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Abstract. The Harmony Search (HS) algorithm is a popular metaheuristic optimization
method that reproduces the music improvisation process in searching for a perfect state of
harmony. HS has a remarkable ability in detecting near global optima at low computational
cost but may be ine�ective in performing local search. This study presents the Multi-
Adaptive Harmony Search (MAHS) algorithm for sizing optimization of skeletal structures
with continuous or discrete design variables. The main di�erence between the proposed
algorithm and classic HS is the way of choosing and adjusting the bandwidth distance
(bw). Furthermore, MAHS dynamically updates the Harmony Memory Consideration
Rate (HMCR) and Pitch-Adjusting Rate (PAR) parameters during the search process.
The robustness and performance of the MAHS algorithm are evaluated in comparison with
literature, and in particular, with well-known HS variants such as Global-best Harmony
Search (GHS), Self-Adaptive Harmony Search (SAHS), and E�cient Harmony Search
(EHS). Optimization results obtained by the MAHS algorithm con�rm the validity of the
proposed approach.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Classical optimization techniques (e.g. linear, non-
linear, geometric, integer, stochastic, and dynamic
programming) may use di�erential calculus to �nd the
optimum solution. Therefore, these methods could
not be e�cient in real problems entailing discontinu-
ous, non-convex and non-di�erentiable cost functions.
Moreover, gradient information can be time consum-
ing or even impossible to obtain. These limitations
pushed researchers towards developing meta-heuristic
optimization methods.

Generally speaking, a meta-heuristic algorithm is
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an iterative design generation process employing some
heuristic criterion to explore and exploit the search
space; in particular, learning strategies may be used
to �nd nearly global optimum solutions [1]. Meta-
heuristic algorithms are based on the existing laws of
nature; for example, Genetic Algorithms (GA) devel-
oped by Holland [2] and Goldberg [3] are inspired from
the theory of evolution; Tabu Search (TS) developed
by Glover [4], Ant Colony Optimization introduced by
Dorigo et al. [5], Particle Swarm Optimizer presented
by Eberhart and Kennedy [6] attempt to mimic the
social behavior of humans or animals. Simulated
Annealing proposed by Kirkpatrick [7], Big Bang-Big
Crunch proposed by Erol and Eksin [8] and Charged
System Search proposed by Kaveh and Talatahari [9]
reproduce physical phenomena.

Harmony Search (HS) is a popular meta-heuristic
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optimization algorithm �rst introduced by Geem et al.
in 2001 [10]. The optimization search reproduces the
music improvisation process to �nd a perfect state of
harmony. HS has several excellent features that make
it one of the most attractive meta-heuristic algorithms.
For example, the very simple formulation makes HS
very suited for hybridization with other optimization
algorithms. Other features such as easiness and ro-
bustness explain why the HS algorithm was applied
to di�erent science and engineering optimization prob-
lems including computer science (web page cluster-
ing, internet routing, robotics), electrical engineering
(energy system dispatch, power system design, cell
phone network), civil engineering (structural design,
water network design, dam scheduling, vehicle routing,
groundwater management, ood model calibration),
mechanical engineering (heat exchanger design, satel-
lite heat pipe design, o�shore structure mooring),
biological and biomedical applications (RNA structure
prediction, hearing aids, and medical physics) [11].

The original structure of the HS algorithm was
often modi�ed to improve its robustness also based on
the character of the considered optimization problems.
For example, Mahdavi et al. [12] developed an Im-
proved Harmony Search (IHS) where Pitch-Adjusting
Rate (PAR) and bandwidth distance (bw) are dy-
namically adjusted in the search process. Geem [13]
proposed a novel stochastic derivative harmony search
for discrete design variables. Omran and Mahdavi [14]
developed the Global-best Harmony Search (GHS)
algorithm. Wang and Huang [15] introduced the
Self-Adaptive Harmony Search (SAHS) based on a
novel pitch adjusting strategy. Fesanghary et al. [16]
utilized the Sequential Quadratic Programming (SQP)
as local search tool in the HS search process. Saka
and Hasancebi [17] developed the Adaptive Harmony
Search (AHS) algorithm which dynamically adjusts
HMCR and PAR based on the values taken by these
parameters in the optimization process. HS variants
are said non-hybridized if the modi�cations of the
original HS formulation regard only the algorithm in-
ternal parameters. Conversely, hybridized HS variants
combine HS with other optimization algorithms.

This paper presents an improved version of the HS
algorithm, named as Multi-Adaptive Harmony Search
(MAHS), where HS internal parameters are adaptively
modi�ed in the optimization process. The new algo-
rithm is tested in sizing optimization of structures with
continuous and discrete design variables.

The remainder of the article is arranged as follows.
Section 2 recalls the statement of the design opti-
mization problem for skeletal structures. The classical
HS algorithm is described in Section 3. Section 4
describes in detail the Multi-Adaptive Harmony Search
algorithm (MAHS) developed in this research. Sec-
tion 5 presents the results obtained in classical test

problems with continuous (planar and spatial truss
structures) or discrete optimization variables (planar
frames); MAHS results are then compared with litera-
ture. Finally, the last section provides some concluding
remarks.

2. Weight minimization of skeletal structures

In optimization of structural design, there are three
important types of optimal design approaches [18]:
(1) Sizing optimization searches for the optimal cross-
section size of the elements of a structure with a
�xed con�guration; (2) Geometric optimization which
searches for a set of geometric and cross section size us-
ing a given topology; and (3) Topological optimization
that selects the best structure from di�erent structural
types.

The minimum weight design problem for a skeletal
structure can be formulated as follows:

Minimize W ~(A) =
gX
k=1

Ak
mgX
i=I

�iLi; (1)

where W ~(A) is the design vector containing the cross-
sectional areas of the elements included as optimization
variables ~A = fA1; A2; :::; Agg, g is the total number of
design variables (i.e. number of member groups), Ak
is the cross sectional area of the members belonging to
group k, mg is the number of members in group k, �i
is the material density of member i, Li is the length of
member i.

Truss structures can be subjected to the following
optimization constraints:

0 � � � �max for tension members; (2)

�b � � � 0 for compression members; (3)

�min � �j � �max for free nodes; (4)

Amin � Ak � Amax for sizing variables; (5)

where �max is the allowable stress for tension members,
�b is the allowable buckling stress for compression
member, �j is the displacement of the jth node, min
and max are the lower and upper bounds for allowable
stress, displacement and cross-sectional area.

For frame structures, the AISC speci�cation is
used and the LRFD interaction (equations H1-1a,
b) [19] for members in exure and axial compression
is de�ned as:

�i =
Pu

2�cPn
+
�

Mux

�bMnx
+

Muy

�bMny

�
� 1:0 � 0

if
Pu
�cPn

< 0:2; (6)
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�i =
Pu
�cPn

+
8
9

�
Mux

�bMnx
+

Muy

�bMny

�
� 1:0 � 0

if
Pu
�cPn

� 0:2; (7)

Inter-storey drift < h=300; (8)

where Pu is the required axial strength (tension or
compression); Pn is the nominal axial strength (tension
or compression); �c is the resistance factor (�c = 0:9
for tension, �c = 0:85 for compression members); Mux
and Muy are the required exural strengths in the x
and y directions, respectively; Mnx and Mny are the
nominal exural strengths in the x and y directions
(for two-dimensional structures, Mny = 0); �b is the
exural resistance reduction factor (�b = 0:90); and h
is the story height.

The penalty function is de�ned as:

� =
qX
i=I

�i; (9)

fpenalty( ~A) = (1 + "1�)"2 ; (10)

where q is the number of optimization constraints.
In utilizing the penalty function, after analyzing

the structure, if the ith constraint is satis�ed then �i
will be considered as zero, if not, it will be normal-
ized to the allowable value. The structural weight
determined with Eq. (1) is multiplied by the penalty
function (10) to form the pseudo-objective function. If
all constraints are satis�ed, the penalty terms �i are
all set equal to zero and the pseudo-objective function
coincides with the structural weight. Conversely, if
some constraint is violated, the corresponding penalty
term �i is set equal to the ratio between the constraint
value and the allowable constraint limit. Values of
parameters "1 and "2 are selected from sensitivity
analysis; in particular, "1 is set equal to 1 while "2
increases linearly from 1.5 to 3 (see [20] for more
details).

3. Classic harmony search

The Harmony Search algorithm reproduces the musical
process of searching for a perfect state of harmony.
Optimization variables are analogous to musical in-
struments, values of variables correspond to musical
notes and the design vector corresponds to a melody.
The optimization process of classical HS includes the
following steps [10].

Step 1. Initialization of the HS parameters. By
setting HS internal parameters appropriately, it is pos-
sible to enhance the performance of the optimization

algorithm. The following parameters must be initial-
ized: (i) Harmony Memory Size (HMS) that de�nes the
number of design vectors stored in the Harmony Mem-
ory matrix; (ii) Harmony Memory Considering Rate
(HMCR) that determines the probability of choosing
a new harmony from the Harmony Memory; (iii) the
Pitch-Adjusting Rate (PAR) that sets the probability
of adjusting values selected from the Harmony Memory.

Step 2. Initialization of Harmony Memory
(HM). The Harmony Memory (HM) matrix stores
a number of design vectors retained in the optimiza-
tion process. Because each row of the HM matrix
corresponds to a design vector, Harmony Memory is
a HMS�(N + 1) matrix. The HM matrix is initialized
with randomly generated design vectors that are sorted
by the objective function value:

HM =

26664
a1

1 a1
2 � � � a1

N j f(A1)
a2

1 a2
2 � � � a2

N j f(A2)
...

...
. . .

... j ...
aHMS

1 aHMS
2 � � � aHMS

N j f(AHMS)

37775 :(11)

The purpose of using the HM matrix is to retain better
designs during the search process.

Step 3. Improvising a new harmony. Each trial
design is called a \harmony" and generating a new
harmony is called \improvisation". A new harmony
Anew = fanew

1 ; anew
2 ; anew

3 ; :::; anew
N�1; anew

N g is generated
by following three rules: (1) HM consideration that
makes a new harmony to be selected from values
stored in HM. Good solutions stored in HM are hence
taken into account during the search process; (2)
Pitch adjustment re�nes values selected from HM. This
rule makes the algorithm to explore more regions in
the neighborhood of the currently selected solution;
(3) Random selection from the whole range currently
available for each design variable increases the diversity
of the solutions and allows local optima trap to be
bypassed.

For example, if rule (1) is followed, the value of
the �rst design variable fanew

1 g included in the new
harmony can be selected from the �rst column the
HM matrix fa1

1; a2
1; :::; aHMS�1

1 ; aHMS
1 g. In case some

other design variables fanew
2 ; anew

3 ; :::; anew
N�1; anew

N g are
included in this rule, they will be selected in a similar
fashion.

The HMCR parameter corresponds to the prob-
ability of selecting the new value of a design variable
from the previously recorded values stored in the HM
matrix. Therefore, (1-HMCR) is the probability of
randomly choosing a value from the entire range of
available values. For example, HMCR=0.80 means
that the HS algorithm will have 80% probability of
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choosing the new value of the design variable from
the values stored in the HM matrix and only 20%
probability of choosing the new value from the entire
range of values. Setting HMCR=1.0 is not appropriate
because this will raise the risk of getting stuck in a local
optimum. The HMCR rule is applied as follows:

anew
i  

8>>>><>>>>:
anew
i 2 fa1

i ; a2
i ; :::; aHMS

i g
with probability HMSR

anew
i 2 [Amin; Amax]

with probability (1-HMCR)

(12)

Every design variable of the new harmony chosen
from HM is checked to determine whether it should
be modi�ed or not. This procedure uses the PAR
parameter that sets the probability of adjusting the
values chosen from the HM as follows:

pitch adjusting decision for anew
i

 
8<:yes with probability PAR

no with probability (1-PAR)
(13)

The PAR parameter controls the exploitation process
in the neighborhood of the solution currently selected
from HM. The (1-PAR) term hence represents the
probability of leaving the selected value unchanged.
The new design variable is adjusted as:

anew
i  

8>>>><>>>>:
anew
i + rand[�1; 1]� bw

for continuous design variables

anew
i (k �m)

for discrete design variables
(14)

where bw is an arbitrary distance bandwidth in the
case of a continuous variable and rand[-1,1] is a random
number uniformly distributed between -1 and 1; k is
the current index number. and m is an integer number
called neighboring index.

Step 4. Evaluating objective function and up-
dating the harmony memory. If the new harmony
Anew = fanew

1 ; anew
2 ; :::; anew

N g is better than the worst
design vector stored in the HM matrix (i.e. AHMS), the
new harmony is included in HM to replace the worst
harmony. The Harmony Memory is sorted again based
on the values of objective function computed for the
di�erent trial designs.

Step 5. Terminating the optimization process.
The iterative process of Steps 3 and 4 is repeated until
the termination criterion is satis�ed. In the present
study, the algorithm stops when a prede�ned Number
of Improvisations (NI) is reached; NI corresponds the

number of objective function evaluations. The best
design vector stored in the HM is �nally taken as the
optimum design.

4. Multi-adaptive harmony search

Classic Harmony Search can �nd nearly global optima
rather quickly. However, since parameters HMCR,
PAR and bw are kept constant throughout the search
process, its local search is relatively ine�cient. The
MAHS algorithm developed in this research includes
the same steps as classical HS except for Step 3 where
the HMCR and PAR parameters are dynamically
updated and two di�erent formulations are applied to
update the bandwidth parameter bw.

4.1. Continuous design variables
4.1.1. Update of the bandwidth parameter
The bandwidth parameter (bw) serves for pitch-
adjusting continuous design variables. Large values of
bw should be used in the early optimization iterations
to explore large regions of the design space thus
approaching the global optimum. Conversely, small
values of bw should be used in the �nal optimization
cycles where exploitation capability is required for
performing e�cient local search. In order to balance
diversi�cation in initial search steps and intensi�cation
in the �nal search steps, bw must dynamically change
during the search process. For that purpose, MAHS
sets the bw parameter as:

bw(NI)=bwmin�(bwmin�bwmax)�
�

1� NI
max NI

�2

with probability Pbw; (15)

bw(NI) = [max(HMi)�min(HMi)]

with probability (1� Pbw); (16)

where bwmax and bwmin are the maximum and mini-
mum bandwidth values, respectively; NI denotes the
current improvisation (i.e. number of structural analy-
ses); maxNI is the maximum number of improvisations;
bw(NI) is the bandwidth distance used in the NIth
improvisation; min(HMi) and max(HMi), respectively,
are the minimum and maximum values of the ith design
variable stored in the HM matrix.

The value of bw determined from Eq. (15) de-
creases quadratically with the number of improvisa-
tions. Using quadratic variation will raise the reduction
rate of the bw parameter relative to linear variation.
This causes the bw parameter to approach faster to
its minimum value (bwmin). By using this strategy,
exploitation capability required for performing e�cient
local search can be improved. In the early optimiza-
tion cycles, HS explores large regions of design space
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Figure 1. Illustration of the use of Eq. (16).

because the [max(HMi)-min(HMi)] di�erence is large.
Thus, MAHS concentrates more on diversi�cation.
As the minimum and maximum values of the ith
design variable stored in HM eventually approach the
optimum, the [max(HMi)-min(HMi)] di�erence tends
to become zero. Therefore, the optimization algorithm
focuses more on intensi�cation.

A new design vector is generated in the neigh-
borhood of the harmony memory with Eq. (16); con-
sequently, MAHS approaches quickly the region of
design space containing the global optimum. Figure 1
illustrates this process for a 2D optimization problem.
Besides values included in the HM matrix, neighboring
values can be considered in the formation of the new
solution.

If the pitch-adjusted value, anew
i , violates side

constraints, the value of the ith design variable is reset
as follows:

anew
i  amin

i + rand�(aold
i � amin

i )

if anew
i � amin

i ; (17)

anew
i  amax

i � rand�(amax
i � aold

i )

if anew
i � amax

i ; (18)

where aold
i is the value of the ith design variable before

pitch-adjusting; amin
i and amax

i , respectively, are the
corresponding side constraints.

4.1.2. Update of the new Pbw parameter
As the di�erence of [max(HMi)-min(HMi)] approaches
zero in the �nal search steps, the probability of choos-
ing Eq. (16) should decrease. For that purpose, MAHS
utilizes the new parameter Pbw to choose the equation
for updating bw. In particular, Pbw is dynamically
updated during the search process as:

Pbw(NI) = Pbw;min +
Pbw;max � Pbw;min

Max NI
�NI: (19)

It appears that Pbw increases linearly in the optimiza-
tion process. A random number uniformly distributed
in the interval (0,1) is generated. If this random
number is smaller than Pbw, the value of bw is chosen
from Eq. (15), otherwise Eq. (16) is utilized. Therefore,
MAHS is more likely to use Eq. (16) for updating bw
in the initial iterations. Conversely, because Pbw grad-
ually increases towards the end optimization process,
where Eq. (16) approaches zero, choosing Eq. (15) to
update bw is more probable.

4.1.3. Update of the HMCR parameter
The HMCR and PAR parameters are used to improve
the current solution. Unlike classic HS, the harmony
memory considering rate parameter is dynamically
updated in MAHS as:

HMCR(NI) =HMCRmin+(HMCRmax�HMCRmin)

�
�

NI
Max NI

�0:1

: (20)

This causes the probability of choosing one value from
historical values stored in the harmony memory to
increase during the search process. The exponent 0.1
for Eq. (20), causes the value of HMCR to increase
faster in the early optimization iterations. In other
words, in the �nal search steps, the new design variable
is selected almost from the values stored in HM. This
can enhance intensi�cation in the �nal search steps.
The typical variation of HMCR versus the number of
improvisations is shown in Figure 2.

4.1.4. Update of the PAR parameter
The pitch adjusting rate parameter, also, is dynami-
cally updated in the search process. In particular, it
decreases with the number of improvisations:

PAR(NI) =PARmax � (PARmax � PARmin)

�
�

NI
Max NI

�2

: (21)

Figure 2. Typical variation of HMCR with the number of
improvisation.
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By setting PAR to a large value, it is possible to
increase the probability of pitch-adjusting the values
selected from HM. This enhances the diversi�cation
ability of MAHS in the initial iterations. The PAR
parameter reduces to its minimum value in the �nal
iterations, enough for performing local search that
focuses more on intensi�cation. By using this quadratic
variation, the reduction rate of the PAR parameter
increases in �nal stage of search.

4.2. Discrete design variables
For optimization problems with discrete design vari-
ables, Pbw, PAR, HMCR parameters are de�ned as in
Section 4.1 with only a di�erence: the bandwidth bw
is replaced by the neighboring index m, which is an
integer number:

m(NI) =Ceil
�
mmin�(mmin �mmax)

�
�

1� NI
Max NI

�2�
with probability Pbw;

(22)

m(NI) = [kmax(HMi)� kmin(HMi)]

with probability (1� Pbw); (23)

where mmax and mmin are the maximum and mini-
mum neighboring index values, respectively; m(NI) is
neighboring index in the NIth improvisation; \Ceil" is a
function that is rounded up to the next highest integer;
kmin(HMi) and kmax(HMi) are the bounds of the ith
discrete variable stored in the harmony memory.

If the pitch adjusted value violates side con-
straints, the value of optimization variable is reset with
Eqs. (17) and (18) where amin

i and amax
i are replaced

by the corresponding discrete variable bounds.

5. Test problems and optimization results

The new multi-adaptive harmony search algorithm
developed in this research was tested in classical sizing
optimization problems of trusses and frames. Opti-
mum designs obtained by MAHS were compared in
detail with other metaheuristic algorithms presented
in literature. Furthermore, convergence behavior of
MAHS was compared with the Global-Best Harmony
Search (GHS) developed by Omran and Mahdavi [14],
Self-Adaptive Harmony Search developed by Wang
and Huang [15] and used by Degertekin [21], and
E�cient Harmony Search, which is originally Improved
Harmony Search, was presented by Mahdavi et al. [12]
applied by Degertekin [21]. The best combination
of internal parameters was determined by sensitivity
analysis: PARmin = 0:2 � 0:3, PARmax = 0:7 � 0:8,
HMCRmin=0.9, HMCRmax=0.95�1.0, Pbw;min = 0:2

and Pbw;max = 0:8 � 1:0, HMS=10 � 20, mmin = 1
and mmax = 15.

In this paper, the parameters of the algorithms
are not set initially. In all examples, sensitivity
analyses are performed in order to �nd an appro-
priate set of parameters to obtain the best result.
In sensitivity analysis we �x all parameters except
one and we study the variation of that particular
parameter. We do this for other parameters to obtain
the best combination of parameters; however it is
not required to do this for all examples since the
parameters set is almost the same in all the examples.
Generally, in all examples, the parameters set is consid-
ered as follows: PARmin=0.2�0.3, PARmax=0.7�0.8,
HMCRmin=0:9, HMCRmax=0.95�1.0, Pbw;min=0:2
and Pbw;max=0.8�1.0, HMS=10�20, mmin = 1 and
mmax = 15.

5.1. Truss structures
5.1.1. Planar 10-bar truss
The �rst test problem is the weight minimization of the
planar 10-bar planar shown in Figure 3. The modulus
of elasticity of the material is 10 Msi and material
density is 0.1 lb/in3. The maximum stress for all
members was set as 25 ksi. The maximum allowable
displacement for all free nodes in X and Y directions
is set as 2.0 in. The cross-sectional area of each element
was included as design variable; therefore, there are 10
sizing variables. The minimum cross-sectional area of
all members is 0.1 in2.

Two di�erent loading cases are considered. In
Case 1, concentrated loads of 100 kips are applied at
nodes 2 and 4 in the negative Y direction (i.e. P1 = 100
kips and P2 = 0). In Case 2, P1 = 150 kips and P2 = 50
kips hold.

In order to evaluate the sensitivity of the MAHS
algorithm to internal parameters, di�erent combina-
tions of internal parameters were considered and in-
dependent optimization runs were carried for each
combination starting from di�erent initial populations.
Table 1 shows the results of the sensitivity analysis
performed for Case 1. Once the best combination of

Figure 3. Schematic of the planar 10-bar truss [18].
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Table 1. Sensitivity analysis to �nd the best set of parameters of MAHS for the 10-bar truss (Case 1).

Case Pbwmin Pbwmax HMS HMCRmin HMCRmax PARmin PARmax bwmin bwmax

Average
weight

(lb)

Best
weight

(lb)
1 0.2 1 10 0.9 0.95 0.1 0.8 0.1 1 5063.93 5062.77
2 0.2 1 10 0.9 0.95 0.1 0.8 0.01 0.1 5070.49 5061.48
3 0.2 1 10 0.9 0.95 0.1 0.8 0.001 0.01 5073.17 5063.11
4 0.2 1 10 0.9 0.95 0.2 0.8 0.1 1 5064.47 5063.00
5 0.2 1 10 0.9 0.95 0.2 0.8 0.01 0.1 5067.13 5061.65
6 0.2 1 10 0.9 0.95 0.2 0.8 0.001 0.01 5067.41 5063.08
7 0.2 1 10 0.9 0.95 0.3 0.8 0.01 0.1 5062.94 5061.89
8 0.2 1 10 0.9 0.95 0.3 0.8 0.001 0.01 5065.53 5062.05
9 0.2 1 10 0.9 0.95 0.2 0.7 0.01 0.1 5068.70 5061.97
10 0.2 1 10 0.9 0.95 0.2 0.7 0.001 0.01 5066.94 5062.75
11 0.2 1 10 0.9 0.95 0.3 0.7 0.01 0.1 5062.40 5061.55
12 0.2 1 10 0.9 0.95 0.3 0.7 0.001 0.01 5073.23 5063.68
13 0.2 1 10 0.9 1 0.3 0.8 0.01 0.1 5061.81 5061.21
14 0.2 1 10 0.9 1 0.3 0.8 0.001 0.01 5062.18 5061.29
15 0.2 1 10 0.9 1 0.1 0.7 0.01 0.1 5067.94 5061.26
16 0.2 1 10 0.9 1 0.1 0.7 0.001 0.01 5061.53 5061.01
17 0.2 1 10 0.9 1 0.2 0.7 0.01 0.1 5062.47 5061.16
18 0.2 1 10 0.9 1 0.2 0.7 0.001 0.01 5062.18 5060.94
19 0.2 1 10 0.9 1 0.3 0.8 0.01 0.1 5062.28 5061.40
20 0.2 1 10 0.9 1 0.3 0.8 0.001 0.01 5061.78 5061.16
21 0.2 1 20 0.9 1 0.3 0.8 0.01 0.1 5067.85 5063.36
22 0.2 1 20 0.9 1 0.3 0.8 0.001 0.01 5064.26 5061.83
23 0.2 1 20 0.9 1 0.3 0.8 0.001 0.01 5063.52 5061.58
24 0 1 10 0.9 1 0.3 0.8 0.001 0.01 5062.90 5061.31
25 0.1 0.9 10 0.9 1 0.3 0.8 0.001 0.01 5061.99 5061.96
26 0.2 0.8 10 0.9 1 0.3 0.8 0.001 0.01 5061.36 5060.84
27 0.5 1 10 0.9 1 0.3 0.8 0.001 0.01 5067.70 5061.77
28 0.2 0.8 10 0.9 1 0.3 0.8 0.0001 0.001 5064.76 5062.40

internal parameters was determined, 30 independent
optimization runs were carried out starting from dif-
ferent initial populations. The maximum number of
improvisations was always set equal to 10,000.

Tables 2 and 3 compare the optimization results
obtained by MAHS with literature for Case 1 and Case
2, respectively. Statistical data such as the average
weight and standard deviation of weight determined
for 30 independent optimization runs are included in
the table and the best and worst optimized weights
obtained in the 30 optimization runs are also shown.

It can be seen that the present algorithm always
converges to the best design without violating any
optimization constraint. Furthermore, the worst design
obtained in the 30 independent optimization runs
was just slightly di�erent from the optimized designs
reported in literature. Standard deviation on optimized

weight was smaller than that found for the SAHS used
by Degertekin [21]. This proves that in spite of its
stochastic nature, MAHS was always able to correctly
converge to the global optimum.

The best designs were obtained after only 8751
and 8325 structural analyses for Case 1 and Case 2,
respectively. In Case 1, classic HS obtained the opti-
mum design after 20,000 structural analyses while in
Case 2, classic HS required 15,000 structural analyses.
However, the SAHS utilized by Degertekin [21] required
less structural analyses than MAHS; i.e., respectively,
7081 and 7267 vs. 8751 and 8325.

Converges behavior of MAHS is compared with
other HS variants in Figure 4 for Case 1. The
maximum number of structural analyses (i.e. number
of improvisation) was always set equal to 10,000 for all
HS variants.
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Table 2. Optimization results obtained for Case 1 of the planar 10-bar truss problem.
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HS PSO PSOPC HPSO HPSOACO IHS EHS SAHS Worst
result

Best
result

A1 30.15 33.469 30.569 30.704 30.307 30.5222 30.208 30.394 30.341 30.508
A2 0.102 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
A3 22.71 23.177 22.974 23.167 23.434 23.2005 22.698 23.0 98 22.698 23.155
A4 15.27 15.475 15.148 15.183 15.505 15.2232 15.275 15.491 15.4 15.31
A5 0.102 3.649 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
A6 0.544 0.116 0.547 0.551 0.5241 0.5513 0.529 0.529 0.559 0.552
A7 7.541 8.328 7.493 7.46 7.4365 7.4572 7.558 7.488 7.55 7.457
A8 21.56 23.34 21.159 20.978 21.079 21.0367 21.559 21.189 21.509 21.015
A9 21.45 23.014 21.556 21.508 21.229 21.5288 21.491 21.342 21.339 21.53
A10 0.1 0.19 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Weight (lb) 5057.88 5529.5 5061 5060.92 5056.56 5060.82 5062.39 5061.42 5062.06 5060.87
Average

weight (lb)
N/A N/A N/A N/A N/A N/A 5063.73 5061.95 5061.262

Standard
deviation (lb)

N/A N/A N/A N/A N/A N/A 1.98 0.71 0.283

Number of
structural
analyses

20,000 150,000 150,000 150 ,000 10,650 1,350 9,791 7,081 9,353 8,751

Note : 1 lb=4.45 N; 1 in2 =6.452 cm2; N/A : Not Available.

Figure 4. Comparison of HS variants convergence curves
obtained for Case 1 of the planar 10-bar truss problem.

It can be seen that the average optimization
history of MAHS is very close to the best run. The
convergence speed of MAHS was de�nitely higher
than for the other HS variants. EHS outperformed
classical HS while GHS was, by far, the worst HS-based
optimizer.

5.1.2. Spatial 25- bar truss
The third test problem solved in this study was the
weight minimization of the spatial 25-bar truss shown
in Figure 5. The modulus of elasticity of the material
is 10 Msi while material density is 0.1 lb/in3. Because
of structural symmetry about the X and Y axes, truss
elements were grouped into 8 independent groups (i.e.
there are 8 sizing design variables) as: (1) A1, (2) A2 �
A5; (3) A6 � A9; (4) A10 � A11, (5) A12 � A13, (6)
A14 � A17, (7) A18 � A21, and (8) A22 � A25.

Stress limits in tension and compression for each
element group are listed in Table 4. The maximum
allowable displacement in every direction for all free
nodes is 0.35 in. Cross-sectional areas of all elements
must be less than 0.01 in2. The structure is subject
to two independent loading conditions described in
Table 5.

Results of sensitivity analysis carried out for
�nding the best combination of internal parameters
are presented in Table 6; �ve independent runs were
performed for each set of parameters. The table reports
the best and average structural weights obtained by
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Table 3. Optimization results obtained for Case 2 of the planar 10-bar truss problem.
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HS PSO PSOPC HPSO HPSOACO SQPHS EHS SAHS Worst
result

Best
result

A1 24.29 23.25 22.935 23.743 23.353 23.194 23.31 23.589 23.525 23.469 23.131
A2 0.1 0.102 0.113 0.101 0.1 0.1 0.1 0.1 0.1 0.1 0.1
A3 23.35 25.73 25.355 25.287 25.502 24.585 24.63 25.422 25.429 25.734 25.385
A4 13.66 14.51 14.373 14.413 14.25 14.221 14.59 14.488 14.488 14.031 14.338
A5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
A6 1.969 1.977 1.99 1.969 1.972 1.969 1.967 1.975 1.992 1.971 1.97
A7 12.67 12.21 12.346 12.362 12.363 12.489 12.49 12.362 12.352 12.46 12.438
A8 12.54 12.61 12.923 12.694 12.984 12.925 12.94 12.682 12.698 13.24 13.138
A9 21.97 20.36 20.678 20.323 20.356 20.952 20.51 20.322 20.341 19.853 20.224
A10 0.1 0.1 0.1 0.103 0.101 0.101 0.1 0.1 0.1 0.1 0.1

Weight (lb) 4691.84 4668.81 4679.47 4677.7 4677.29 4675.78 4 668.72 4679.02 4678.84 4678.85 4677.71
Average

weight (lb)
N/A N/A N/A N/A N/A N/A N/A 4681.61 4680.08 4678.8

Standard
deviation (lb)

N/A N/A N/A N/A N/A N/A N/A 2.51 1.89 0.407

Number of
structural
analyses

N/A 15,000 150,000 150,000 150,000 9,925 22,000 11,402 7,267 9,425 8,325

Figure 5. Schematic of the spatial twenty-�ve-bar
truss [18].

MAHS. In all cases, the maximum number of impro-
visations (i.e. structural analysis) was set equal to
10,000.

Table 7 compares the optimization results ob-
tained by MAHS with literature. The SAHS algorithm

Table 4. Stress limits for the spatial 25-bar truss
members.

Design
variables (Ai)

Allowable
compressive
stress (ksi)

Allowable
tensile

stress (ksi)
A1 35.092 40

A2-A5 11.59 40
A6-A9 17.305 40
A10-A11 35.092 40
A12-A13 35.092 40
A14-A17 6.759 40
A18-A21 6.959 40
A22-A25 11.082 40

used by Degertekin [21] obtains to the best design
overall while the IHS algorithm developed by Lamberti
and Pappalettere [24] is the fastest optimizer overall.
The optimum design reported for classical HS [18]
violated slightly the optimization constraints. Remark-
ably, the worst result found in the 30 independent
runs carried out for MAHS was practically the same
as the best design found by the other optimization
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algorithms. Similar to the previous examples, the stan-
dard deviation on optimized weight found by MAHS
was quite small. Classical HS obtained the optimum
solution after 15,000 structural analyses while MAHS
required only 7,484 structural analyses to complete the
optimization process.

Convergence curves presented in Figure 6 con�rm
that MAHS has a better convergence behavior than
other HS variants which rank as in the previous two
test cases.

Table 5. Loading conditions for the spatial 25-bar truss
(kips).

Node Condition 1 Condition 2

Fx Fy Fz Fx Fy Fz

1 0 20 -5 1 10 -5

2 0 -20 -5 0 10 -5

3 0 0 0 0.5 0 0

6 0 0 0 0.5 0 0

5.1.3. Spatial 72-bar truss
In the fourth test problem, the weight of the spatial 72-
bar truss shown in Figure 7 is minimized. The modulus
of elasticity of the material is 10 Msi and material
density is 0.1 lb/in3. The cross-sectional areas of the

Figure 6. Comparison of HS variants convergence curves
obtained for the spatial 25-bar truss problem.

Table 6. Results of sensitivity analysis carried for tuning the MAHS internal parameters for spatial 25-bar truss problem.

Case Pbwmin Pbwmax HMS HMCRmin HMCRmax PARmin PARmax bwmin bwmax
Average

weight (lb)
Best

weight (lb)
1 0.2 1 10 0.9 0.95 0.1 0.8 0.1 1 548.15 547.80
2 0.2 1 10 0.9 0.95 0.1 0.8 0.01 0.1 545.35 54524
3 0.2 1 10 0.9 0.95 0.1 0.8 0.001 0.01 545.64 545.19
4 0.2 1 10 0.9 0.95 0.2 0.8 0.1 1 547.11 546.57
5 0.2 1 10 0.9 0.95 0.2 0.8 0.01 0.1 545.44 545.25
6 0.2 1 10 0.9 0.95 0.2 0.8 0.001 0.01 545.41 545.24
7 0.2 1 10 0.9 0.95 0.3 0.8 0.01 0.1 545.39 545.29
8 0.2 1 10 0.9 0.95 0.3 0.8 0.001 0.01 545.76 545.20
9 0.2 1 10 0.9 0.95 0.2 0.7 0.01 0.1 545.56 545.31
10 0.2 1 10 0.9 0.95 0.2 0.7 0.001 0.01 545.85 545.28
11 0.2 1 10 0.9 0.95 0.3 0.7 0.01 0.1 546.41 546.28
12 0.2 1 10 0.9 0.95 0.3 0.7 0.001 0.01 546.07 546.26
13 0.2 1 10 0.9 1 0.3 0.8 0.01 0.1 548.42 547.24
14 0.2 1 10 0.9 1 0.3 0.8 0.001 0.01 545.87 545.19
15 0.2 1 10 0.9 1 0.1 0.7 0.01 0.1 545.63 545.29
16 0.2 1 10 0.9 1 0.1 0.7 0.001 0.01 547.12 545.22
17 0.2 1 10 0.9 1 0.2 0.7 0.01 0.1 546.91 546.29
18 0.2 1 10 0.9 1 0.2 0.7 0.001 0.01 545.64 545.20
19 0.2 1 10 0.9 1 0.3 0.8 0.01 0.1 545.46 545.26
20 0.2 1 10 0.9 1 0.3 0.8 0.001 0.01 545.23 545.17
21 0.2 1 20 0.9 1 0.3 0.8 0.01 0.1 546.55 545.29
22 0.2 1 20 0.9 1 0.3 0.8 0.001 0.01 546.06 545.29
23 0.2 1 20 0.9 1 0.3 0.8 0.001 0.01 546.15 545.48
24 0 1 10 0.9 1 0.3 0.8 0.001 0.01 545.41 545.21
25 0.1 0.9 10 0.9 1 0.3 0.8 0.001 0.01 545.41 545.31
26 0.2 0.8 10 0.9 1 0.3 0.8 0.001 0.01 545.89 545.35
27 0.5 1 10 0.9 1 0.3 0.8 0.001 0.01 549.82 545.51
28 0.2 0.8 10 0.9 1 0.3 0.8 0.0001 0.001 545.87 545.36
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Table 7. Optimization results obtained for the planar 25-bar truss problem.
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HS PSO PSOPC HPSO BB-BC IHS HBB-BC EHS SAHS Worst
result

Best
result

1 A1 0.047 9.863 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

2 A2-A5 2.022 1.798 1.979 1.97 2.092 1.9871 1.993 1.995 2.074 1.9217 1.9843

3 A6-A9 2.950 3.654 3.011 3.016 2.964 2.9935 3.056 2.98 2.961 3.0885 2.998

4 A10-A11 0.01 0.1 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

5 A12-A13 0.014 0.1 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

6 A14-A17 0.688 0.596 0.657 0.694 0.689 0.6839 0.665 0.696 0.691 0.6768 0.6819

7 A18-A21 1.657 1.659 1.678 1.681 1.601 1.6769 1.642 1.679 1.617 1.6916 1.6773

8 A22-A25 2.663 2.612 2.693 2.643 2.686 2.6622 2.679 2.652 2.674 2.6425 2.6635

Weight (lb) 544.38 627.08 545.27 545.19 545.38 545.15 545.16 545.49 545.12 545.309 545.165
Average

weight (lb)
N/A N/A N/A N/A 545.78 N/A 545.66 546.52 545.94 545.236

Standard
deviation (lb)

N/A N/A N/A N/A 0.491 N/A 0.367 1.05 0.91 0.06

Number of
structural
analyses

15,000 150,000 50,000 2,500 20,566 1,050 12,500 10, 391 9,051 8,542 7,484

Figure 7. Schematic of the spatial seventy-two-bar
truss [18].

72 elements, taken as sizing variables, are divided into
16 groups, because of the structural symmetry about
X and Y axes, as follows:

(1) A1 � A4; (2) A5 � A12,

(3) A13 � A16; (4) A17 � A18,

(5) A19 � A22; (6) A23 � A30,

(7) A31 � A34; (8) A35 � A36,

(9) A37 � A40; (10) A41 � A48,

(11) A49 � A52; (12) A53 � A54,

(13) A55 � A58; (14) A59 � A66,

(15) A67 � A70; (16) A71 � A72.

Therefore, the test problem has 16 design variables.
This spatial truss is subject to two independent loading
conditions shown in Table 8. The maximum stress for
all members is 25,000 psi. The maximum displacement
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of all free nodes in X and Y directions must be less
than 0.25 in.

Two problem variants were considered. In Case 1,
the minimum cross-sectional area of all members is
0.1 in2. In Case 2, the minimum cross-sectional area
of all members is 0.01 in2. Tables 9 and 10 report

Table 8. Loading conditions for the 72-bar spatial truss
(kips).

Node Condition 1 Condition 2
Fx Fy Fz Fx Fy Fz

17 5 5 -5 0 0 -5
18 0 0 0 0 0 -5
19 0 0 0 0 0 -5
20 0 0 0 0 0 -5

the optimization results and compare MAHS with
literature. It can be seen from Table 9 that MAHS
obtained the best feasible design. Remarkably, the
worst result obtained in the 30 independent runs prac-
tically coincides with the optimized weights reported
in literature.

Table 10 shows that MAHS found the second
best design, very close to that found by Lamberti
with e�cient simulated annealing [29]. Similar to
previous examples, standard deviation on optimized
weight was very small. In Case 1, classical HS required
20,000 structural analyses while MAHS converged to
the optimum design within only 13,499 analyses. In
Case 2, classical HS required 20,000 structural analyses
while MAHS required only 12,298 analyses.

Convergence curves of HS variants are shown in

Table 9. Optimization results obtained for Case 1 of the spatial 72-bar truss problem.
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HS PSO PSOPC HPSO PSO BB-BC HBB-BC EHS SAHS Worst
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Best
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1 A1-A4 1.79 41.794 1.855 1.857 1.7427 1.8577 1.9042 1.967 1.86 1.8751 1.8837
2 A5-A12 0.521 0.195 0.504 0.505 0.5185 0.5059 0.5162 0.51 0.521 0.5176 0.5089
3 A13-A16 0.1 10.797 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
4 A17-A18 0.1 6.861 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
5 A19-A22 1.229 0.438 1.253 1.255 1.3079 1.2476 1.2582 1.293 1.271 1.2204 1.26 76
6 A23-A30 0.522 0.286 0.505 0.503 0.5193 0.5269 0.5035 0.511 0.509 0.5096 0.51
7 A31-A34 0.1 18.309 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1017 0.1
8 A35-A36 0.1 1.22 0.1 0.1 0.1 0.1012 0.1 0.1 0.1 0.1006 0.1
9 A37-A40 0.517 5.933 0.497 0.496 0.5142 0.5209 0.5178 0.499 0.485 0.5341 0.5286
10 A41-A48 0.504 19.545 0.508 0.506 0.5464 0.5172 0.5214 0.501 0.501 0.5185 0.5163
11 A49-A52 0.1 0.159 0.1 0.1 0.1 0.1004 0.1 0.1 0.1 0.1 0.1001
12 A53-A54 0.101 0.151 0.1 0.1 0.1095 0.1005 0.1007 0.1 0.1 0.104 0.1005
13 A55-A58 0.156 10.127 0.1 0.1 0.1615 0.1565 0.1566 0.16 0.168 0.1558 0.1563
14 A59-A66 0.547 7.32 0.525 0.524 0.5092 0.5507 0.5421 0.522 0.584 0.555 0.5448
15 A67-A70 0.442 3.812 0.394 0.4 0.4967 0.3922 0.4132 0.478 0.433 0.4052 0.4172
16 A71-A72 0.59 18.196 0.535 0.534 0.5619 0.5922 0.5756 0.591 0.52 0.567 0.5803
Weight (lb) 379.27 6818.67 369.65 369.65 381.91 379.85 379.66 381.03 380.62 379.834 379.643

Average
weight (lb)

N/A N/A N/A N/A N/A 382.08 381.85 383.51 382.42 379.79

Standard
deviation (lb)

N/A N/A N/A N/A N/A 1.912 1.201 1.92 1.38 0.11

Number of
structural
analyses

20,000 150,000 125,000 125,000 N/A 19, 621 13,200 15,044 13,742 14,275 13,499
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Table 10. Optimization results obtained for Case 2 of the spatial 72-bar truss problem.

Area (in2)
Design

variables
(Ai)

Element
group

Lee
and

Geem [18]
Li et al. [22] Lamberti [29] Degertekin [21] Present

work

HS PSO PSOPC HPSO CMLPSA EHS SAHS Worst
result

Best
result

1 A1-A4 1.963 40.053 1.652 1.907 1.8866 1.889 1.889 1.8892 1.9202
2 A5-A12 0.481 0.237 0.547 0.524 0.5169 0.502 0.52 0.5167 0.5112
3 A13-A16 0.01 21.692 0.1 0.01 0.01 0.01 0.01 0.01 0.01
4 A17-A18 0.011 0.657 0.101 0.01 0.01 0.01 0.01 0.01 0.01
5 A19-A22 1.233 22.144 1.102 1.288 1.2903 1.284 1.289 1.3668 1.3144
6 A23-A30 0.506 0.266 0.589 0.523 0.517 0.526 0.524 0.5125 0.5082
7 A31-A34 0.011 1.654 0.011 0.01 0.01 0.01 0.01 0.01 0.01
8 A35-A36 0.012 10.284 0.01 0.01 0.01 0.01 0.01 0.01 0.01
9 A37-A40 0.538 0.559 0.581 0.544 0.5207 0.528 0.539 0.5244 0.5252
10 A41-A48 0.533 12.883 0.458 0.528 0.518 0.525 0.519 0.5204 0.5209
11 A49-A52 0.01 0.138 0.01 0.019 0.01 0.01 0.015 0.0119 0.0102
12 A53-A54 0.167 0.188 0.152 0.02 0.1141 0.063 0.105 0.0553 0.116
13 A55-A58 0.161 29.048 0.161 0.176 0.1665 0.173 0.167 0.1734 0.1663
14 A59-A66 0.542 0.632 0.555 0.535 0.5363 0.55 0.532 0.5101 0.5341
15 A67-A70 0.478 3.045 0.514 0.426 0.446 0.444 0.425 0.4664 0.4503
16 A71-A72 0.551 1.711 0.648 0.612 0.5761 0.592 0.579 0.6496 0.5695
Weight (lb) 364.33 5417.02 368.45 364.86 363.818 364.36 364.05 364.4837 363.8838

Average
weight (lb)

N/A N/A N/A N/A N/A 366.79 366.57 364.017

Standard
deviation (lb)

N/A N/A N/A N/A N/A 2.05 2.02 0.125

Number of
structural
analyses

20,000 150,000 150,000 150, 000 900 13,755 12,852 12,935 12,298

Figure 8. Comparison of HS variants convergence curves
obtained for Case 1 of the spatial 72-bar truss problem.

Figure 8 for Case 1. It can be seen that the average
converge history of MAHS is very close to that obtained
for the best run. MAHS was always faster than HS
variants that ranked in the same fashion as for the
previous test problems.

5.1.4. Planar 200-bar truss
The �fth test problem is the weight minimization of the
planar 200-bar truss shown in Figure 9. The modulus
of elasticity of the material is 30 Msi while the material
density is 0.283 lb/in3. Element stresses must be less
than 10,000 psi and no displacement constraints are
considered. 200 members of truss are divided into
29 groups (see Table 11); therefore, this test problem
consists of 29 sizing variables. The minimum cross-
sectional area of all members was 0.1 in2. The structure
is subject to three independent loading conditions
listed in Table 12.

Table 13 shows the optimum design found by
MAHS and compares the present algorithm with litera-
ture. MAHS converged to the best feasible design with
a small standard deviation. The worst result obtained
in the 10 independent runs performed for this test
problem was consistent with other designs quoted in
literature. Classical HS obtained the optimum design
after 48,000 analyses while MAHS required only 21,235
analyses.
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Table 11. Design variables for the planar 200-bar truss.

Design variable Member number
1 1, 2, 3, 4
2 5, 8, 11, 14, 17
3 19, 20, 21, 22, 23, 24
4 18, 25, 56, 63, 94, 101, 132, 139, 170, 177
5 26, 29, 32, 35, 38
6 6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 31, 33, 34, 36, 37
7 39, 40, 41, 42
8 43, 46, 49, 52, 55
9 57, 58, 59, 60, 61, 62
10 64, 67, 70, 73, 76
11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68, 69, 71, 72, 74, 75
12 77, 78, 79, 80
13 81, 84, 87, 90, 93
14 95, 96, 97, 98, 99, 100
15 102, 105, 108, 111, 114
16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104, 106, 107, 109, 110, 112, 113
17 115, 116, 117, 118
18 119, 122, 125, 128, 131
19 133, 134, 135, 136, 137, 138
20 140, 143, 146, 149, 152
21 120, 121, 123, 124, 126, 127, 129, 130, 141, 142, 144, 145, 147, 148, 150, 151
22 153, 154, 155, 156
23 157, 160, 163, 166, 169
24 171, 172, 173,174, 175, 176
25 178, 181, 184, 187, 190
26 158, 159, 161, 162, 164, 165, 167, 168, 179, 180, 182, 183, 185, 186, 188, 189
27 191, 192, 193, 194
28 195, 197, 198, 200
29 196, 199

Table 12. Loading conditions for the planar 200-bar truss problem (kips).

Loading conditions Nodes Amount of load
Condition (1) 1, 6, 15, 20, 29,34, 43, 48, 57, 62 and 71 1 kips in positive X direction

Condition (2)

1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17,

10 kips in negative Y direction
18,19, 20, 22, 24, 26, 28,29 30, 31, 32, 33,
34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 50,
52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68,
70, 71, 72, 73, 74 and 75

Condition (3) Loading conditions (1) and (2) acting together.

The convergence curves, shown in Figure 10,
prove that the average optimization history of MAHS
is very close to that found for the best run. The present
algorithm is de�nitely superior over other HS variants
which ranked in the same order as in the previous
examples.

Figure 11 shows the existing and allowable ele-

ment stress values for the loading conditions 1, 2 and
3, respectively.

5.2. Frame structures
5.2.1. Planar ten-story one-bay planar frame
The �rst frame design problem solved in this study
is the weight minimization of the one-bay ten-story
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Table 13. Optimization results obtained for the planar 200-bar truss problem.

Area (in2)
Design

variables
(Ai)

Lee
and

Geem [18]
Lamberti [29] Kaveh and Talatahari [23] Degertekin [21] Present

work

HS CMLPSA PSO PSOPC HPSOACO EHS SAHS Worst
result

Best
result

1 0.1253 0.1468 0.8016 0.759 0.1033 0.15 0.154 0.1370 0.1411
2 1.0157 0.94 2.4028 0.9032 0.9184 0.946 0.941 1.0564 0.9775
3 0.1069 0.1 4.3407 1.1 0.1202 0.101 0.1 0.1001 0.1113
4 0.1096 0.1 5.6972 0.9952 0.1009 0.1 0.1 0.1001 0.1001
5 1.9369 1.94 3.9538 2.135 1.8664 1.945 1.942 1.9534 1.9451
6 0.2686 0.2962 0.595 0.4193 0.2826 0.296 0.301 0.2881 0.2969
7 0.1042 0.1 5.608 1.0041 0.1 0.1 0.1 0.1015 0.1006
8 2.9731 3.1042 9.1953 2.8052 2.9683 3.161 3.108 3.1136 3.1149
9 0.1309 0.1 4.5128 1.0344 0.1 0.102 0.1 0.1106 0.1003
10 4.1831 4.1042 4.6012 3.7842 3.9456 4.199 4.106 4.1136 4.118
11 0.3967 0.4034 0.5552 0.5269 0.3742 0.401 0.409 0.4162 0.4078
12 0.4416 0.1912 18.751 0.4302 0.4501 0.181 0.191 0.1472 0.1425
13 5.1873 5.4284 5.9937 5.2683 4.9603 5.431 5.428 5.4349 5.4325
14 0.1912 0.1 0.1 0.9685 1.0738 0.1 0.1 0.1327 0.1504
15 6.241 6.4284 8.1561 6.0473 5.9785 6.428 6.427 6.4348 6.4224
16 0.6994 0.5734 0.2712 0.7825 0.7863 0.571 0.581 0.5807 0.5782
17 0.1158 0.1327 11.152 0.592 0.7374 0.156 0.151 0.2574 0.1691
18 7.7643 7.9717 7.1263 8.1858 7.3809 7.961 7.973 7.9871 7.9777
19 0.1 0.1 4.465 1.0362 0.6674 0.1 0.1 0.2851 0.1001
20 8.8279 8.9717 9.1643 9.2062 8.3 8.959 8.974 8.9867 8.9792
21 0.6986 0.7049 2.7617 1.4774 1.1967 0.722 0.719 0.9214 0.7423
22 1.5563 0.4196 0.5541 1.8336 1.0 0.491 0.422 0.6071 0.4615
23 10.9806 10.8636 16.164 10.611 10.8262 10.909 10.892 11.3988 10.9658
24 0.1317 0.1 0.4974 0.9851 0.1 0.101 0.1 0.1828 0.1002
25 12.1492 11.8606 16.225 12.509 11.6976 11.985 11.887 12.4178 11.9658
26 1.6373 1.0339 1.0042 1.9755 1.388 1.084 1.04 1.3514 1.0849
27 5.0032 6.6818 3.6098 4.5149 4.9523 6.464 6.646 5.2179 6.2849
28 9.3545 10.8113 8.3684 9.8 8.8 10.802 10.804 9.9046 10.7115
29 15.0919 13.8404 15.562 14.531 14.6645 13.936 13.87 14.7564 13.9967

Weight (lb) 25447.1 25445.63 44081.4 28537.8 25156.5 25542.5 25491.9 25650 25482.21
Average

weight (lb)
N/A N/A N/A N/A N/A 25659.71 25610.2 25545.11

Standard
deviation (lb)

N/A N/A N/A N/A N/A 164.17 148.85 49.69

Number of
structural
analyses

48,000 9,650 150,000 150,000 9,875 22,851 19,670 22,425 21,235

frame shown in Figure 12. The modulus of elasticity
is 29 Msi while yield stress is 36 ksi. The frame
includes 30 members connected by 22 joints. Because of
structural symmetry, elements are grouped in 5 groups
of columns and 4 groups of beams (see Figure 12). This
test problem included discrete optimization variables.

Cross-sectional areas of beam elements can be selected
from 267 W -sections, while cross-sectional areas of
columns can be selected from W14 and W12 sections.

The frame was previously optimized by Pezeshk
et al. [30] using GA and by Camp et al. [31] using
ACO. The e�ective length factors of members were
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Figure 9. Schematic of planar 200-bar truss [21].

Figure 10. Comparison of HS variants convergence
curves obtained for the planar 200-bar truss problem.

calculated as Kx � 1 for sway-permitted frame using
the approximate equation developed by Dumonteil [32],
whereas the out-of-plane length factor is Ky = 1. For
each beam member, the out-of-plane e�ective length
factor was set as Ky = 0:2.

Table 14 compares the optimum design found
by MAHS with literature. It can be seen that
the present algorithm converged to a feasible design
weighing 63,322 lb which is 2.78% lighter than the

Figure 11. Comparison of the allowable and existing
element stresses for the planar 200-bar truss problem
using the MAHS.

Figure 12. Ten-story one-bay frame [33].



A. Kaveh and M. Naeimi/Scientia Iranica, Transactions A: Civil Engineering 22 (2015) 345{366 361

Table 14. Optimization results obtained for the ten-story one-bay frame problem.

Section

Design variables
Pezeshk

et al. [30]
Camp

et al. [31]
Degertekin [33] Present

work

GA ACO HS Worst
result

Best
result

C
ol

um
ns

1 W14� 233 W14� 233 W14� 211 W14� 233 W14� 233
2 W14� 176 W14� 176 W14� 176 W14� 176 W14� 176
3 W14� 159 W14� 145 W14� 145 W14� 159 W14� 159
4 W14� 99 W14� 99 W14� 90 W14� 99 W14� 99
5 W12� 79 W12� 65 W14� 61 W12� 65 W12� 65

B
ea

m
s 6 W33� 118 W30� 108 W33� 118 W36� 135 W33� 118

7 W30� 90 W30� 90 W30� 99 W30� 99 W30� 90
8 W27� 84 W27� 84 W24� 76 W27� 84 W27� 84
9 W24� 55 W21� 44 W18� 46 W21� 55 W21� 55

Weight (lb) 65,136 62,610 61,864 64,390 63,322
Average weight (lb) N/A N/A 62923 64129

Standard
deviation (lb)

N/A N/A 1.74 219

Number of
structural analyses

3,000 8,300 3,690 2,555 1,095

optimum design found by GA [30]. Furthermore,
the standard deviation of 20 di�erent runs was very
small: only 219 lb. GA [30], ACO [31] and classical
HS [33] completed the optimization process within,
respectively, 3000, 8300 and 3690 structural analyses
while MAHS required only 1095 structural analyses.

The number of structural analyses required in the
worst optimization run is higher than that required in
the best optimization run. A possible reason for such a
behavior is in the discrete nature of the frame problems.

Convergence curves of HS variants are compared
in Figure 13 for a maximum number of structural
analyses set as 3,500 for all algorithms. Sensitivity
analysis was performed for all HS variants and 20
independent optimization runs were then conducted

Figure 13. Comparison of HS variants convergence
curves obtained for the ten-story one-bay frame problem.

starting from di�erent initial designs. It can be seen
that the average convergence curve of MAHS is very
close to that obtained for the best optimization run.
The present algorithm was the fastest HS variant
followed by SAHS.

In Figure 14, inter-story drift for each story is de-

Figure 14. Comparison of the allowable and existing
inter-story drift for the ten-story one-bay frame problem
using the MAHS.
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Figure 15. Comparison of the allowable and existing
element stresses for the ten-story one-bay frame problem
using the MAHS.

picted and compared to the allowable drift value. The
maximum inter-story drift evaluated for the optimized
design was 99.5% of the allowable value at the �fth
story. The global sway at the top story was 3.98 in, less
than the maximum permitted sway (4.92 in). Element
stresses also were smaller than the corresponding limit
shown in Figure 15.

5.2.2. Planar twenty four-story three-bay frame
The second test case with discrete variables was the
weight minimization of the 3-bay 24-story frame shown
in Figure 16. The frame included 100 joints connected
by 168 elements. The modulus of elasticity of the
material is E = 29; 732 ksi (205 GPa) and the yield
stress is fy = 33; 400 psi (230.3 MPa). The columns in
a story are grouped in two groups of exterior columns
and interior columns. Furthermore, columns belonging
to three adjacent stories are grouped together. The
beams of each story are divided into two groups as
beam of inner bay and beams of outer bays. Beams
are grouped together for all stories except the roof.
Therefore, the 168 frame elements can be divided
in 20 groups and the optimization problem includes
20 sizing variables. Cross-sectional areas of the 4
groups of beams can be selected from all 267 W -
sections, while cross-sectional areas of the 16 groups
of columns can be selected only from W14 sections
(37 W -shapes). The frame is subjected to the loads
listed in Table 15. The structure is designed according
the AISC-LRFD speci�cations [19] with an inter-story
drift displacement constraint. The e�ective length
factors of the members are calculated as Kx � 0 for a
sway-permitted frame using the approximate equation
proposed by Dumonteil [32]. The out-of-plane e�ective
length factor is speci�ed as Ky = 1:0. All columns
and beams are considered as non-braced along their
lengths.

Table 16 compares the MAHS optimum design
with literature. The proposed algorithm converged
to the best design without violating optimization con-
straints. The worst design obtained in the 10 indepen-
dent optimization runs carried out from di�erent initial
populations is better than the other designs reported in

Figure 16. Schematic of the twenty four-story three-bay
frame [33].

literature. The standard deviation on optimized weight
was only 1320 lb, smaller than for CSS. The MAHS
algorithm required only 7115 structural analyses, hence
less than ACO [31], HS [33] and ICA [35].

Optimization histories of HS variants are com-
pared in Figure 17 for a maximum number of structural
analyses equal to 14,000. Sensitivity analysis was
carried out for each HS algorithm to �nd the best
combination of internal parameters, and 10 indepen-
dent optimization runs were carried out starting from
di�erent initial populations. The convergence curves
relative to the best optimization run are shown for
each HS variant. Remarkably, the average convergence
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curve of MAHS was better than the best convergence
curves obtained for the other HS variants.

The optimized design fully satis�ed the optimiza-
tion constraints. Figure 18 shows the inter-story drift
for each story and compares to the allowable drift value.

Table 15. Loading conditions for the twenty four-story
three-bay frame problem.

Type Amount

W Lateral Left joints 5761.85 (lb)

w1

Gravity

Roof beams 300 (lb/ft)
w2 Left outer beams 436 (lb/ft)
w3 Inner beams 474 (lb/ft)
w4 Right outer beams 408 (lb/ft)

Figure 17. Comparison of HS variants convergence
curves obtained for the twenty four-story three-bay frame
problem.

Table 16. Optimization results obtained for the twenty four-story three-bay frame problem.

Section
Design

variables
Camp

et al. [31]
Degertekin [33] Kaveh and Talatahari Present work

ACO HS IACO [34] ICA [35] CSS [36] Worst
result

Best
result

B
ea

m
s

1 W30� 90 W30� 90 W30� 99 W30� 90 W30� 90 W30� 90 W30� 90
2 W8� 18 W10� 22 W16� 26 W21� 50 W21� 50 W12� 68 W10� 49
3 W24� 55 W18� 40 W18� 35 W24� 55 W21� 48 W24� 44 W21� 48
4 W8� 21 W12� 16 W14� 22 W8� 28 W12� 19 W14� 19 W12� 40

C
ol

um
ns

5 W14� 145 W14� 176 W14� 145 W14� 109 W14� 176 W14� 233 W14� 176
6 W14� 132 W14� 176 W14� 132 W14� 159 W14� 145 W14� 145 W14� 145
7 W14� 132 W14� 132 W14� 120 W14� 120 W14� 109 W14� 109 W14� 109
8 W14� 132 W14� 109 W14� 109 W14� 90 W14� 90 W14� 61 W14� 74
9 W14� 68 W14� 82 W14� 48 W14� 74 W14� 74 W14� 53 W14� 61
10 W14� 53 W14� 74 W14� 48 W14� 68 W14� 61 W14� 53 W14� 61
11 W14� 43 W14� 34 W14� 34 W14� 30 W14� 34 W14� 30 W14� 30
12 W14� 43 W14� 22 W14� 30 W14� 38 W14� 34 W14� 22 W14� 22
13 W14� 145 W14� 145 W14� 159 W14� 159 W14� 145 W14� 90 W14� 99
14 W14� 145 W14� 132 W14� 120 W14� 132 W14� 132 W14� 99 W14� 109
15 W14� 120 W14� 109 W14� 109 W14� 99 W14� 109 W14� 109 W14� 99
16 W14� 90 W14� 82 W14� 99 W14� 82 W14� 82 W14� 120 W14� 90
17 W14� 90 W14� 61 W14� 82 W14� 68 W14� 68 W14� 90 W14� 74
18 W14� 61 W14� 48 W14� 53 W14� 48 W14� 43 W14� 53 W14� 53
19 W14� 30 W14� 30 W14� 38 W14� 34 W14� 34 W14� 43 W14� 34
20 W14� 26 W14� 22 W14� 26 W14� 22 W14� 22 W14� 26 W14� 26

Weight (lb) 220,465 214,860 217,475 212,735 212,459 211,172.9 206,224.9

Average weight (lb) 229,552 222,620 N/A N/A 215,313 208,776
Standard

deviation (lb)
4561 5800 N/A N/A 2448 1320

Number of
structural
analyses

15,500 13,924 3500 7,500 5,500 10,918 7,115
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Figure 18. Comparison of the allowable and existing
inter-story drift for the twenty four-story three-bay frame
problem using the MAHS.

Figure 19. Comparison of the allowable and existing
element stresses for the twenty four-story three-bay frame
problem using the MAHS.

The global sway at the top story was 10.31 in, less than
the maximum permitted sway (11.52 in).

In Figure 19, the existing and allowable element
stresses for each member are shown. Inter-story drift
governed the design process while stress constraints
were less critical.

6. Concluding remarks

This study presented an improved Harmony Search
algorithm termed as Multi-Adaptive Harmony Search
(MAHS). The internal parameters of MAHS are adap-

tively modi�ed to improve robustness and convergence
behavior with respect to classical HS and other HS
variants recently published in literature.

The new proposed algorithm was successfully
utilized in sizing optimization problems of truss and
frame structures with continuous and discrete design
variables. The new mechanism of pitch-adjusting
introduced in MAHS leads to obtain better results
and faster convergence because the diversi�cation and
intensi�cation stages of the optimization search process
are very well balanced. Consequently, the computa-
tional cost of MAHS is considerably smaller than other
HS variants. Furthermore, the standard deviation of
optimized weight over independent runs carried out
starting from di�erent initial populations is very small.

Acknowledgments

The �rst author is grateful to the Iran National Science
Foundation for the support.

References

1. Osman, I.H. and Laporte, G. \Metaheuristics: A
bibliography", Annals of Operations Research, 63(5),
pp. 513-623 (1996).

2. Holland, J.H., Adaptation in Natural and Arti�cial
Systems, MIT Press Cambridge, MA, USA (1992).

3. Goldberg, D.E., Genetic Algorithms in Search Op-
timization and Machine Learning, Addison-Wesley,
Boston, MA, USA (1989).

4. Glover, F. \Heuristic for integer programming using
surrogate constraints", Decision Sciences, 8(1), pp.
156-166 (1977).

5. Dorigo, M., Maniezzo, V. and Colorni A. \The ant
system: Optimization by a colony of cooperating
agents", IEEE Transactions on Systems, Man, and
Cybernetics, Part B, 26(1), pp. 29-41 (1996).

6. Eberhart, R.C. and Kennedy, J. \A new optimizer
using particle swarm theory", In: Proceedings of the
Sixth International Symposium on Micro Machine and
Human Science, Nagoya, Japan, IEEE Press, Piscat-
away, NJ, pp. 39-43 (1995).

7. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. \Opti-
mization by simulated annealing", Science, 220(4598),
pp. 671-680 (1983).

8. Erol, O.K. and Eksin, I. \New optimization method:
Big bang-big crunch", Advances in Engineering Soft-
ware, 37(2), pp. 106-111 (2006).

9. Kaveh, A. and Talatahari, S. \A novel heuristic
optimization method: Charged system search", Acta
Mechanica, 213(3-4), pp. 267-289 (2010).

10. Geem, Z.W., Kim, J.H. and Loganathan, G.V. \A new
heuristic optimization algorithm: Harmony search",
Simulation, 76(2), pp. 60-68 (2001).



A. Kaveh and M. Naeimi/Scientia Iranica, Transactions A: Civil Engineering 22 (2015) 345{366 365

11. Geem, Z.W. \State-of-the-art in the structure of
harmony search algorithm", in: Recent Advances in
Harmony Search Algorithm, Studies in Computational
Intelligence, 270, pp. 1-10 (2010).

12. Mahdavi, M., Fesanghary, M. and Damangir, E. \An
improved harmony search algorithm for solving opti-
mization problems", Applied Mathematics and Com-
putation, 188(2), pp. 1567-1579 (2007).

13. Geem, Z.W. \Novel derivative of harmony search
algorithm for discrete design variables", Applied Math-
ematics and Computation, 199(1), pp. 223-230 (2008).

14. Omran, M.G.H. and Mahdavi, M. \Global-best har-
mony search", Applied Mathematics and Computation,
198(2), pp. 643-656 (2008).

15. Wang, C.M. and Huang, Y.F. \Self-adaptive harmony
search algorithm for optimization", Expert Systems
with Applications, 37(4), pp. 2826-2837 (2010).

16. Fesanghary, M., Mahdavi, M., Minary-Jolandan, M.
and Alizadeh, Y. \Hybridizing harmony search algo-
rithm with sequential quadratic programming for engi-
neering optimization problems", Computer Methods in
Applied Mechanics and Engineering, 197(33-40), pp.
3080-3091 (2008).

17. Saka, M.P. and Hasancebi, O. \Adaptive harmony
search algorithm for design code optimization of steel
structures, harmony search algorithms for structural
design optimization", In: Studies in Computational
Intelligence, Geem, Z.W, Ed., 239, Berlin, Heidelberg:
Springer-Verlag, pp. 79-120 (2009).

18. Lee, K.S. and Geem, Z.W. \A new structural opti-
mization method based on the harmony search algo-
rithm", Computers and Structures, 82(9-10), pp. 781-
798 (2004).

19. American Institute of Steel Construction (AISC),
Manual of Steel Construction-Load Resistance Factor
Design, 2nd Ed, Chicago, AISC (1992).

20. Kaveh, A., Farahmand Azar, B. and Talatahari, S.
\Ant colony optimization for design of space trusses",
International Journal of Space Structures, 23(3), pp.
167-81 (2008).

21. Degertekin, S.O. \Improved harmony search algo-
rithms for sizing optimization of truss structures",
Computers and Structures, 92-93, pp. 229-241 (2012).

22. Li, L.J., Huang, Z.B., Liu, F. and Wu, Q.H. \A
heuristic particle swarm optimizer for optimization of
pin connected structures", Computers and Structures,
85(7-8), pp. 340-349 (2007).

23. Kaveh, A. and Talatahari, S. \Particle swarm opti-
mizer, ant colony strategy and harmony search scheme
hybridized for optimization of truss structures", Com-
puters and Structures, 87(5-6), pp. 267-283 (2009).

24. Lamberti, L. and Pappalettere, C. \An improved
harmony-search algorithm for truss structure optimiza-
tion", In: Proceedings of the Twelfth International
Conference Civil, Structural and Environmental En-
gineering Computing, Topping, B.H.V., Neves, L.F.C.
and Barros, R.C., Eds., Stirlingshire, Scotland: Civil-
Comp Press (2009).

25. Schmit Jr, L.A. and Farshi, B. \Some approximation
concepts for structural synthesis", American Institute
of Aeronautics and Astronautics Journal, 12(5), pp.
692-699 (1974).

26. Perez, R.E. and Behdinan, K. \Particle swarm ap-
proach for structural design optimization", Computers
and Structures, 85(19-20), pp.1579-1588 (2007).

27. Camp, C.V. \Design of space trusses using big bang-
big crunch optimization", Journal of Structural Engi-
neering (ASCE), 133(7), pp. 999-1008 (2007).

28. Kaveh, A. and Talatahari, S. \Size optimization of
space trusses using big-bang big-crunch algorithm",
Computers and Structures, 87(17-18), pp. 1129-1140
(2009).

29. Lamberti, L. \An e�cient simulated annealing algo-
rithm for design optimization of truss structures",
Computers and Structures, 86(19-20), pp. 1936-1953
(2008).

30. Pezeshk, S., Camp C.V. and Chen, D. \Design of non-
linear framed structures using genetic optimization",
Journal of Structural Engineering (ASCE), 126, pp.
382-388 (2000).

31. Camp, C.V., Bichon, B.J. and Stovall, S.P. \Design of
steel frames using ant colony optimization", Journal
of Structural Engineering (ASCE), 131, pp. 369-379
(2005).

32. Dumonteil, P. \Simple equations for e�ective length
factors", Journal of Structural Engineering (ASCE),
3, pp. 111-115 (1992).

33. Degertekin, S.O. \Optimum design of steel frames
using harmony search algorithm", Structural and Mul-
tidisciplinary Optimization, 36(4), pp. 393-401 (2008).

34. Kaveh, A. and Talatahari, S. \An improved ant colony
optimization for design of planar steel frames", Engi-
neering Structures, 32(3), pp. 864-876 (2010).

35. Kaveh, A. and Talatahari, S. \Optimum design of
skeletal structures using imperialist competitive al-
gorithm", Computers and Structures, 88(21-22), pp.
1220-1229 (2010).

36. Kaveh, A. and Talatahari, S. \Charged system search
for optimal design of frame structures", Applied Soft
Computing, 12(1), pp. 382-393 (2012).

Biographies

Ali Kaveh was born in 1948 in Tabriz, Iran. After
graduation from the Department of Civil Engineering
at the University of Tabriz in 1969, he continued his
studies on Structures at Imperial College of Science
and Technology at London University, and received
his MS, DIC and PhD degrees in 1970 and 1974,
respectively. He then joined the Iran University of
Science and Technology in Tehran where he is presently
Professor of Structural Engineering. Professor Kaveh
is the author of 420 papers published in international
journals and 135 papers presented at international



366 A. Kaveh and M. Naeimi/Scientia Iranica, Transactions A: Civil Engineering 22 (2015) 345{366

conferences. He has authored 23 books in Farsi and 7
books in English published by Wiley, the American Me-
chanical Society, Research Studies Press and Springer-
Verlag.

Mohammad Naeimi was born in 1986 in Tehran,
Iran. He obtained his BS degree in Civil Engineering
from Khajeh Nasir Toosi University of Technology

(KNTU) in 2010, and received his MS degree in Earth-
quake Engineering from Road, Housing and Urban
Development Research Centre in 2013. At present, he
studies on optimal design of structures with frequency
constraints. His main research interests include: Struc-
tural optimization, topology optimization, structural
dynamics, seismic fragility of structural systems and
soil-structure interaction.




