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Abstract. In this study, a new hybrid method based on Firefly Algorithm (FA) and
Harmony Search (HS) techniques is presented for solving the least-cost design problem of
Water Distribution Systems (WDS). This algorithm is designed to improve the performance
of the FA as a recently developed meta-heuristic that mimics the natural behaviour of
fireflies. The use of such a nature-inspired optimization method to solve the optimal
design problem of WDS needs particular modifications to produce high quality solutions.
Therefore, a modification is proposed to the movement stage of artificial fireflies, and based
on the HS strategy a memory is utilized to save a number of the best solutions. Another
improvement in this algorithm includes the addition of pitch adjustment operation in the
FA as a mutation operator. The presented method is applied to the optimal design of some
well-known benchmark problems taken from literature, and the results confirm its validity.
In addition, a sensitivity analysis is performed on the parameters of the algorithm.

(© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

The term meta-heuristic, first introduced by Glover [1],
is a set of concepts that can be used to define heuristic
methods applicable to a wide set of different problems
with relatively few modifications to adapt them to
a specific problem. These meta-heuristic algorithms
are mainly based on natural phenomena comprising
stochastic search techniques [2]. Design and implemen-
tation of such optimization methods is the origin of a
multitude of contributions to the literature over the last
50 years.

For example, in 1966, Fogel et al. [3] proposed evo-
lutionary programming. Holland [4] proposed the first
Genetic Algorithm (GA) in 1975. Smith [5] described
genetic programming. Kirkpatrick et al. [6] conceived
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Simulated Annealing (SA). Cerny [7] proposed a sim-
ilar algorithm for another problem considering it a
thermo-dynamical approach. Glover [1] proposed Tabu
Search algorithm (TS). Farmer et al. [8] worked on
Artificial Tmmune systems (AI). Reynolds [9] intro-
duced the flocking algorithm and the three flocking
rules of Reynolds: flock centering (cohesion), collision
avoidance (separation) and velocity matching (align-
ment). Moyson and Manderick [10] worked on the
collective behaviour of ants and found an application
in artificial intelligence. Moscato [11] proposed the
term memetic algorithm. Koza [12] registered his
first patent on genetic programming. Dorigo [13]
proposed ant colony algorithms (ACO) in his PhD
thesis. Kennedy and Eberhart [14] conceived the Par-
ticle Swarm Optimization algorithm (PSO). Storn and
Price [15] proposed a Differential Evolution algorithm
(DE). Rubinstein [16] worked on the Cross Entropy
(CE) method. Geem et al. [17] proposed Harmony
Search (HS). Abbass [18] proposed Marriage in the
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Honey Bee Optimization algorithm (MHBO). Nakrani
and Tovey [19] described the Honey Bee Algorithm
(HBA). Karaboga [20] described the Artificial Bee
Colony algorithm (ABC). In 2006, Erol and Eksin [21]
proposed a novel optimization algorithm, the so-called
big Bang-Big Crunch (BB-BC), as an efficient meta-
heuristic optimization method based on the BB-BC
theory of the universe evolution.Yang [22] developed
the Firefly Algorithm (FA). Recently, Kaveh and Khay-
atazad [23] developed a new meta-heuristic, so-called,
Ray Optimization (RO), and examined its capability
through some well-known benchmark problems. Kaveh
and Zolgadr [24] improved the PSO and presented
the democratic PSO. In 2011, a general model was
presented to unify the explanation of different meta-
heuristic algorithms by Kaveh and Talatahari [25].
This model is based on the concept of fields of forces
from physics and is called the Fields Of Forces (FOF)
model. The FOF model covers many meta-heuristic
algorithms and provides efficient means to improve,
expand, modify and hybridize the meta-heuristics.
The advantage of such a model consists of an easy
explanation of different algorithms. The FOF model
can easily predict the deficiency of some existing meta-
heuristics, and can suggest ways for their improvement.

Unlike exact methods, these meta-heuristics allow
one to tackle large-size problems by delivering satis-
factory solutions in a reasonable time. Application
of meta-heuristics falls into a large number of real-
world problems; one of them is the cost optimization of
Water Distribution Systems (WDS). Optimal design of
WDS has been the focus of many researchers over the
past three decades. In the WDS design problems, it is
usually assumed that the pipe layout, nodal elevations,
and demands are known in advance and the task is
to find the combination of pipe sizes that can satisfy
the required hydraulic head value at the demand nodes
with least-cost. Obtaining the least-cost design of a
WDS is a combinatorial problem. A set of solutions
must be selected from a discrete set of feasible solu-
tions where the functions representing the hydraulic
behaviour of the network are nonlinear [26]. The
solution process involves simultaneous consideration of
the continuity equation, energy conservation, and head-
loss function that makes the analytical solution of the
problem rather complicated. From a mathematical
point of view, significant difficulties are involved due
to the discrete nature of the pipe diameters and the
nonlinearity of the head-loss relationship. These lead
to a large-scale, mixed integer, and nonlinear problem,
corresponding to the NP-hard class.

In the present study, the cost optimization of
different types of WDS are carried out using a new
hybrid meta-heuristic, so-called, improved, firefly algo-
rithm with the harmony search scheme (IFA-HS). The
IFA-HS can be considered an improved version of the

recently developed FA algorithm. The improvements
counsist of utilizing a memory (HM) that contains some
information extracted online during the search, adding
of the pitch adjustment operation in FA, serving as
the mutation operator during the process of the firefly
updating, and modifying the movement phase of the
FA. As mentioned before, in this study, the WDS de-
sign is formulated as a least-cost optimization problem
with a selection of pipe diameters as the decision vari-
ables, while network layout and its connectivity, nodal
demand, and minimum requirements are imposed.
Since the literature on the optimization of WDSs has
traditionally dealt with an idealized problem, this form
of the optimization of WDSs is used in this paper. The
above formulation results in a mixed integer nonlinear
programming problem (MINLP), which is non-convex,
because of the existence of integer variables and the
nature of the continuity equations. On the other
hand, the problem constraints are not smooth and,
hence, the application of smooth algorithms cannot
be appropriate. Therefore, using new meta-heuristic
optimization techniques is an interesting, if not the
best, way of treating this problem. Historically, as a
result of comprehensive analyses performed by many
authors in recent decades, starting from the 1970s,
a large number of methods have been applied to
solving this optimization problem, including linear
programming techniques, non-linear optimization mod-
els, global optimization methods and meta-heuristic
algorithms. The main contribution of this study is
to develop a new hybrid algorithm for minimum-cost
design of WDSs, in which some components of HS are
incorporated into an improved version of the FA. The
detailed implementation procedure of this hybrid meta-
heuristic method is also presented.

The hybridization of HS with other meta-heuristic
has been carried out previously in different forms which
can be grouped into two types. The first approach
is the integration of some components of other meta-
heuristic algorithms into HS, while the second approach
is the integration of some HS components into other
meta-heuristic algorithms. In Ref [27], the authors
improved the performance of PSO, which is used in
the designing of optimal pin-connected structures, by
handling the particles that fly outside the variables’
boundary. This improvement was based on the use of
the HM concept. Kaveh and Talatahari [28] proposed
a new framework based on a modified version of PSO,
ACO and the HS scheme. In this framework, the HS
was used to control the variable constraints. Li et
al. [29] proposed a modified version of GA using HS.
Their proposed modification mimics the HS improvisa-
tion method, where the new generated vector is selected
from all vectors stored in the HM, which is contrary to
the GA method of generating new vectors. Moeinzadeh
et al. [30] used HS to improve the performance of
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the Linear Discriminate Analysis (LDA) classification
algorithm. Lee and Zomaya [31] proposed a parallel
algorithm, where HS was considered its key component.
In this method, three meta-heuristics, GA, SA, and
Al, were utilized to enhance the solutions stored in
the HM as an extra step to speed up the convergence
and, at the same time, to avoid being trapped in local
optima.

The remaining sections of this article are orga-
nized as follows: A review of FA and HS is presented in
Section 2, and then the proposed method is introduced
in Section 3. In Section 4, optimal design of WDS
is described in detail using the proposed method,
and, in Section 5, the performance of the algorithm
is evaluated utilizing typical design examples. The
sensitivity analysis is also carried out in this section.
Finally, Section 6 concludes the paper.

2. A review on FA and HS

In order to make the paper self-explanatory, before
proposing the new hybrid algorithm, the characteristics
of FA and HS are briefly explained in the following two
subsections.

2.1. Furefly algorithm

Among the phenomenon-mimicking methods, algo-
rithms inspired from the collective behavior of species
such as ants, bees, wasps, termite, fish, and birds
are referred to as swarm intelligence algorithms [32].
Recently, Yang [22] proposed the Firefly Algorithm
(FA) as a new swarm intelligence algorithm which
mimics the natural behaviour of fireflies. In some
articles, [33,34] the efficiency of FA based optimization
methods is compared to that of the PSO and GA based
approaches, through different test functions. Recently,
various applications of the FA in different research
areas are reported. In the field of optimal structural
design, there is limited work available in the literature
based on the application of FA. Gandomi et al. [35]
used a FA based approach for solving mixed contin-
uous/discrete structural optimization problems. This
study revealed the efficiency of the FA algorithm in
structural optimization. Gomez [36] employed the FA
for the sizing and shape optimization of truss structures
with dynamic constraints. Also, Kazemzadeh Azad
and Kazemzadeh Azad [37] employed an Improved FA
(IFA) algorithm for optimum design of planar and
spatial truss structures with both sizing and shape
design variables, and reported promising results.

As mentioned before, the FA is a nature-inspired
heuristic search technique based on the natural be-
haviour of fireflies. According to [33] who developed
the FA, the natural flashing characteristics of fireflies
can be idealized using the following three rules:

e Rule 1. All fireflies are unisex; therefore, one firefly

will be attracted to other fireflies regardless of their
gender.

e Rule 2. The attractiveness of each firefly is
proportional to its brightness. Thus, for any two
flashing fireflies, the less bright firefly will move
towards the brighter one. The attractiveness is
proportional to brightness and they both decrease
as their distance increases. If there is no brighter
one than a particular firefly, it will move randomly.

e Rule 3. The brightness of a firefly is determined
according to the nature of the objective function.

The attractiveness of a firefly is determined by
its brightness or light intensity which is obtained from
the objective function of the optimization problem.
However, the attractiveness, (3, which is related to
the judgment of the beholder, varies with the distance
between two fireflies. The attractiveness, (, is defined
by [38]:

B = Boexp(—yr?), (1)

where r is the distance of two fireflies, [y is the
attractiveness at » = 0, and v is the light absorption
coefficient. The distance between two fireflies, ¢ and
J, at x; and z;, respectively, is determined using the
following equation:

k=d

D @ik —wip)?, (2)

k=1

rijg = |lei — 5| =

where x;, is the kth parameter of the spatial coor-
dinate, x;, of the ¢th firefly. In the firefly algorithm,
the movement of a firefly, ¢, towards a more attractive
(brighter) firefly, j, is determined by the following
equation [38]:

xi =x; + ﬁoexp(—vrfj)(x]— — ;) + ag;, (3)

where the second term is related to the attraction,
while the third term is randomization with the vector
of random variables, ¢;, using a normal distribution.

The performance of the IFA was investigated
using optimal design of truss structures, and satisfac-
tory results were reported. In the present study, the
IFA is employed for optimum design of WDS. Here,
considering the nature of the optimization problem, the
following equation is utilized for the movement stage of
the FA:

xi =z + ﬁgexp(—’yr'fj)(xj — ;) + ag;. (4)
In the original FA, the movement of firefly ¢ towards
brighter firefly j was determined by Eq. (3). Since z;
is brighter than z;, in Eq. (4) instead of moving firefly
1 towards j, searching the vicinity of firefly 7, which is
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a morereliable area, is proposed to update the position
of firefly 4, based on the current position of firefly j. To
do this, x; is replaced by z; and the above equation is
employed for the movement stage of the FA. In Eq. (4),
g; is a randomly generated number using a normal
distribution and « is a scaling parameter. Normal
distribution has two parameters: a mean value and a
standard deviation. In this study, the mean value of
the normal distribution is set to zero and the standard
deviation is taken as the standard deviation of the kth
parameter of all fireflies in each generation.

In the IFA, to avoid missing the brighter fireflies
of the population, the position of a firefly is updated
only if the new position found is better than the old
one. Therefore, in the process of optimization, each
candidate design is replaced only with a better design.
It is apparent that Eq. (3) may generate fireflies outside
the bounds of design variables. In order to remove this
difficulty, the parameters of fireflies that are not created
within the bounds of design variables are rounded into
the boundary values [37].

2.2. Harmony search technique

When musicians improvise a harmony, they usually
try various possible combinations of the music pitches
stored in their memory. This kind of effective search
for a perfect harmony is analogous to the procedure
of finding an optimal solution in engineering problems.
The HS method is inspired by the working principles
of harmony improvisation. Similar to the GA and
PSO, the HS method is a random search technique.
It does not require any prior domain knowledge, such
as the gradient information of the objective function.
However, different from those population-based ap-
proaches, it only utilizes a single search memory to
evolve. Therefore, the HS method has the distin-
guished feature of algorithmic simplicity [39]. HS is
a meta-heuristic search technique without the need
for derivative information, and with reduced memory
requirements. In comparison with other meta-heuristic
methods, HS is computationally effective and easy
to implement for solving various kinds of engineering
optimization problems. There are four principal steps
in this algorithm [40].

Step 1. Initialize a Harmony Memory (HM). The
initial HM consists of a certain number of randomly
generated solutions for the optimization problem under
consideration. For an n dimensional problem, a HM
with the size of HMS can be represented as follows:

1 1 1
i Ty . T
2 2 2
] x5 .. T
HM = , (5)
HMS _HMS HMS
it 5 o T,

(@ = 1,2,...,.HMS) is a candidate
solution. HMS is typically set to be between 10 and
100.

where z},75, .., 2!

Step 2. Improvise a new solution (zf,x},..,2,) from
the HM. Each component of this solution, x;, is
obtained based on the Harmony Memory Considering
Rate (HMCR). The HMCR is defined as the probability
of selecting a component from the HM members, and
1-HMCR is, therefore, the probability of generating it
randomly. If z; comes from the HM, it can further be
mutated according to the Pitching Adjust Rate (PAR).
The PAR determines the probability of a candidate
from the HM to be mutated.

Step 3. Update the HM. First, the new solution from
Step 2 is evaluated. If it yields a better fitness than
that of the worst member in the HM, it will replace it.
Otherwise, it is eliminated.

Step 4. Repeat Steps 2 and 3 until a termination
criterion (e.g., maximal number of iterations) is met.

The usage of harmony memory (HM) is im-
portant because it ensures that good harmonies are
considered as elements of the new solution vectors. In
order to use this memory effectively, the HS algorithm
adopts a parameter, HMCRe (0,1), called the harmony
memory considering (or accepting) rate. If this rate
is too low, only few elite harmonies are selected and
it may converge too slowly. If this rate is extremely
high, near 1, the pitches in the harmony memory are
mostly used, and others are not explored well, leading
not into good solutions. Therefore, typically, we use
HMCR = 0.7 ~ 0.95 [40]. Note that a low PAR with a
narrow bandwidth (bw) can slow down the convergence
of HS because of the limitation in the exploration of
only a small subspace of the whole search space. On
the other hand, a very high PAR with a wide bw may
cause the solution to scatter around some potential
optima as in a random search. Furthermore large
PAR values with small bw values usually cause the
improvement of best solutions in final generations in
which the algorithm is converged to an optimal solution
vector.

3. The present algorithm

In this section, we propose a new version of the firefly
algorithm called the IFA-HS algorithm. The hybrid
IFA-HS algorithm combines the optimization capabil-
ities of HS and IFA. There are various hybrid models
of HS with other meta-heuristics in the literature.
Alia and Mandava [41] categorized this hybridization
into two types. The first type consists of algorithms
which are an integration of some components of the
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Improved Firefly Algorithm with Harmony Search Scheme (IFA-HS)
- Initialize the problem parameters:

Objective function f(X), X = (21, @2, ..., Ty, yT

Number of design variables (n)

- Initialize the algorithm parameters:

Population size (popsize)

Harmony Memory Size (HMS)

Harmony Memory Considering Rate (HMCR)

Pitch Adjustment Rate (PAR)

Maximum allowed number of evaluation (maxevaluation)

- Randomly generate initial population of fireflies X; (1 = 1,2, ..., popsize)
- Evaluate fitness of the population

- Construct the vectors of the harmony memory HM = X, (k =1,2,..., HMS)

While evaluation < maxevaluation (stopping criterion not met)

1595

For i = 1: popsize
For j = 1: popsize

Move firefly 7, (apply Eq.(4))

Include the best solution to the HM
With probability HMCR

With probability 1-PAR

Do nothing

With probability PAR
Choose a neighboring value
With probability 1-HMCR

End for j
End for 1
End while

Search the vicinity of the brighter firefly

Vary attractiveness with distance r via exp (777"2)
Evaluate new solutions and update light intensity

Exclude the worst solution from the HM

Select a new solution randomly from the HM

Select a new solution from the possible value set
Evaluate new solution and update the HM

Figure 1. The outline of the proposed IFA-HS method.

other meta-heuristic algorithms within HS, while the
second type consists of methods that integrate some HS
components within other meta-heuristic algorithms,
such as the IFA-HS algorithm.

In the HS algorithm, the diversification is con-
trolled by random selection. Random selection explores
global search space more widely and efficiently, while
pitch adjustment makes the new solution good enough
and near existing good solutions. The intensification
in the HS algorithm is controlled by memory con-
sideration, leading the searching process toward the
searching space of good solutions [42]. Also, the use
of the HM in HS allows the selection of the best
vectors that may represent different regions in the
search space. On the other hand, the disadvantages of
the basic FA algorithm are premature convergence and
sometimes efficacious experiences between solutions in
a population are not obtained. In order to obtain a
high quality solution, we combine the above mentioned
strategies. Since FA algorithms are memory less, there
is no information extracted dynamically during the
search, while the hybrid IFA-HS uses a memory that
contains some information extracted online during the
search. In other words, some history of the search
stored in a memory can be used in the generation
of the candidate list of solutions and in selection of
the new solution. Using the original configuration of
the IFA, we generate the new harmonies based on
the newly generated firefly each iteration after firefly’s

position has been updated. The updated harmony
vector substitutes the newly generated firefly only if
it has better fitness. This selection scheme is rather
greedy which often overtakes original HS and FA.
The proposed IFA-HS algorithm involves two phases
of optimization: (a) The IFA algorithm using the
heuristic search technique, (b) The HS algorithm using
memory consideration, random selection and pitch
adjustment. Figure 1 shows the outline of the proposed
IFA-HS method.

The hybrid IFA-HS algorithm has another benefi-
cial feature; it iteratively explores the search space by
combining multi-search space regions to visit a single
search space region. The IFA-HS iteratively recombines
the characteristics of many solutions in order to make
one solution. It is able to fine-tune this solution, to
which the algorithm converges, using neighbourhood
structures. Throughout the process, recombination is
represented by memory consideration, randomness by
random consideration, and neighbourhood structures
by pitch adjustment and variation of the firefly’s at-
tractiveness. Therefore, the IFA-HS algorithm has the
advantage of combining key components of population-
based and local search-based methods in a simple
optimization model. The framework of the algorithm
is illustrated in Figure 2.

In order to further clarify how the IFA-HS can
solve optimization problems, let us consider the follow-
ing mathematical minimization problem:
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Define objective function and
initialize the algorithm parameters

Randomly generate initial population of fireflies

l

Evaluate fitness of the fireflies and
construct the HM

44While stopping criteria not meet

IFA-based search technique l

____________________________________ =

1
: - Search the vicinity of the brighter firefly :
I - Vary attractiveness with distance 1
: - Evaluate new solutions and update light intensity :
: - Rank the fireflies and find the current best :

Include the best firefly to the HM
and exclude the worst solution from the HM

HS-based strategy l

: w.p. HMCR ==> select a new value from HM :
1 ==> w.p. (I-PAR) do nothing :
i ==> w.p. PAR choose a neighboring value :
! i

w.p. (FHMCR) == > select a new value from the possible value

________________ [om-omm o s

Update HM and set the best solution
as the brighter firefly

Not satisfied Check stopping Satisfied Output the best

criteria solution

Figure 2. Flowchart of the IFA-HS algorithm developed
in this research.

1 1 1 1.

f(z) = 13?‘11 - 555% toht §I§~ (6)
The objective function is the Aluffi-Pentiny function,
which is one of the standard test functions in op-
timization. This function has global optima with
a corresponding function value equal to —0.352386.
Possible value bounds between —10.0 and 10.0 are
used for the two decision variables, x; and x5, shown

in Eq. (6). The total number of fireflies is 30, and
the HMS is equal to 15. Also, PAR = 0.40 and
HMCR = 0.98. Figure 3 is prepared to show the

positions of the fireflies during the optimization for
this problem. The proposed method is similar to
other meta-heuristics in respect to creating an initial
population randomly where the candidate solutions
are spread all over the search space in a stochastic
manner. Figure 3(a) is plotted to give an idea
of how the candidate solutions are spread in the
optimization problem of the Aluffi-Pentiny function.
It can be seen that in the first iterations, the fire-
flies investigate the entire search space to discover a
promising region (exploration). When this promising
region containing a global optimum is discovered, the

movements of the fireflies are limited to this space in
order to provide more local search (exploitation). In
Figure 3(f), nearly all 30 fireflies lie on the optimal
point, but there still exist some fireflies far beyond
the optimal solution. In Eq. (4), the third term (ae;)
will reach zero as iterations go to infinity. Thus,
we can conclude that there will always be an off-
spring that will be located far from the best firefly
with decreasing probability but never equal to zero,
bearing the potential to affect the so-found best firefly
towards itself if it has a higher fitness value than the
remaining fireflies. This is one of the key features of
the IFA-HS that promises the global convergence of
the algorithm.

4. Statement of WDS design optimization
problems

A hydraulic network is a system containing pipes,
reservoirs, pumps, and valves of different types, which
are connected to each other to provide water to con-
sumers. It is an important component of an urban
infrastructure or agricultural landscape as an irrigation
project and requires significant investment. Therefore,
researchers are constantly searching for new ways to
create more economical and efficient designs. A general
strategy for solving the optimal design problem of a
WDS involves the balancing of several factors: finding
the lowest costs for layout and sizing using new com-
ponents, reusing or substituting existing components,
creating a working system configuration that fulfils all
water demands, adhering to design constraints, and
guaranteeing a certain degree of reliability for the
system [43]. On the other hand, water network dimen-
sioning is mathematically undetermined, thus, allowing
for innumerable solutions. A typical design problem of
a hydraulic network consists of sizing, i.e. determining
the size of as many of the pipes as the equations allow to
meet the specified pressures and discharges throughout
the network. From a mathematical point of view,
significant difficulties are involved due to the discrete
nature of the pipe diameters and the nonlinearity of
the head-loss relationship. Here, the WDS design is
formulated as a least-cost optimization problem with a
selection of pipe sizes as the decision variables, while
network layout and its connectivity, nodal demand,
and minimum head requirements are imposed. The
optimization problem can be stated mathematically
as [44]:
Ny
Minimize feost = »_ C(D1) % Li, (7)
=1

where feost 18 the cost of the design; C(D;) is the cost
per unit length of pipe diameter, D;; L; is the length
of pipe ¢; and n, is the number of pipes in the network.



A. Tahershamsi et al./Scientia Iranica, Transactions A: Civil Engineering 21 (2014) 1591-1607

1597

10
5
0 W

-5

-10

10 - — 10

5 5

0 7 - 0

-10L_= - i -10
-10 -5 0 5 10 -10 -5

(a) Iteration=0, best fit=7.65000

0

(b) Iteration=25, best fit=-0.34036

5 10 -10 -5 0 5 10

(c) Iteration=75, best fit=-0.35224

10

5
0 -

-5

-10

10 . 10
5 5
0 ox, 0
-10 ‘ -10
-10 -5 0 5 10 -10 -5

(d) Iteration=125, best fit=-0.35226

0

(e) Iteration=142, best fit=-0.35231

-10 -5 0 5 10
(f) Iteration=150, best fit=-0.35231

5 10

Figure 3. Collection of the fireflies around the global optima after the 150th iteration.

The above objective function is subjected to the
following constraints,

1—Mass conservation constraint:

Z in_ZQout:ZQe
2-Energy conservation constraint: Y H;—>_ E,=0

3—Minimum pressure constraint: H; > HJ‘.nin (8)

4-Pipe size availability constraint: D; € ®p, Vi € n,

In the continuity constraint, @i, is the flow rate to
the node; Q.u is the flow rate out of the node;
and Q. is the external inflow rate at the node. In
the energy constraint, hy is the head loss computed
by the Hazen-Williams or Darcy-Weisbach nonlinear
formulae; and £, is the energy added to the water by
a pump. Also, H; is the pressure head and H;“i“ is the
minimum required pressure head at node j in which
j=12,..,n,, with n, being the number of nodes in
the network. In the pipe size availability constraint,
D; is the diameter of pipe 7; and ®p denotes the set of
commercially available pipe diameters.

The constraints of the optimal design problem of
WDS can be grouped into the following: size limitation,
minimum required pressure head, and hydrodynamic
constraints.  Size limitation constraints reduce the
parameter space to a discrete one. The IFA-HS based
model has an alternative to fix the resolution of the
parameter space to be searched. This can be adjusted
to the number of commercially available pipe diameters
and each parameter can take values from one to the
number of commercial pipe sizes. This number is used
as an index for the choice of diameters. Therefore, the
IFA-HS algorithm will search for the optimal set of pipe
indices instead of the optimal set of diameters. In order

to handle minimum nodal head constraints, a penalty
approach is utilized. If the constraints are between
the allowable limits, the penalty is zero; otherwise, the
amount of penalty is obtained by dividing the violation
of the allowable limit to the limit itself. After analyzing
a model, the pressure of each node is obtained, then,
these values are compared to the allowable limits to
calculate the penalty functions as:

Hyin < H; = A;j =0

min .
H¥u_H,

e =12,
J

H;_nm > Hj —— A]‘ = , N (9)
In this method, the aim of the optimization is redefined
by introducing the cost function as:

Flost :El'fcost +e2. Z(Aj>s37 ]: 1, 27 vy Moy <]'O>
The penalty function method has certain drawbacks.
For example, penalty parameters are problem depen-
dent and require proper parameter tuning to converge
to the feasible domain. Here, for better control of the
parameters, ¢, is set to 1. Investigations have shown
that when the magnitudes of the second term of the
above function (penalty function with coefficients) are
in balance with the first term (cost function), better
results are obtained. Therefore, the coefficient, ¢4, is
taken as the cost of the WDS and the coefficient, e3,
is set in such a way that the penalties decrease. The
values of the penalty function, defined for infeasible
designs, increase as the exponent e3 increases. The
value of the penalty function exponent is important
because it governs the rate of increase in the cost of
infeasible designs, which directly effects exploration
of the fireflies by adjusting the brightness or light
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intensity values, and, thus, selection probabilities. In
the first iterations, if 3 has a large value, the fireflies
tend to narrow the search space to designs that,
while feasible, are more expensive than the optimal
design and reduce the exploration of the solution space.
However, within the last iterations, if 3 has a small
value, the fireflies have an undesirable tendency to
converge to least-cost, but infeasible, designs that
have a very small penalty. Setting a large value
for 3 in the last iterations may help to prevent
convergence to infeasible designs by increasing the
applied penalty. Therefore, in the first iterations of
the search process, 3 is set to 1.05 but is gradually
increased to 1.5. Then, Eq. (10) can be redefined
as:

Fcost = fcost + fcost' Z(A])ES

= (14D (8)) X feosts J=1,2,..,n,. (11)

In other words, this approach has the property of
allowing highly infeasible solutions early in the search,
while continually increasing the penalty imposed to
eventually move the final solution to the feasible re-
gion.

The hydrodynamic constraints are handled by the
network simulation model. Water network simulation
models have become everyday tools for planners, de-
signers, maintainers and operators. Due to accurate
hydraulic analysis calculation methods, WDS models
have found applicability in design, optimization, per-
formance evaluation, rehabilitation, risk management,
and operation, among others. In this study, the TFA-
HS is coupled with the widely used water distribu-
tion network software, EPANET 2 [45], and applied
to WDS designs. Here, the IFA-HS optimization
model is the outer driver model and simulation is
the inner model. The EPANET programmer’s toolkit
was provided by the United States Environmental
Protection Agency (USEPA) that is a Dynamic Link
Library (DLL) of functions that allow developers to
customize EPANET’s computational engine for the
user’s specific needs. Thus, a computer program-
ming code is written for IFA-HS in MATLAB, and
EPANET? is linked using the EPANET toolkit. A
brief description of the steps in the implementation
of the IFA-HS optimization model can be outlined as
follows:

Step 1. Generate N (N=popsize) population of
points randomly in the solution space. Each of the N
populations represents a possible combination of pipe
indices.

Step 2. Compute the network cost (feost) for each
of the N solutions after converting the randomly

generated pipe indices to the pipe sizes available on
the market.

Step 3. Update the input file of the simulator (only
the diameters are changed).

Step 4. Perform hydraulic analysis of each network.
EPANET?2 is used to analyze the network and check
the pressure at some nodes which are required to meet
certain nodal pressures.

Step 5. Compute penalty function (> A), if the nodal
head at any node is less than the required minimum.

Step 6. Calculate the total cost of the network (Feost)
using the network cost and the penalty found in Steps 2
and 5, respectively.

Step 7. The total cost found in Step 6 is utilized as
the fitness value for each of the trial networks.

5. Test problems

In this section, the IFA-HS algorithm is applied to
four well-known networks: GoYang (small size), Hanoi
(small size), double Hanoi (medium size), and Balerma
network (large size). On the other hand, any meta-
heuristic algorithm involves a set of parameters. In
many cases, we would be interested in knowing the
sensitivities or derivatives of the optimum design with
respect to these parameters, because it is very useful
to the designer to know which data values are more
influential on the design. The sensitivity of optimal
responses to these parameters is an important issue
in the optimum cost design of WDS. As a result,
here, a sensitivity analysis is performed for the pa-
rameters of the IFA-HS algorithm. The algorithm
parameters used in this study include HMS, HMCR,
PAR, and popsize (population size). In order to avoid
the possible randomness of the search process due
to the use of different initial solutions, the GoYang
problem is solved 10 times for different parameter
configurations. Due to the large computational time,
the sensitivity analyses of the other networks are
not carried out for this reason; the best parameter
configuration obtained for the GoYang network is used
for them.

After the sensitivity analysis described in subsec-
tion 5.1, for each of the above problems, a population
size of 200 and harmony memory size of 70 are utilized.
The HS parameters are set to HMCR = 0.95, and PAR
= 0.35 for all the examples. The maximum number of
evaluations is taken as 20,000 for GoYang, Hanoi, and
double Hanoi problems, and 100,000 for the Balerma
network. Note that for these parameters, the IFA-
HS algorithms exhibited good performance in solution
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Figure 4. Network layout for the GoYang problem.

quality and required a reasonably small amount of
computational overhead.

5.1. GoYang water distribution network

The optimum design problem of the GoYang network
was presented by Kim et al. [46] in South Korea. It
consists of 22 nodes, 30 pipes, and 9 loops, and is fed
by a pump (4.52 kW) from a reservoir with a 71 m fixed
head. The pipeline deployment of the GoYang network,
shown in Figure 4, is derived from a water distribution
network in South Korea. The data of nodes and pipes,
also, IFA-HS optimal diameters, are shown in Table 1.
The cost of commercially available pipe sizes {80, 100,
125, 150, 200, 250, 300, 350; in mm} is {37,890; 38,933;
40,563; 42,554; 47,624; 54,125; 62,109; 71,524; in
won /meter } respectively, which have a Hazen-Williams
coefficient of 100. Therefore, the search space of this
optimization problem is 839 = 1.24 x 10?7 possible
designs. The minimum head limitation is 15 m above
ground level.

In order to tune the utilized parameters for the
proposed IFA-HS, a sensitive study on two parameters
of the algorithm is performed while fixing other param-
eters (HMS = 50 and HMCR = 0.9). For various values
of popsize and PAR, this example is solved several
times (10 times for each value of popsize and PAR)
and the average cost of the designs is shown in Table 2.
This table shows that when the values of PAR and
popsize increase, the optimum cost of WDS decreases.
From Table 2, it can be concluded that small PAR and
popsize values can cause the poor performance of the
algorithm and a considerable increase in the iterations
needed to find an optimum solution. On the other
hand, a very large PAR may cause the solution to
scatter around some potential optima, as in a random
search. As shown in the table, PAR = 0.35 and popsize
= 200 are suitable values for the IFA-HS algorithm.
These parameter values are used for all other presented
examples.

The result of sensitivity analysis of HMS and
HMCR (HMS = {30, 40, 50, 60, 70}, and HMCR =
{0.80, 0.85, 0.90, 0.93, 0.95}) while fixing other param-
eters (popsize = 200 and PAR = 0.35) are shown in
Table 3. The original cost of the GoYang network was

1599
Table 1. GoYang network data.

Node Ground IFA,-HS

Demand Length  optimal

. (m®/day) level (m) diameter

pipe (m) (m)

01 Reservoir 71.0 165.0 200
02 153.0 56.4 124.0 125
03 70.5 53.8 118.0 125
04 58.5 54.9 81.0 100
05 75.0 56.0 134.0 80
06 67.5 57.0 135.0 80
07 63.0 53.9 202.0 80
08 48.0 54.5 135.0 80
09 42.0 57.9 170.0 80
10 30.0 62.1 113.0 80
11 42.0 62.8 335.0 80
12 37.5 58.6 115.0 80
13 37.5 59.3 345.0 80
14 63.0 59.8 114.0 80
15 445.5 59.2 103.0 80
16 108.0 53.6 261.0 80
17 79.5 54.8 72.0 80
18 55.5 55.1 373.0 80
19 118.5 54.2 98.0 80
20 124.5 54.5 110.0 80
21 31.5 62.9 98.0 80
22 799.5 61.8 246.0 80
23 71.0 174.0 80
24 56.4 102.0 80
25 53.8 92.0 80
26 54.9 100.0 80
27 56.0 130.0 80
28 57.0 90.0 80
29 53.9 185.0 80
30 54.5 90.0 80

Table 2. Results from various PAR and popsize values.

Number of

PAR Popsize Cost (won)
analyses

0.10 50 179,832,124 16,200
0.20 100 179,100,561 12,000
0.25 150 178,050,300 10,820
0.35 200 177,015,450 8,450
0.45 250 177,093,324 6,000
0.55 300 177,100,025 4,200
0.85 350 177,075,020 3,800
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Table 3. Sensitivity analysis of HS parameters (HMS and
HMCR).

HMS HMCR Cost (won) Number of
analyses
30 0.80 177,783,950 10,400
40 0.85 177,072,511 9,800
50 0.90 177,014,772 6,371
60 0.93 177,010,359 4,961
70 0.95 177,010,359 3,631
%108
1.85) ' ! 1
— HMS=30 HMCR=0.80
1.841 —— HMS=40 HMCR=0.85 | 1
1.83L —— HMS=50 HMCR=0.90 | |
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Figure 5. Convergence rate comparison for each
parameter configurations (GoYang problem).

179,428,600 won. Kim et al. [46] solved this problem us-
ing a projected Lagrangian algorithm (NLP) supported
by GAMS/MINOS, and then converted the continuous
diameters to discrete commercial diameters. They
obtained the optimal cost of 179,142,700 won. Also
Geem [47] found a solution of 177,135,800 won using
the Harmony Search algorithm (HS) after 10,000 func-
tion evaluations, which is the current best known solu-
tion for the GoYang network. The best solution found
by the proposed IFA-HS for the GoYang case study was
177,010,359 won, spending 3,631 function evaluations
when the HMS = 70 and HMCR = 0.95, which is less
than the original cost, NLP and HS based-models.

As shown in Table 3, the IFA-HS algorithm with
a larger HMS and HMCR performed better for this
case study. The best cost of 177,010,359 won was
obtained when HMS = {60, 70} and HMCR = {0.93,
0.95}. However, they require different computational
overheads to reach the same final solution. Figure 5
displays the convergence history of each parameter con-
figuration. This figure shows that it takes about 10,400,
9,800, 6,371, 4,961, and 3,631 function evaluations for
{HMS = 30, HMCR = 0.80}, {HMS = 40, HMCR
= 0.85}, {HMS = 50, HMCR = 0.90}, {HMS = 60,
HMCR = 0.93}, and {HMS = 70, HMCR = 0.95}
In considering both solution quality and efficiency, the
HMS of 70 and HMCR of 0.95 were selected as the best
configuration.

5.2. Hanoi water distribution network
The second problem is proposed by Fujiwara and
Khang [48]. This network consists of 32 nodes, 34 pipes

Figure 6. Network layout for the Hanoi problem.

and 3 loops. The network has no pumping station as
it is fed by gravity from a reservoir with a 100 m fixed
head. For this example, the system data are presented
in Table 4. The Hanoi network (Figure 6) requires
the optimal design of 34 pipes, allowing a minimum
hydraulic head of 30 m, for all its 32 nodes, by means of
6 available diameters. The total solution space is then
equal to 63 = 2.87 x 1026, The cost of commercially
available pipe sizes {12, 16, 20, 24, 30 and 40 in inches}
is {45.73, 70.40, 98.38, 129.30, 180.80 and 278.30 in
dollar/meter}, respectively.

Table 5 reports the best results and the required
number of evaluation for convergence in the present
algorithm and some of the other heuristic methods.
The IFA-HS found the best feasible solution of 6.2237 x
10% § after 15,200 function evaluations while the IFA
found the best solution of 6.580 x 10° $ spending
17,800 evaluations, which is a 5.41% more expensive
design. Also, the best cost of the BLIP (Binary Lin-
ear Integer Pogramming), MSATS (Mixed Simulated
Annealing and Tabu Search), SSSA (Scatter Search
using Simulated Annealing as local searcher), [49], SCE
(Shuffled Complex Evolution) [50], BB-BC (Big Bang-
Big Crunch algorithm) [26], HBA (Heuristic Based
Approach) [51], and MGA (Modified GA) [52] is 6.363,
6.352, 6.273, 6.220, 6.224, 6.232, and 6.190 million
dollars, respectively. In addition the BLIP, MSATS,
and SSSE found the best feasible solution after 26,457
and BB-BC, HBA, and MGA after 26,000, 259, and
18,000 function evaluations, respectively. A compar-
ison with the hybrid meta-heuristics, such as BLIP,
MSATS, and SSSA, demonstrates the effectiveness and
efficiency of the proposed method. Also, the optimal
design obtained using the IFA-HS algorithm showed
good agreement with the previous designs reported in
the literature.

In order to illustrate the performance of the
constraint handling approach, Figure 7 is plotted,
which shows the rate of reduction on infeasibilities
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Table 4. Hanoi network data.

IFA-HS

Node Demand Pipeline Length optimal

number (m?®/h) (m) diameter
(in)
01 - 01 100 40
02 890 02 1350 40
03 850 03 900 40
04 130 04 1150 40
05 725 05 1450 40
06 1005 06 450 40
07 1350 07 850 40
08 550 08 850 30
09 525 09 800 30
10 525 10 950 30
11 500 11 1200 24
12 560 12 3500 24
13 940 13 800 12
14 615 14 500 12
15 280 15 550 16
16 310 16 2730 30
17 865 17 1750 30
18 1345 18 800 30
19 60 19 400 30
20 1275 20 2200 40
21 930 21 1500 20
22 485 22 500 12
23 1045 23 2650 30
24 820 24 1230 24
25 170 25 1300 20
26 900 26 850 16
27 370 27 300 24
28 290 28 750 24
29 360 29 500 16
30 360 30 2000 16
31 105 31 1600 12
32 805 32 150 16
33 860 20
34 950 24

with the number of analyses. As it is clear from
this figure, after about 1,200 function evaluations, the
fireflies are forced to fly-back to feasible space. In
this figure, the Vio (constraint violation) parameter is
defined as:

Vio = Z max [0, (Hmin - H])] !

i=1,2, . n,. (12)

Table 5. Performance comparison for the Hanoi network.

Method Cost (10°$) Number of
analyses

BLIP [49] 6.363 26,457
MSATS [49] 6.352 26,457
SSSA [49] 6.273 26,457
SCE [50] 6.220 25,402
BB-BC [26] 6.224 26,000
HBA [51] 6.232 259

MGA [52] 6.190 18,000
IFA-HS (present work) 6.224 15,200

5.3. Double Hanot network

The third design example is the double Hanoi network.
Because this network is derived from the basic Hanoi
network, its optimal cost is known. All the parameters
for the reservoir, nodes and lines in the double Hanoi
water distribution network are the same as in the
original Hanoi network on both mirrored parts, except
for the first pipe (from the reservoir to node 2), which is
shortened from the original 100 to 28.9 m. This change
was made for the sake of obtaining the same head in
node 2 (with a diameter of 40 in, which will certainly
be proposed here by any optimization method) as in
the original Hanoi network. The total solution space is
then equal to 657 = 1.37 x 10°2. Network layout for this
problem is shown in Figure 8. The reference optimal
solution (global) could be evaluated as follows [53]:

Cpuy =2Cyx — 2L,C + 28.9C1, (13)

in which Cpy is the optimal cost of the double Hanoi
network; C'y is the reference optimal cost of the Hanoi
network; Ly is the length of the first pipe on the original
network (100 m); and C; is the unit price of diameter
40 in (278.28 $).

For our solution described in the previous example
(6.2237 x 10° §), according to Eq. (13), the global
optimum solution of the double Hanoi network should
be 12.400 x 105 $. The best results obtained with
the IFA-HS, BB-BC [26], GA, OptiDesigner, and the
HS [53] are summarized in Table 6. The reference
optimal cost of the Hanoi network for the GA and
HS is 6.081 x 10° $ and it is 6.115 x 10° § for the
OptiDesigner. The IFA-HS found the best feasible
solution of 12.611x 10° § after 18,000 analyses, as given
in Table 7, while the best cost for the IFA, HS, GA,
and OptiDesigner are 14.118, 12.405, 12.601 and 12.795
million dollars, respectively. Therefore, deviation from
the reference optimal solution for the IFA-HS algorithm
is 1.70%, and it is 2.00%, 2.39%, 4.01%, 5.62% and
7.27% for the BB-BC, HS, GA, OptiDesigner and IFA,
respectively. This result demonstrates that the IFA-HS
algorithm is better in terms of closeness to the global
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Figure 8. Network layout for the double Hanoi problem.

minimum. The hydraulic head for each node is shown
in Figure 9. As shown in this figure, the minimum
value for the pressure head is equal to 30.0179 m (in
node 60).

5.4. Balerma wrrigation network

Balerma is a water irrigation distribution network in
the Sol-Poniente County in Almeria Province, Spain
(Figure 10). There are 454 pipes, arranged in &
loops, which are to be designed using a set of 10 PVC
pipes with diameters between 125 and 600 mm, and
an absolute roughness coefficient of £ = 0.0025 mm.
In this design example, total enumeration reaches an

100 T T T

©
(=]
T

Hydraulic head (m)

20 1 L . 1 L .

10 20 30 40 50 60

Node number

Figure 9. Existing hydraulic head for the double Hanoi
network using ITFA-HS.
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Table 6. Performance comparison for the double Hanoi network.

Hanoi network

Method

. Deviation from
Double Hanoi
reference global

(10°$) network (10°$) optimum (%)
OptiDesigner [53] 6.1150 12,795,541 5.62
GA [53] 6.0811 12,600,624 4.01
HS [53] 6.0811 12,404,680 2.39
BB-BC [26] 6.2240 12,647,789 2.00
IFA-HS (present work) 6.2237 12,611,176 1.70

Table 7. The optimum design of IFA-HS for the double Hanoi network.

Pipeline Diameter Pipeline Diameter Pipeline Diameter
(in) (in) (in)

01 40 24 24 47 12
02 40 25 24 48 16
03 40 26 16 49 30
04 40 27 20 50 30
05 40 28 20 51 40
06 40 2 916 52 40
07 30 30 16 53 40
08 30 31 12 54 20
09 30 32 20 55 12
10 30 33 20 56 30
H 30 34 30 57 20
12 24 35 40 58 16
13 16 36 10 59 20
14 16 37 10 60 20
15 20 38 40 61 20
16 30 39 40 62 20
17 30 40 30 63 20
18 30 41 30 64 20
19 30 42 30 65 20
20 40 43 30 66 12
2 20 44 30 67 20
22 12 45 24

23 30 46 12

impressive amount of 10%%4. Also, the Darcy-Weisbach
equation has been adapted to calculate the head losses,
using EPANET 2. The minimum required pressure
head is 20 m for each node.

Table 8 shows the best cost and the required
number of analyses for convergence of the present algo-
rithm and some other meta-heuristics. For this large-
size network, Reca and Martinez [54] (GA) reached a
best feasible solution of 2.302 x 10° € spending 107
EPANET 2 calls, while Geem [55] (HS) found a solution
of 2.018 x 10 € with 107 calls. The best feasible
solution obtained by Bolognesi et al. [56] (GHEST)

is 2.002 x 10% €, spending 290,500 evaluations, and
Cisty et al. [57] (DEPSO) found the best solution of
1.934 x 10% € after 500,000 calls. The best solution
found by Zheng et al. [58] (SADE) for the Balerma
network case study was 1.983 x 10% €, which is
higher than the best solution (1.940 x 10° €) reported
by Tolson et al. [59] (HD-DDS). However, the HD-
DDS yielded the best solution requiring 30 million
evaluations, while the SADE algorithm used only 1.3
million average evaluations to finally converge. The
IFA-HS based method obtained the new best solution
of 1.969 x 10% € after 90,800 function evaluations. It
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Figure 10. Balerma network [54].

Table 8. Performance comparison for the Balerma
network.

Method Cost (10° €) Number of
analyses
GA [54] 2.302 10 x 10°
SA [60] 3.476 45,400
MSATS [60] 3.298 45,400
PSHS [55] 2.633 45,400
HS [55] 2.018 10 x 10°
GHEST [56] 2.002 290,500
HD-DDS [59] 1.940 30 x 10°
SADE [58] 1.983 1.3 x 10°
DEPSO [57] 1.934 550,000
IFA-HS (present work) 1.869 90,800

means that the IFA-HS algorithm performed really
fast, since the required number of analyses is the
best performance published to date. The convergence
history for the Balerma network using the IFA-HS
algorithm and the hydraulic head for each node is
shown in Figures 11 and 12, respectively. As shown
in Figure 12, the minimum value for the pressure
head is equal to 22.9577 m (in node 295). The
table of diameters is not specified here because it
is too lengthy, and can be obtained from the au-
thors.

0.x10°
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Figure 11. The convergence for the Balerma network

obtained by the IFA-HS.
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Figure 12. Existing hydraulic head for the nodes of the
Balerma network using IFA-HS.

6. Conclusions

In this paper, a new hybrid swarm intelligence algo-
rithm, namely; the improved firefly algorithm with
the harmony search scheme (IFA-HS), is proposed
to solve the design problems of water distribution
systems based on the combined concepts of the Firefly
algorithm and Harmony Search technique. It is found
that the proposed algorithm is a promising method for
solving pipe network design problems as it outperforms
some advanced algorithms previously presented in the
literature for the case studies considered. The main
idea of the hybrid IFA-HS algorithm is to integrate
the HS operators into the FA algorithm, and, thus,
increase the diversity of the population and the ability
to have the FA to escape the local minima. Here,
an improved FA is used for fine-tuning of the vectors
stored in the harmony memory. Actually, harmony
memory vectors become as the FA population, and
then the evolving process is performed as the usual
improved FA procedure. Another improvement in
this algorithm is adding a pitch adjustment operation
in the FA as a mutation operator with the aim of
speeding up the convergence of the algorithm, thus,
making the approach applicable to a wider range of
practical applications, while preserving the attractive
characteristics of the basic FA.

The performance of the proposed IFA-HS is
demonstrated using four well-known case studies and
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the results are compared to those of the standard and
previously applied optimization methods consisting of
GA, HS, BB-BC, FA, SCE and some hybrid methods
such as BLIP, MSATS, SSSA, DEPSO, and PSHS. The
IFA-HS algorithm found the best feasible solutions of
1.969 € (90,800 analyses), 12.611 $ (18,000 analyses),
6.224 § (15,200 analyses) million and 177,010,359 won
(3,631 analyses) for the Balerma, double Hanoi, Hanoi
and GoYang network, respectively. Also, a sensitivity
analysis is performed for the IFA-HS algorithm pa-
rameters in which population size, pitch adjustment
rate, harmony memory size, and harmony memory
considering rate are concerned.

As can be observed from the results, the proposed
algorithm exhibits good performance in terms of so-
lution quality, and for almost all examples, the IFA-
HS method found the best solution in fewer numbers
of function evaluation than the other nature-inspired
algorithms. This means that the proposed method
can find good results in a shorter time. For the third
design example, the numerical results demonstrate that
the TFA-HS algorithm is better in term of closeness
to the global minimum. The IFA-HS efficiency can
be valuable in large-scale optimization problems as
evidenced by results on the optimization of the Balerma
network, where a new optimal cost has (1.869 x 10° €)
been set by 90,800 function evaluations, since the
optimal cost and required number of analyses are the
best between other methods up to date.
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