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Abstract. In this paper, an elastoplastic model is proposed to analyze the circular tunnels
below a groundwater table under axial-symmetric conditions, considering the e�ects of
seepage and gravitational loads. In the proposed method, the strain-softening behavior
model and Hoek-Brown failure criterion are used. To evaluate the e�ect of gravitational
loads and variations of pore pressure, the equations concerning di�erent directions around
the tunnel (crown, wall and 
oor) are derived. Since the derived di�erential equations do
not have a closed-form solution in the plastic zone, the numerical �nite di�erence method
is applied. Considering the strain-softening behavior of the rock mass, the problem in the
plastic zone is solved through a stepwise method, where the strength parameters of the
rock mass vary, step-by-step, from their maximum values to the constant values. Besides,
the stresses, strains, and deformations of the rock mass also vary step-by-step from the
elastoplastic boundary to tunnel boundary values. Furthermore, the closed-form analytical
solutions are obtained for the elastic zone. The accuracy and application of the proposed
method are demonstrated by a number of examples. The results well exhibit the e�ects
of dilatancy angle and increment of elastic strain in the plastic zone. Based on the results
obtained, ignoring the e�ects of gravitational loads and seepage will de�nitely produce
computational errors.

© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

The convergence-con�nement method is the most com-
monly used method applied to tunnel design and
analysis. Using this approach, the ground response
curve is determined based on ground convergence
to the internal pressure of the tunnel, and ground
behavior is demonstrated based on this curve during
the tunnel excavation. The proposed solutions for de-
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termination of ground response curves are divided into
two groups, including closed-form analytical solutions
and unclosed numerical-analytical solutions. Since,
sometimes, a large number of simplifying assumptions
are applied, the closed-form solutions are considered
as approximate, while unclosed analytical-numerical
approaches o�er more accurate solutions, since they
assess rock mass behavior through a more sophisticated
approach. Through the convergence-con�nement tech-
nique, the gravitational loads induced by the weight
of the plastic zone in the crown and the 
oor of the
tunnel are ignored. Indeed, due to the di�erence in
gravitational loads in di�erent directions around the
tunnel, tunnel convergence enhances from its 
oor to
its crown.
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When tunnel excavation is performed below the
water table, tunnel behavior is greatly a�ected by
seepage, which a�ects ground behavior and the ground
response curve. Besides, in this state, the water 
ows
into the tunnel and, as a result, seepage develops in the
zones around it.

The stress and deformation �elds formed by tun-
nel excavation and seepage in the tunnels below the wa-
ter table have been investigated by many researchers.
Although the majority of the proposed solutions are
based on numerical approaches, few closed-form so-
lutions proposed for tunnels can be found. Brown
et al. [1], Alonso et al. [2], Park et al. [3], and Lee
and Pietruszczak [4] proposed analytical solutions for
elastoplastic analysis of a tunnel based on the strain-
softening behavior of the rock mass. However, in these
methods, the e�ects of gravitational loads and seepage
have not been taken into account.

Brown and Bray [5], Lee et al. [6], and Shin
et al. [7] considered the e�ects of seepage and pore
pressure in their solutions. Also, Fahimifar and Zarei-
fard [8] presented their analytical model by considering
the seepage body forces and development of the exact
Kolymbas and Wagner [9] seepage model. Fahimifar
et al. [10] proposed a new elastoplastic solution for
analysis of the tunnels below the water table by
considering the strain-softening behavior of the rock
mass. This model is based on mixing the exact
seepage model of Ming et al. [11] (for the elastic
zone) and the radial seepage model, by considering
the hydraulic-mechanical coupling of the rock mass
(for the plastic zone). In the model proposed by
Fahimifar et al. [10], unlike other models, the e�ects of
dilatancy angle variations and elastic strain increments
in the plastic zone have also been taken into account.
One of the few proposed solutions for tunnel analysis
considering gravitational loads is that proposed by
Zareifard and Fahimifar [12]. However, the e�ects of
seepage and pore pressure have not been considered in
their model.

In this research, an elastoplastic model is pro-
posed for analysis of a tunnel below the ground-
water table, considering the e�ects of seepage and
gravitational loads, using the Hoek-Brown criterion
and strain-softening behavior model. To evaluate the
e�ect of gravitational and seepage loads, stress and
pore pressure was calculated for di�erent directions
around the tunnel (crown, wall, and 
oor). Because
of the variations of pore pressure and gravitational
loads in di�erent directions around the tunnel, and
calculation of the stress, strain, and pore pressure at
each point, the body forces induced by gravitational
forces and pore pressure in the given point are ap-
plied in the corresponding equations of axisymmetric
conditions. Therefore, simultaneous consideration of
the e�ects of these two factors leads to deriving more

Figure 1. Body forces and stress components of a rock
mass element.

accurate results compared to other proposed mod-
els.

2. Model assumptions and governing equations

The model involves di�erent rock mass zones, including
elastic and plastic zones (strain-softening and residual
strength zones). Figure 1 presents all applied stresses
and body forces on element \abcd" with unit thickness
during excavation of a circular tunnel.

Based on Figure 1, the equilibrium expression in
the radial direction can be derived as:

@�r
@r

+
1
r
@�r�
@�
� (�� � �r)

r
+ Fr = 0; (1)

where, �r is radial stress, �� is circumferential stress,
and Fr is the body force induced by the weight of
fractured rock mass in a radial direction. Also, a
similar equation can be obtained for the circumferential
direction.

The gravitational load induced by the e�ect of
fractured rock mass in the radial direction is expressed
as Eq. (2) [12]:

Fr = 
 sin �; (2)

where, 
 is the speci�c weight of the rock mass, and
Fr is the body force induced by the plastic zone of the
rock mass in a radial direction. Considering Eq. (1),
the equilibrium expression under the axial-symmetric
condition in the plastic zone for elements of rock mass
in the polar system is expressed as:

d�r
dr
� (�� � �r)

r
+ Fr = 0: (3)

Under the axial-symmetric condition, deformation-
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strain equilibria will be as Eqs. (4) to (6) [13]:

"r =
du
dr
; (4)

"� =
u
r
; (5)

d"r
dr

=
"r � "�
r

; (6)

where, "r and "� are radial and circumferential strains,
respectively, while u is radial deformation.

3. Failure criterion of the rock mass and
behavior model (stress-strain equation)

The failure criterion applied for the rock mass is the
nonlinear empirical Hoek-Brown criterion, which is
expressed as Eq. (7) [14]:

�� � �r =
�
m(�r � Pw)�c + s�2

c
	a ; (7)

where �1 = �� and �3 = �r are major and minor
principal stresses in the failure point, respectively; Pw
is pore pressure; �c is the uniaxial compressive strength
of the rock mass; m and s are strength parameters of
the rock mass; and a is the exponential coe�cient of
the Hoek Brown failure criterion. In this research, a is
considered as 0.5.

In the present work, the strain-softening model of
Alonso et al. [2] was applied as the behavior model.
Rock mass will behave elastically until the failure
criterion is satis�ed. After that, the rock mass strength
reaches gradually to the residual strength. Through the
strain-softening model of Alonso et al. it is assumed
that strength parameters, m and s, and dilatancy angle
( ) is a bilinear function of deviatoric plastic strain
(�) [2]:

w =

8<:wp � (wp � wr) �
�� 0 < � < ��

wr � > ��
(8)

where w represents one of the parameters m, s and
 , and �� is the critical deviatoric plastic strain from
which the residual behavior starts, and should be
identi�ed by experiments. The subscripts `p' and `r'
denote the peak and residual values, respectively.

It must be noted that, in this model, � is the
strain-softening parameter for the control of parame-
ters (s;m; �c;  ), and is expressed as Eq. (9) [3]:

� = "p� � "pr : (9)

In Eq. (9), "pr and "p� are radial and circumferential
plastic strains, respectively.

A comparison between the equations produced by
two strain-softening models (i.e. Alonso et al. [2] and
Brown et al. [1]) revealed that parameter �� can be

Figure 2. Variations of parameters s;m; �c and  in
strain-softening model [4].

Figure 3. Geometry of the proposed seepage model.

estimated as [3]:

�� = (�� 1) "�(re); (10)

where, "�(re) is the circumferential strain in the elasto-
plastic boundary and � is a parameter indicating the
length of the strain-softening zone in the Brown et
al. [1] method.

Figure 2 presents variations of parameters,
s;m; �c and  , in the strain-softening model, with
respect to � (deviatoric plastic strain) function.

4. Seepage and pore pressure pattern

Figure 3 exhibits a tunnel with an external radius of
ro at a depth of h below the ground surface. Water
depth above the ground is hw. To model pore pressure
in all directions around the tunnel, the seepage pattern
of Ming et al. [11] with polar coordinates was applied.
Using the conformal mapping, Ming et al. [11] proposed
an accurate seepage pattern for tunnels below the water
table.

The pattern was presented based on the following
assumptions:

- The circular tunnel is located in a completely satu-
rated, homogenous, isotropic aquifer.
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- The 
ow has reached the steady-state.
- The water table does not 
uctuate with seepage.

In cases where the pore pressure is constant in the
outer surface of the tunnel, the equation of Ming et al
for calculation of pore pressure is presented as [11]:

Pw(x; y) = (hw � y) 


+
Pa + 
wr sin

�
arctanh+y

x

�� 
wh� 
whw
2 ln

h
h
ro �

q
( hro )2 � 1

i
0B@ln

x2 +
�
y +

p
h2 � r2

o

�2

x2 +
�
y �ph2 � r2

o

�2

1CA ;
(11)

where ro is the external radius of the tunnel; h is tunnel
depth from the water table; hw is water height above
the ground surface; 
w is the speci�c weight of water;
and pa is pore pressure in the outer surface of the
tunnel.

Since the maximum water level is measured from
the ground surface in the model presented in this work,
hw is taken as zero (hw = 0). By replacing x = r cos �
and x = r sin ��h, pore water pressure in all directions
of the tunnel can be calculated, based on the (r; �)
coordinate:

Pw(r; �) = (h� r sin �) 
w +
Pa + 
wr sin � � 
wh

A0B@ln(r cos �)2+
�
r sin � � h+ph2�r2

o

�2

(r cos �)2+
�
r sin ��h�ph2�r2

o

�2

1CA ;
(12)

where:

A = 2 ln

0@ h
ro
�
s�

h
ro

�2

� 1

1A : (13)

Also, hydraulic head distribution is derived using the
Bernoulli equation (Hw = y + Pw=
w = r sin � � h +
Pw=
w) as:

Hw(r; �) =
Pa

w + r sin � � h

A0B@ln(r cos �)2+
�
r sin � � h+ph2�r2

o

�2

(r cos �)2+
�
r sin ��h�ph2�r2

o

�2

1CA :
(14)

5. Stresses and deformations in the rock mass

In the proposed model, the perimeter of the tunnel is
divided into di�erent zones (Figure 4):

Figure 4. Circular tunnel in in�nite plane [4].

� Elastic zone around the tunnel;

� Plastic zone between the elastic zone and the in-
terior plastic zone where strain-softening behavior
predominates;

� Interior plastic zone where the stress is limited to
the residual strength.

5.1. Plastic zone
By replacing Eq. (7) (Hoek-Brown failure criterion) in
Eq. (3), the equilibrium expression in the plastic zone
is derived as:

d�r
dr

+ Fr =
�
m(�r � Pw)�c + s�2

c
	 1

2

r
: (15)

To calculate the radial and circumferential strains in
the plastic zone, the strain-displacement equation of
the axisymmetric condition (Eq. (6)) is used. Unlike
the Hoek-Brown model, which considers elastic strain
as a constant throughout the plastic zone, the model
proposed in this work calculates the increment of elastic
strain in each ring, and it is considered separately.
Thus, the total strain is divided into elastic and plastic
strains:�

"r
"�

�
=
�
"er
"e�

�
+
�
"pr
"p�

�
: (16)

The relationships between the elastic strain increments
and the stress increments, ��r and ���, in the plastic
zone are given by Hook's law [13]:�

�"er(i)
�"e�(i)

�
=

1
2G

�
1� v �v
�v 1� v

��
��r(i)
���(i)

�
: (17)

The Mohr-Coulomb criterion is used as the plastic



A. Fahimifar et al./Scientia Iranica, Transactions A: Civil Engineering 21 (2014) 1821{1832 1825

potential function for a non-associated 
ow rule. For
the Mohr-Coulomb type of plastic potential function,
the relation between the plastic parts of the radial
and circumferential strain increments is obtained as
follows [15]:

�"pr = �K�"p�; (18)

where, K is the dilation factor, and is given as [2]:

K =
1 + sin 
1� sin 

: (19)

In Eq. (19),  is the dilation angle and varies as a
function of the softening parameter, �.

Since a multi-linear behavior model and the in-
cremental theory of plasticity have been used, the
governing equations on the stresses and strains in the
plastic zone have no analytical solutions and must be
solved numerically, as presented in Appendix A.

5.2. Elastic zone
Due to the fact that the body forces induced by the
fractured zone weight do not a�ect the elastic zone,
the equilibrium expression (Eq. (7)) in the elastic zone
is de�ned as:

d�r
dr
� (�� � �r)

r
= 0: (20)

Using the Hoek-Brown criterion, the stress-strain equa-
tion in the elastic zone under the axisymmetric plane
stress condition is expressed as [8]:

�r =
Er

(1 + vr)(1� 2vr)
[(1� vr)"r + vr"�] ; (21)

�� =
Er

(1 + vr)(1� 2vr)
[(1� vr)"� + vr"r] : (22)

Substituting Eqs. (21) and (22) into Eq. (20), Eq. (23)
for the deformation in the elastic zone is obtained:

d2ur
dr2 +

1
r
du
dr
� ur
r2 = 0: (23)

Taking into account the appropriate boundary condi-
tions, stresses, strains and deformations in the elastic
zone are derived by solving the di�erential equation
(Eq. (23)) (see details in Appendix B).

6. Validation of the proposed model

To validate the proposed model, a program was de-
signed using the MATLAB code. Using this program,
a few illustrative examples were analyzed and the
results obtained were compared with those obtained
from other models.

6.1. Example 1
In this example, the proposed model is compared
with those proposed by Lee and Pietruszczak [4] and
Park et al. [3] by ignoring the e�ects of seepage and
gravitational loads. Data for the tunnel analyzed in
Lee's model are introduced in Table 1.

The data obtained from tunnel analysis using
the proposed method compared to those produced by
Park's and Lee's methods for 5000 rings (n = 5000) are
shown in Figure 5. As illustrated in the �gure, in the
case where the number of rings is selected large enough,
the results obtained from the proposed method �t well
with those produced by Lee's and Park's methods for
di�erent dilatancy ( ) angles.

Figure 6 compares the ground deformation in
terms of radial distance using the proposed method and

Figure 5. A comparison between ground response curves
using the proposed method with ground response curve
developed by Lee's [4] and Park's [3] methods in dry
condition.

Table 1. Data derived from Lee's model [4].

Parameter Value Parameter Value Parameter Value

E 5500 mp 1.7 �o 30 MPa
v 0.25 sp 0.0039 Pi 5 MPa
�c 30 MPa mr 1.0 A 0.5
�p 30 sr 0 �� 0.004742
ro 5 m
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Table 2. Data of the method proposed by Brown and Bray [5] for h = 300 m.

Parameter Value Parameter Value Parameter Value

E 20000 MPa mp 0.65 po 27 MPa
v 02 mr 0.2 Pi 1.98 MPa
�c 40 MPa sp 0.2 ro 3.0 m
�p 30 sr 0.0001 h 300 m
A 0.5

Table 3. A comparison between the results obtained from the method of Brown and Bray [5] and the proposed method
for h = 300 m.

Parameter Brown and Bray Tunnel program
method [5]  = 0  = �=4  = �=2

Elasto-plastic radius (re) (m) 16.024 20.044 20.404 20.758
Radial stress at elastoplastic radius (�re) (MPa) 16.73 16.833 16.836 16.838

Tunnel convergence (m) 0.1434 0.1281 0.222 0.4661

Figure 6. Ground deformation in terms of radial distance
for di�erent dilatancy ( ) angles in dry condition.

the method proposed by Brown et al. [1] for di�erent
dilatancy ( ) angles. As shown in the �gure, ground
deformation in this method is similar to the ground
deformation obtained by the proposed method for a
dilatancy angle of 15�. As  increases from 0 to 30�,
ground deformation in the tunnel walls rises from 0.072
for  = 0� to 0.0196 for  = 30�.
6.2. Example 2
A tunnel was excavated in rock with limestone and
siltstone at a depth of 300 m below the groundwater
table (Table 2). Considering the properties of this
tunnel, Brown and Bray analyzed the tunnel and
published the results obtained in their paper. They
ignored the e�ects of gravitational loads and pore
pressure variations in their model and generalized the
results of the horizontal direction (tunnel wall) for all
directions of the tunnel.

Figure 7. Ground response curve obtained from the
proposed method and the method of Brown and Bray [5]
for h = 300 m.

The results obtained from the Brown and Bray [5]
model and the proposed method are compared in
Table 3. As the table shows, by increasing values
of  , the elastoplastic radius and ground deformation
rise prior to lining installation. Moreover, due to
taking into account the elastic strain increment in
the plastic zone of the model proposed in the present
study, greater values are obtained for the elastoplastic
radius compared to the method proposed by Brown and
Bray [5]. Furthermore, the radial and circumferential
stresses in the elastoplastic boundary highly corre-
spond with those of the Brown and Bray [5] method,
because of the analytical similarity between the elastic
zone of the proposed method and the method of Brown
and Bray.

Figure 7 illustrates ground response curves pro-
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Figure 8. A comparison between circumferential and
radial stresses in the tunnel wall in terms of the radial
distance derived from the proposed method and the model
of Brown and Bray [5] (h = 300 m).

duced by the method of Brown and Bray [5] and the
proposed method for the tunnel wall. As  rises from
to 0� to 15�, the ground response curve considerably
changes; by increasing the  tunnel convergence prior
to the lining installation increases from 0.128 for  = 0�
to 0.466 for  = 15�.

Also, Figure 8 exhibits radial and circumferential
stresses (�r and ��) for the tunnel wall in terms
of radius (r) calculated by the method of Brown
and Bray [5] and the proposed method for di�erent
dilatancy angles. Likewise, in the model proposed
by Brown and Bray [5], stress-strain analysis was
performed by taking into account the strain-softening
behavior and Hoek-Brown failure criterion; however,
the e�ect of dilatancy angle variations and increments
of elastic strain in the plastic zone were not considered.
Moreover, in the method of Brown and Bray [5] the
radial seepage model was applied. In contrast, in the
proposed method, not only was the hydraulic analysis
performed by the more accurate non-radial seepage
model of Ming et al. [11], but the elastic strain in the
plastic zone was measured based on dilatancy angle.
Also, the e�ect of  on tunnel performance in the
plastic zone is considered.

Considering the e�ect of  and elastic strain
increment in the plastic zone, the elastoplastic radius
increases by increasing dilatancy angle. Moreover,
by maintaining the lining pressure in the proposed
model, ground deformation increases signi�cantly by
increasing dilatancy angle.

Figure 9 illustrates pore pressure in three di-
rections, including vertical to the tunnel crown (a),
horizontal (b), and perpendicular to the tunnel 
oor
(c) using the Ming et al. [11] seepage model. As shown
in the �gure, the results obtained from the Ming model
well �t with those produced by the FLAC program and
have high accuracy for modeling the pore pressure in
all directions around the tunnel.

In Figures 10 and 11, ground response curves and

Figure 9. Pore pressure distribution in di�erent
directions around the tunnel: a) Vertical to the tunnel
crown; b) horizontal direction; and c) perpendicular to the
tunnel 
oor.
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Figure 10. Radial and circumferential stress variations
for wall, 
oor, and crown of the tunnel.

Figure 11. Ground response curves for wall, crown, and

oor of the tunnel.

variations of radial and circumferential stresses on the
wall, crown and 
oor of the tunnel are presented by
taking into account the e�ects of gravitational and
seepage loads (dilatancy angle is constant). Ground
displacement and the elastoplastic radius of the tunnel
increase from the 
oor to the crown of the tunnel, as it
increases from 0.12 m in the tunnel 
oor to 0.1375 m
in the tunnel crown. In addition, elastoplastic radius
rises from 19.49 m in the tunnel 
oor to 20.75 m in the
tunnel crown. Thus, the gravitational loads act as an
instability factor in the crown and as a stability factor
in the 
oor.

Figures 12 and 13 illustrate that the ground
response curves of the crown and 
oor of the tunnel
are compared for three cases, including:

1. Dry condition;

2. Taking into account the e�ect of seepage (but not
gravitational load);

Figure 12. Ground response curve in the tunnel crown.

Figure 13. Ground response curve in the tunnel 
oor.

3. Taking into account both the e�ects of seepage and
gravitational loads with the results of the FLAC
program.

According to Figure 12, considering the e�ect of
seepage and gravitational loads, ground deformation
increases compared to the case of dry conditions in
the tunnel crown. In other words, both seepage
and gravitational load factors negatively a�ect tunnel
stability.

Ground deformation in the tunnel 
oor increases
in the case of taking the e�ect of seepage into ac-
count compared to dry conditions; but it drops in
the tunnel bottom in the case of applying gravita-
tional loads. It means that the gravitational loads
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positively a�ect stability in the 
oor of the tunnel
(Figure 13).

7. Conclusion

In this research, a novel stepwise method using the
numerical FDM was proposed for the elastoplastic
analysis of underwater tunnels, taking into account the
e�ects of seepage and gravitational loads. The accuracy
and performance of the proposed model were compared
with the model proposed for the elastoplastic analysis
of a tunnel by Park et al. [3], and the method proposed
for tunnel analysis below the water table proposed
by Brown and Bray [5]. In the proposed model, in
each step, 1 mm is added to the diameter length; for
Examples 1 and 2, 3000 and 5000 rings are required,
respectively, for satisfying the boundary conditions in
each calculation of the elastoplastic radius. Consider-
ing the number of applied rings, the computations are
performed with high accuracy for each radius of rock
mass around the tunnel. The results derived from this
work are summarized as:

- Unlike the model proposed by Brown and Bray [5],
elastic and plastic strain increments are separately
calculated for each ring in this research. Therefore,
the elastoplastic radius rises compared to that of the
Brown and Bray [5] method. By increasing dilatancy
angle ( ), plastic strain increases in each ring, which,
in turn, leads to an increase in rock mass deformation
and elastoplastic radius.

- Considering the fact that applying the radial seepage
model for shallow tunnels is not accurate, because
of considerable errors, the exact non-radial Ming et
al. [11] model was applied in the present study to
model pore pressure distribution around the tunnel.
Using this model allows calculating the pore pressure
at each point around the tunnel. Based on the
results obtained, elastoplastic radius and tunnel
convergence rises as the seepage e�ect is taken into
account.

- Regarding the ground response curve for the crown
and 
oor of the tunnel, it is required to calculate
plastic zone weight and variations of pore pressure
in the tunnel. Due to the signi�cant e�ect of
gravitational loads and seepage on tunnel stability
in the crown and 
oor of the tunnel, ignoring the
plastic zone weight may induce considerable errors.

Nomenclature

r Radial distance from the center of the
tunnel

� Angle measured clockwise from
horizontal direction

�r Radial stress

�� Circumferential stress
�1 Major principal stress
�3 Minor principal stress
"r Radial strain
"� Circumferential strain
"1 Major principal strain
"3 Minor principal strain
w Expresses parameters m; s; �c;  
wp Parameters m; s; �c;  for intact rock

mass
wr Parameters m; s; �c;  for broken rock

mass
�w Parameters m; s; �c;  for di�erent

elements
m; s Material constants of Hoek-Brown

failure criterion
 Dilatancy angle
�c Uniaxial compressive strength of intact

rock
E Deformability modulus of rock mass
v Poisson's ratio of rock mass
�p Friction angle
a Exponential coe�cient of Hoek-Brown

criterion
ro Radius of tunnel
re Elastoplastic radius
rs External radius of residual zone
h Depth of the tunnel from ground

surface
hw Water depth above the ground surface
Hw Water head
Pw Pore water pressure in the rock mass
Pa Water pressure on the perimeter of the

tunnel
�o Initial stress
Pi Tunnel internal pressure

w Speci�c weight of water

 Speci�c weight of the rock mass
�� Parameter indicating the length of

strain-softening zone in Alonso's
method

� Strain-softening function
� Parameter indicating the length of

strain-softening zone in Brown's
method

Fr Body forces in radial direction
F� Body forces in circumferential direction

Superscripts

p Refers to quantities corresponding to
plastic zone
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e Refers to quantities corresponding to
elastic zone
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Appendix A: Stress-strain analysis in plastic
zone

According to Section 5.1 (Eq. (15)), equilibrium ex-
pression in the plastic zone is derived as:

d�r
dr

+ Fr =
�
m(�r � Pw)�c + s�2

c
	 1

2

r
: (A.1)

Since introducing a closed-form solution is impossible
for solving the above di�erential equation, the equa-
tions are solved using the numerical solution of the
Finite Di�erence Method (FDM).

Using the numerical FDM solution of Eq. (15),
radial stress in each ring can be solved as:

�r(i) = �r(i� 1)� Fr�r(i) +B(i)

+
q
B2(i)+2B(i)

�
�r(i� 1)�Pw(i)

�
+C(i); (A.2)

where:

�(i) =
r(i)� r(i� 1)
r(i) + r(i� 1)

;

C(i) = �s(i):�c2(i);

B(i) =
�m(i)�c2(i)
�(i)

;

�r(i) = r(i)� r(i� 1);

Pw(i) =
1
2

(Pw(i� 1) + Pw(i)) ;

�m(i) =
1
2

(m(i� 1) +m(i)) ;

�s(i) =
1
2

(s(i� 1) + s(i)) ;

�c(i) =
1
2

(�c(i� 1) + �c(i)) : (A.3)

Parameters s(i), m(i) and �c(i) are expressed in terms
of � (deviatoric plastic strain). Using the numerical
FDM solution of Eq. (9), Eq. (A.4) is obtained for each
ring:

�(i) = �(i� 1) + (�"p�(i)��"pr(i)) : (A.4)



A. Fahimifar et al./Scientia Iranica, Transactions A: Civil Engineering 21 (2014) 1821{1832 1831

The total strain is divided into elastic and plastic
strains:�

"r
"�

�
=
�
"er
"e�

�
+
�
"pr
"p�

�
: (A.5)

By replacing Eq. (16) in Eq. (6) and solving the
resultant equation by FDM, �"P� (i) (increment of
circumferential plastic strain), is obtained by:

�"p�(i) = P1=P2;

P1 =��"e�(i) + �(i)
�

1 + �
E

(��r(i)����(i))

+ 2 ("r(i� 1)� "�(i� 1))
�
;

P2 = 1 + �(i) (K(i) + 1) ; (A.6)

where:

K(i) =
1 + sin'
1� sin'

; (A.7)

�(i) =
�
r(i)� r(i� 1)
r(i) + r(i� 1)

�
: (A.8)

In Eq. (A.6), "�(i � 1) and "r(i � 1) are circumfer-
ential and radial strains calculated, respectively, in
the previous ring (i � 1). Here, �"e�(i) and �"er(i)
(circumferential and radial elastic strain increments)
also are obtained from Eq. (A.9) [13]:�

�"er(i)
�"e�(i)

�
=

1
2G

�
1� v �v
�v 1� v

��
��r(i)
���(i)

�
;�

��r(i)
���(i)

�
=
�
�r(i)� �r(i� 1)
��(i)� ��(i� 1)

�
: (A.9)

After calculating �"p�(i) from Eq. (A.6), �"pr(i) can be
obtained from Eq. (A.10) [3]:

�"pr(i) = �K(i)�"p�(i): (A.10)

In this step, the plastic strain also can be calculated
using the parameters measured in the previous steps:(

"pr(i) = "pr(i� 1) + �"pr(i)
"p�(i) = "p�(i� 1) + �"p�(i)

(A.11)

And the total circumferential and radial stresses are
expressed from the total elastic and plastic strains:�

"(i)
"�(i)

�
=
�
"r(i� 1)
"�(i� 1)

�
+
�

�"er(i)
�"e�(i)

�
+
�

�"pr(i)
�"p�(i)

�
:
(A.12)

Finally, after computing the total circumferential
strains, displacement can be calculate by Eq. (A.13):

u(i) = "�(i)r(i): (A.13)

To solve this equation, �rst, an elastoplastic radius
(re) is taken into account and then the calculations
are performed in the elastoplastic boundary using the
elastic zone equations. Next, considering the obtained
stress and strain values in the elastoplastic boundary
as initial values, Eqs. (A.2) to (A.13) are numerically
solved until satisfying boundary conditions. The cal-
culations are continued until the elastoplastic radius
limits to a constant value [15].

Appendix B: Stress-strain analysis in elastic
zone

According to Section 5.2 (Eq. (23)), the displacement
expression in the elastic zone is derived as:

d2ur
dr2 +

1
r
du
dr
� ur
r2 = 0: (B.1)

Eq. (B.1) can be solved analytically by applying the
boundary conditions:(

�rjr !1 = �o
�rjr = re = �r(re)

(B.2)

Stress, strain, and deformation in the elastic zone are
calculated using Eqs. (B.3) through (B.7):

ur=
1 + �r
Er

�
[�o � �r(re)]

�
r2
e
r

�
+�o(1� 2vr)r

�
;
(B.3)

"�=
1 + �r
Er

�
[�o � �r(re)]

�
r2
e
r2

�
+�o(1� 2vr)

�
;
(B.4)

"r=
1 + �r
Er

�
�[�o � �r(re)]

�
r2
e
r2

�
+�o(1� 2vr)

�
;
(B.5)

�r=�
�
(�o � �r(re))

�re
r

�2
�

+ �o; (B.6)

��=
�
(�o � �r(re))

�
r2
e
r

��
+ �o: (B.7)

In Eqs. (B.3) to (B.7), the portion �o(1 � 2v) that
belongs to the initial displacements and strains of the
ground, must be decreased from the �nal displacements
and strains [8].

By replacing the radial and circumferential
stresses in the elastoplastic boundary in the Hoek-
Brown failure criterion and solving the equation ob-
tained, the radial stress in the elastoplastic boundary
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is calculated using Eq. (B.8):

�r(re) =�o +
1
2

[D1 � (D2
1 + 4D1(�o

� Pw(re)) + s�2
c )

1
2 ]; (B.8)

where:

D1 =
m�c

4
: (B.9)
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