar on the contact surface between the
reinforcing bar and concrete. The number of degrees of
freedom in the side of the joint element is compatible
with the degrees of freedom at the ends of the column
elements adjacent to the joint element. Referring to
Figure 6, the slip of the bars can be de�ned in the form
of Eq. (5), if the nodal displacement vector related to
pull-out behavior is de�ned as:

Uslip =
�
U2

1 U2
2 U2

3 V 2
1 ::: V 2

n
�T ;

slip =

2664s1
s2
:
sn

3775
=

2664�1 0 0 0 z1 y1 1 0 � � � 0
�1 0 0 0 z2 y2 0 1 � � � 0
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�1 0 0 0 zn yn 0 0 � � � 1

3775Uslip:
(5)

In this equation, (yn; zn) is the coordinate of the nth
bar in the section. The relationship between the pull-
out force and the slip for embedded bars derives from
the bond stress-slip relationship related to the pull-
out behavior, the embedded length of the bar, and
conditions at the end of the bar and perimeter of the
bar cross-section.

Further details about the modeling of joint and
column modeling can be found in [14,15]. A computer
program created in MATLAB software was used by
the authors [16]. Selected models with good simula-
tion accuracy for the behavior of materials and their
interaction are described in Table 1.

3. Numerical investigation

For numerical investigation, numerical validation has
been undertaken for a reinforced concrete stocky
column, with geometric speci�cations according to

Figure 5. Three-dimensional reinforced concrete beam-column element.



392 S.Sh. Hashemi and M. Vaghe�/Scientia Iranica, Transactions A: Civil Engineering 22 (2015) 388{399

Figure 6. Three-dimensional joint element as footing connection.

Table 1. Selected models for material behavior and their interactions.

Relationship Description

Concrete stress-strain

� The model of Park et al. [17] and later extended by Scott et al. [18]
for monotonic compressive envelope curve;
� It is assumed that concrete behavior is linearly
elastic in the tension region before the tensile
strength and beyond that; the tensile stress
decreases linearly with increasing tensile strain;
� Yassin [19] rules are adopted for hysteresis behavior.

Steel stress-strain
� The initially proposed model by Giu�re and Pinto [20]
and later used by Menegoto and Pinto [21].

Bond stress-bond slip � Eligehausen et al. model [22]

Figure 7, and details provided under the name of
specimen 2 in Table 2. This specimen is a column
under biaxial bending and constant axial load with
magnitude of 350 kN. Lateral cyclic displacement
was imposed at the free end with � equal to 38.66
degrees, as tested by Qiu et al. [23]. In the numerical
modeling, the column is subdivided into a suitable
number of shorter elements. As the formulation is
displacement based and the response depends on the
element size, a large number of elements is required
to ensure proper accuracy. As a simple suggestion,
the length of the column elements can be selected

smaller than, or equal to, the average crack spacing
in the column [24]. In these cases, convergence of the
calculated responses will be achieved in the numerical
process. The minimum required embedded length is
satis�ed in all specimens in order to prevent the pull-
out of the bars from the footing connection, which
a�ects the results. Considering the ACI criteria for
embedded length prevents the pull-out of the bars from
the footing connection [25].

For nonlinear solving of this model, the Newton-
Raphson Method, which involves controlling displace-
ment, was used. Figure 8 shows the numerical and ex-
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perimental load-displacement history with good agree-
ment for strength and sti�ness during cyclic loading.

After ensuring the accuracy and precision of the
numerical method, the interaction surface of the col-
umn section for the two cases of with and without bar
slip, respectively, have been calculated and compared,
also with the ACI318-11 criteria. The results for
specimens 1 to 3 are presented in Figures 9 to 11

Figure 7. Geometry of the specimens [23].

through discrete curves instead of a three-dimensional
surface. In these �gures, My and Mz are the bending
capacities about the y and z axes of the section,
respectively, and Mt is the vector sum of Mz and My.
Based on ACI 318-11 criteria, two additional curves
are drawn in the �gures: one without a reduction
factor, which is known as factor ' and represents
nominal capacity, and the other drawn with the e�ect
of reduction factor ', which represents the ultimate
design capacity of the section. The latter is used to
evaluate the capacity of the section in the design of
reinforced concrete structures. The curve is plotted for
di�erent angles of � because of its dimensional nature.

A summary of the evaluation and comparison of
the results is listed in Table 3, where the numerical
results are compared with each other, as well as with
the ACI criteria. With reference to the numerical
capacity, which is calculated taking into account the
bond slip e�ect, interpretation of the results allows one
to draw the following conclusions:

p
Pure axial compressive force condition: The nu-
merical capacity for two cases of with and without
slip e�ect will be the same. Based on ACI criteria,

Figure 8. Experimental and numerical cyclic load-displacement responses for specimen 2.

Table 2. Details of investigated specimens.

Specimen 1 Specimen 2 Specimen 3
� = 1:57% � = 2:26% � = 3:39%

Main bars 8� 10 mm Bars 8� 12 mm Bars 12� 12 mm bars

Stirrups 6 mm bars @ 50 mm c/c 6 mm bars @ 50 mm c/c 6 mm bars @ 50 mm c/c
Cross-section
(width*depth)

200� 200 mm2 200� 200 mm2 200� 200 mm2

fc (MPa) 40 40 40

fy of main bars (MPa) 460 460 460

fy of stirrups (MPa) 420 420 420

Concrete cover (mm) 21 21 21



394 S.Sh. Hashemi and M. Vaghe�/Scientia Iranica, Transactions A: Civil Engineering 22 (2015) 388{399

Figure 9. P-M interaction curves calculated for specimen 1.

Figure 10. P-M interaction curves calculated for specimen 2.
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Figure 11. P-M interaction curves calculated for specimen 3.

the nominal capacity (calculated capacity without
reduction factor ') is conservative, and ensures
approximately 30% less than numerical capacity.
The ultimate capacity of the section (calculated
capacity after applying reduction factor '), which
represents the ultimate design capacity, is more
conservative and ensures approximately 56% less
than numerical capacity.p
Pure bending condition: This case will be usually
used for beams under uniaxial or biaxial bending.
In this condition, the numerical capacity with
perfect bond assumption is only about 6% more
than that obtained considering the slip e�ect. On
the other hand, since ACI does not consider the
bond-slip e�ect in the capacity estimation explic-
itly, the ACI nominal capacity is approximately
11% more than the numerical capacity and surely
not conservative. However, consideration of the
reduction factor leads to calculation of the ultimate
capacity of the section approximately 18% lower
than numerical capacity. This margin will be
conservative enough without the need to include
any modi�cation.p
Axial force with biaxial eccentricity: In this case,
by investigating the state corresponding to the
maximum bending capacity, the perfect bond as-
sumption leads to a considerable di�erence in the

capacity estimation, since the capacity will be
approximately 17% larger than when the slip e�ect
is considered. For uniaxial bending conditions,
ACI nominal capacity is approximately equal to
the numerical value without considerable di�er-
ence. Furthermore, this di�erence for the ultimate
capacity is about 24% and this margin will be
conservative enough. For biaxial bending condi-
tions, although ACI does not consider the bond-slip
e�ect in the capacity estimation explicitly, the ACI
nominal capacity is approximately 10% lower than
the numerical capacity and surely conservative.
However, consideration of the reduction factor leads
to calculation of the ultimate capacity of the section
approximately 42% lower than numerical capacity.
This margin will be conservative enough without
the need to include any modi�cation.

By reviewing ACI 318-11 formulations, the major
cause of noncompliance is that the increasing e�ect
of stirrups on concrete compressive strength has not
been considered in the ACI formulations. But, in
numerical analysis, the con�nement e�ect has been
considered on the behavior of concrete �bers. For
ductile RC sections and in pure bending mode, or in
the presence of a very low axial force, as a rule, to
reach nominal bending capacity, the bars yield with
concrete compressive strength playing no signi�cant
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Table 3. Summary of numerical results for the specimens.

Pure
bending
capacity

Point with
maximum
bending
capacity

Pure
compressive

axial
capacity

� = 0� � = 45� � = 0� � = 45�

Mt

(kN.m)
Mt

(kN.m)
Mt

(kN.m)
P

(kN)
Mt

(kN.m)
P

(kN)
P

(kN)

� = 1:57%
(Specimen 1)

Fiber method
with slip e�ect

Value 26.6 28.4 50.5 720.0 45.7 600.0 1950.0

Fiber method
with perfect

bond assumption

Value 27.8 29.4 58.7 600.0 51.4 700.0 1950.0
Relative

di�.*
4.5% 3.5% 16.3% -16.7% 12.5% 16.7% 0.0%

ACI318-11-
without reduction

factor (')

Value 29.9 28.6 49.4 442.9 41.2 639.0 1359.8
Relative

di�.
12.4% 0.7% -2.1% -38.5% -9.8% 6.5% -30.3%

ACI318-11-
with reduction

factor (')

Value 21.9 22.7 37.2 255.0 26.6 413.0 846.3
Relative

di�.
-17.7% -20.1% -26.3% -64.6% -41.8% -31.2% -56.6%

� = 2:26%
(Specimen 2)

Fiber method
with slip e�ect

Value 37.8 37.5 56.8 540.0 51.7 720.0 2080.0

Fiber method
with perfect

bond assumption

Value 38.8 39.8 66.6 600.0 58.9 600.0 2080.0
Relative

di�.
2.6% 6.2% 17.3% 11.1% 14.0% -16.7% 0.0%

ACI318-11-
without reduction

factor (')

Value 42.0 37.8 57.5 426.7 45.4 664.7 1479.0
Relative

di�.
11.1% 0.9% 1.2% -21.0% -12.1% -7.7% -28.9%

ACI318-11-
with reduction

factor (')

Value 30.8 29.7 43.4 229.7 29.3 372.1 907.0
Relative

di�.
-18.6% -20.7% -23.7% -57.5% -43.4% -48.3% -56.4%

� = 3:39%
(Specimen 3)

Fiber method
with slip e�ect

Value 52.8 52.6 69.0 600.0 62.9 500.0 2390.0

Fiber method
with perfect

bond assumption

Value 55.8 54.5 77.8 600.0 70.4 600.0 2390.0
Relative

di�.
5.5% 3.7% 12.8% 0.0% 11.8% 20.0% 0.0%

ACI318-11-
without reduction

factor (')

Value 57.2 48.6 68.3 402.0 51.4 499.9 1674.9
Relative

di�.
8.3% -7.6% -1.0% -33.0% -18.3% 0.0% -29.9%

ACI318-11-
with reduction

factor (')

Value 43.5 36.8 52.2 175.8 36.8 0.0 1007.6
Relative

di�.
-17.7% -30.1% -24.3% -70.7% -41.6% -100.0% -57.8%

� Relative di�erence between values calculated with and without slip e�ect. Positive sign means value with perfect bond
assumption is more.

role. So, the role of concrete compressive strength
in the nominal capacity of the section is small and
the yielding of the bars is more e�ective. Another
cause for noncompliance between numerical capacity
and the ACI curve is that the method employed in
numerical analysis is based on �ber theory, including
the bond-slip e�ect, while ACI uses the assumption of

a compression block in the section. Naturally, these
two methods are not identical.

In Figure 12, the numerical curves are compared
with ACI. But the increasing e�ect of con�nement on
concrete compressive strength at the core of the section
is considered in calculation of the ACI curve. The
results show that although ACI does not consider the



S.Sh. Hashemi and M. Vaghe�/Scientia Iranica, Transactions A: Civil Engineering 22 (2015) 388{399 397

Figure 12. Comparison of numerical results with ACI curve including con�nement e�ect of stirrups.

Figure 13. Uniaxial Moment-curvature curve calculated in the cross-section with zero distance to footing for specimen 2:
(a) Pure bending; and (b) in the presence of axial compressive force equal to 560 kN.

slip e�ect, it has good conformity with the numerical
curve.

Based on the results, although the ACI 318-
11 criteria is based on the perfect bond assumption,
the results are conservative anyway, due to the fact
that the bene�cial e�ect of stirrup con�nement on the
concrete compressive strength is neglected, and the use
of reduction factor ' does not make any modi�cation
necessary for considering the bond-slip e�ect on the
ultimate capacity of the RC section.

When the capacity for the two cases of with and
without bar slip e�ect is approximately the same (for
example, under pure bending conditions), it does not
mean that the perfect bond assumption will not a�ect
the accuracy of numerical responses. The moment-
curvature curve of the critical cross section of spec-
imen 2 is presented in Figure 13. In pure bending
mode, as in Figure 13(a), although, in both cases of
analysis, the moment capacities are approximately the
same, these values correspond to di�erent curvatures.
This di�erence is a result of the slip e�ect between
the reinforcing bar and the surrounding concrete. So,

under such conditions, removing the slip e�ect further
a�ects ductility but has no signi�cant e�ect on bearing
capacity. But, in the presence of an axial force with bi-
axial or uniaxial eccentricity, as shown in Figure 13(b),
the di�erence and noncompliance will be apparent for
both cases of curvature and capacity, just as perfect
bond assumption leads to lower ductility and higher
bearing capacity estimation.

4. Conclusions

� The numerical bearing capacity under pure axial
compressive force conditions will be the same for
the two cases of with and without slip e�ect.

� Removing the slip e�ect under pure bending condi-
tions has a signi�cant e�ect on ductility, as well as
a negligible e�ect on strength bearing capacity.

� In the presence of an axial force with biaxial or uni-
axial eccentricity, the di�erence and noncompliance
will be apparent for both cases of curvature and
capacity, just as the perfect bond assumption leads
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to considerably lower ductility and higher capacity
estimation. In these cases, the capacity will be
approximately 17% larger than when the slip e�ect
is considered.

� Although the ACI318-11 criteria is based on the
perfect bond assumption, and in some cases, such as
pure bending mode, the nominal bearing capacity
proposed by the ACI is slightly larger than the
numerical one, including slip e�ect, the results
are conservative anyway, due to the fact that the
bene�cial e�ect of stirrup con�nement on concrete
compressive strength is neglected. Moreover, the use
of reduction factor ' does not make any modi�cation
necessary for considering the bond-slip e�ect on the
ultimate capacity of RC sections.
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