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Abstract. A dependable long-term prediction of rock displacement surrounding a tunnel
is an e�ective way to predict rock displacement values in the future. A multi-step-ahead
prediction model, which is based on a Support Vector Machine (SVM), is proposed for
predicting rock displacement surrounding a tunnel. To improve the performance of SVM,
parameter identi�cation is used for SVM. In addition, to treat the time-varying features
of rock displacement surrounding a tunnel, a forgetting factor is introduced to adjust
the weights between new and old data. Finally, data from the Chijiangchong tunnel
are selected to examine the performance of the prediction model. Comparative results
presented between SVMFF (SVM with a forgetting factor) and an Arti�cial Neural Network
with a Forgetting Factor (ANNFF) show that SVMFF is generally better than ANNFF.
This indicates that a forgetting factor can e�ectively improve the performance of SVM,
especially for time-varying problems.
c 2014 Sharif University of Technology. All rights reserved.

1. Introduction

1.1. Background
Rock deformation surrounding a tunnel and tunnel lin-
ing cracks may lead to instability of the tunnel. When
analyzing the stability of the surrounding rock mass
of a tunnel, deformation is often used as the security
index to denote the stability of the surrounding rock
mass of the tunnel. The rate of deformation around
the tunnel depends on geological and geotechnical
conditions, and many techniques have been presented
to estimate the conditions of the tunnel during tunnel
construction. The need for statistical process control is
important for quality assurance [1]. An e�cient way is
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to use displacement statistics and analyses of the rock
surrounding the tunnel to estimate the future displace-
ment of the surrounding rock. However, the conditions
of a tunnel during construction are varied, which will
have an e�ect on the displacement of the tunnel. If the
future displacement values of the surrounding rock of
the tunnel could be predicted for reference, it could
help to quantitatively evaluate the stability of the
surrounding rock mass. Moreover, project managers
could identify tunnel conditions and e�ectively operate
their construction facilities. Furthermore, when the
weak rock layer begins to become unstable and these
failures could be acquired in advance, some correspond-
ing measures could be taken to avoid these dangers.

Thus, displacement of tunnel surroundings is a
common way to reect the condition of the tunnel, and
�nding an e�ective method to predict the displacement
of the surrounding rock of the tunnel is important
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for planning and management activities during tunnel
construction. Displacement prediction during tunnel
construction has intrigued experts for years. Lack of
prediction will result in great di�culties in completing
underground construction, with increased costs and
delays. Some literature about the displacement predic-
tion of the surrounding rock of a tunnel can be found
in Li et al. [2] and Sellner [3].

1.2. Literature review
From the standpoint of engineering applications, it is
necessary to learn the values to be predicted many
time-steps into the future. During the past few
decades, a great deal of research has been devoted to
multi-step-ahead (MS) techniques to deal with these
problems [4-6]. In this study, the MS technique is
also used to predict the displacement of surrounding
tunnel rock for planning and management activities
during tunnel construction. However, ground condi-
tions change greatly during tunnel construction, which
makes it more di�cult to predict the displacement of
rock surrounding tunnels accurately. The Support Vec-
tor Machine (SVM) is a relatively new kind of learning
machine which has been applied successfully to some
time series forecasting problems [7-11]. The numerical
results indicate that SVM shows much resistance to
the over�tting problem and can provide a high gener-
alization performance. These successful applications
suggest that SVM is an acceptable tool to provide
accurate displacement prediction of rock surrounded
tunnels. Unlike the empirical risk minimization prin-
ciple implemented in most traditional ANN models,
SVM implements the structural risk minimization prin-
ciple. The most important feature in the structural risk
minimization principle is minimizing an upper bound
to the generalization error instead of minimizing the
training error. The parameter, C, can be adjusted to
control the tradeo� between errors of training data and
margin maximization. For an SVM, the value of " in
the "-insensitive loss function a�ects the complexity
and the generalization capability of SVM. Fixing the
parameter, ", can be useful for specifying the desired
accuracy of the approximation in advance. Another
parameter, �, is the range at which the generalization
performance is stable. Considering the parameters
will greatly a�ect the performance of SVM, and some
literature has attempted to determine the proper pa-
rameter values for these problems. Hou and Li [12]
proposed an evolution strategy with covariance matrix
adaptation to determine the parameters in SVM. Hsu
et al. [13] introduced a grid-search to determine the
adaptive values for the parameters in SVM. Lin et
al. [14] presented SVM for hydrological prediction, and
a Shu�ed Complex Evolution Algorithm (SCE-UA)
was used to identify appropriate parameters in SVM.
Lorena and Carvalho [15] optimized the parameter

values for SVM based on genetic algorithms. Thus, this
paper also applies some methods like grid-search, SCE-
UA and GA to determinate the appropriate parameters
for SVM.

1.3. Contributions
The purpose of this paper is to build on the pre-
diction model by Yao et al. [16], and extend it to
predict rock displacement surrounding a tunnel, which
is related to long-term prediction. Thus, the con-
tributions of this paper are to apply a multi-step-
ahead prediction for rock displacement surrounding a
tunnel based on SVM, which has been successfully
applied in the literature [16-17]. Then, we use a
forgetting factor to improve the prediction accuracy of
SVM. In addition, to examine the performance of this
algorithm, a comparison between SVMFF (SVM with
a Forgetting Factor) and an Arti�cial Neural Network
with a Forgetting Factor (ANNFF) is used in this
study.

This paper is organized as follows. In Section 2,
we describe the MS prediction problem of rock dis-
placement surrounding a tunnel, the SVM model for
MS prediction, parameter identi�cation for SVM and
a brief introduction to SVM with a forgetting factor.
In Section 3, some computational results are discussed
and, lastly, the conclusions are provided in Section 4.

2. SVMFF for predicting rock displacement
surrounding a tunnel

2.1. Formwork of the prediction
The properties of the prediction of rock displacement
surrounding a tunnel with MS techniques not only
depend on the observation values but also on the pre-
vious prediction. Thus, the recursive relation between
inputs and outputs in MS prediction can be expressed
using general nonlinear input-output models, as the
following:8>>><>>>:

x̂t+p = F (xt+p�m; :::; xt; x̂t+1; :::; x̂t+p�2; x̂t+p�1)
p < m

x̂t+p = F (x̂t+p�m; :::; x̂t+p�2; x̂t+p�1) p � m (1)

where p is the number of steps ahead of the p-step-
ahead prediction model, F(.) (the horizon of MS
prediction); m is de�ned as the number of inputs;
x̂t+p, which has a \hat", represents an estimate of
the output at time-step t + p; and xt+p�m, without a
\hat", represents an observation. Obviously, if p < m,
the model input consists of observation and prediction
values, and if p � m, it consists of all prediction values.

Referring to multi-step prediction [18-19], the
one-step prediction and multi-step prediction for tunnel
surrounding prediction can be described in Figure 1.
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Figure 1. Processes of one-step ahead prediction and multi-step ahead prediction for tunnel surrounding prediction.

2.2. SVM for regression
SVM is a machine learning method proposed by Vap-
nik [20,21]. Given a set of data points, fxk; ykg,
k = 1; 2; :::; s, xk 2 Rm, yk 2 Rn, k is the number
of training samples. SVM estimates the function by
the following function:

f(x) =< w; x > +b; w; x 2 Rm; b 2 Rn; (2)

here, < w; x > is the feature of the inputs. The
coe�cients, w and b, are estimated by the regularized
risk functional.

To get the estimation of w and b, Eq. (2) can be
transformed to a primal objective function:

Min J =
1
2
kwk2 + C

sX
i=1

(��i + �i);

s.t.

8><>:yi� < w; xi > �b � "+ ��i
< w; xi > +b� yi � "+ �i

��i ; �i � 0
(3)

where C is a regularization constant to determine
the trade-o� between training error and generalization
performance; " is a tube to de�ne the range of the
observation and prediction values. Both C and "
are user-determined parameters. Two positive slack
variables, �, ��, are used to cope with infeasible
constraints of the optimization problem. The formula
is an optimization problem and its minimum can be
evaluated by Lagrange multipliers, �i and ��i , in most
cases:

Max J =� 1
2

sX
i;j=1

(��i � �i)(��j � �j) < xi; xj >

+
sX
i=1

��i (yi � ")�
sX
i=1

�i(yi + ");

s.t.

8><>:
Ps
i=1 �i =

Ps
i=1 �

�
i

0 � �i � C
0 � ��i � C

(4)

Let w =
sX
i=1

(�i � ��i )xi: (5)

Thus; f(x) =
sX
i=1

(�i � ��i ) < xi; xj > +b: (6)

By introducing kernel function, K(xi; xj), Eq. (4) can
be rewritten as follows:

f(x) =
sX
i=1

(�i � ��i )K(xi; xj) + b; (7)

where K(xi; xj) is the kernel function which is proven
to simplify the use of mapping. The value of K(xi; xj)
is equal to the inner product of two vectors, xi and
xj in the feature space '(xi) and '(xj), that is
K(xi; xj) = '(xi):'(xj). By the use of kernels,
all necessary computations can be performed directly
in the input space, without having to compute the
map, '(x). More details on SVM can be seen
in [7,20].

2.3. Application of SVMFF to prediction of
rock displacement surrounding a tunnel

Due to the rate of rock mass deformation varying with
geological and geotechnical conditions, it is di�cult to
predict the displacement of rock surrounding a tunnel.
The MS technique based on SVM is adopted to predict
the future displacements with m observation data. In
other words, the m + 1 value will be predicted based
on the m observation data. The predicted output
will be an input to the following predictions. Thus,
future values will be recursively predicted in the same
way. A formal de�nition of MS based on SVM can be
summarized as follows:

1. A one-step-ahead predictor based on SVM is per-
formed to provide a prediction output.

2. Future values can be predicted based on the re-
cursive principles of p-step-ahead prediction by
embedding a one-step-ahead estimator based on
SVM.

Since tunnel conditions are complicated, rock
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Figure 2. Structure of SVMFF model.

displacement surrounding a tunnel will be changed as
time goes on. However, a standard SVM does not
consider the time-varying features of the data, since
it refers to the data of memory (window) with the
same weights. A forgetting factor, �i(0 < �i � 1; 1 �
i � m), is applied to put exponentially less emphasis
on past data. In this study, �i is used to reect the
weights between new and old data, that is, the weight
of former displacements (e.g. m;m � 1; :::). When
� = 1, the SVM with the forgetting factor is the
same as the SVM without the forgetting factor. When
� = 0, only the former rock displacement surrounding
the tunnel is used to predict current displacement.
Other former displacements have no inuence on the
current displacement. Thus, the structure of SVMFF
is illustrated in Figure 2.

3. Case study

The Chijiangchong tunnel of the Wuhan-Guangzhou
railway, which is a high-speed rail line between Wuhan
city and Guangzhou city in China, is chosen as the
study site. The length of the tunnel is about 385 m
and its location is from DK1659+720 to DK1660+105
of the Wuhan-Guangzhou railway. Three sections of
the tunnel were selected to acquire the data on the
rock displacement surrounding the tunnel. In general,
the measurement frequency should be once per day at
the beginning of the experiment and the frequency may
be once every other day later [22]. This is because the
deformation rate at the beginning of the experiments
is obviously more than that later. Thus, in this paper,
the measurement frequency is once every day in the
�rst thirteen days, and then, once every other day
after the thirteenth day. The experiment continues
until the rock displacement surrounding the tunnel is
almost stable. Here, we take the di�erence between
two consecutive measurements, < 0:1 mm, as the
termination condition. Thus, we acquired three sets
of data; each set with thirty-two samples from the
experiment, from September 8 to October 28, 2007.

Table 1. The parameters in GA.

Parameter (pc) (Pm) (Psize) (Tmax)

value 0.6 0.05 80 1000

Table 2. The parameters in SCE-UA.

m p q � �

20 4 11 1 21

3.1. Result comparison with grid-searchnSCE-
UAnGA for parameter identi�cation

The parameter selection is important for the perfor-
mance of the algorithm. In this section, the objective
is to identify good parameters (C; "; �) in order to
predict the unknown data accurately. Referring to
previous literature on parameter selection for SVM,
some methods, like grid search [13], SCE-UA [14] and
genetic algorithm [15], were used to optimize the values
of the parameters for SVM.

The Genetic Algorithm (GA) is inspired by evo-
lutionary biology, like inheritance, selection, crossover,
and mutation. A �tness function is used as a measure
for determining the relative superiority of one solution
compared to a second solution. Then, GA attempts
to retain relatively good genetic information from
generation to generation.

The SCE-UA algorithm attempts to look for the
optimum solution by combining the strengths of the
simplex procedure, deterministic and probabilistic ap-
proaches, competitive evolution and complex shu�ing.

Thus, these three methods are also analyzed for
parameter optimization for our problem, respectively.
The parameters of GA and SCE-UA can be seen in
Tables 1 and 2. To test the performance of the three
methods, it is necessary to divide all the data into
di�erent sets. Here, the data are divided into three
sets: training samples, testing samples and inspection
samples. In this study, the data from the �rst section
and the third section are used for training and testing,
and the data from the second section are used for
inspection. To reduce the search space, according to
previous literature [13], the constraints of the three pa-
rameters are suggested as C 2 [2�5; 25], " 2 [2�13; 2�1]
and � 2 [0; 2]. Then, to examine the prediction errors,
an objective function should be considered:

RMSE =
�Pn

i=1(yi � ŷi)
n� p

�1=2

; (8)

where n is the number of testing samples, p is the
number of model parameters which refers to the liter-
ature [23]. Then, the three methods continue running
ten times under the same condition. The average
solution, the number of the best solutions and average
computation time of the three methods are shown in
Table 3.
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Table 3. Results obtained by three methods.

Average
solution

The number
of the best
solutions

Average
computation

time
Grid searech 1.712 10 55.27

SCE-UA 1.733 6 26.57
GA 1.726 8 31.15

By comparing the results from the three methods,
it is obvious that all three methods can attain the best
solution. However, the grid search attained the ten best
solutions in the ten computing times. The GA acquired
the best solutions 8 times, while SCE-UA attained the
best solutions 6 times. This is because the grid search
method simply determines the word search solver at
each point on the grid of the parameter values. It may
o�er some protection against local minima, while the
other two algorithms often tap into local minima. How-
ever, it is not very e�cient. When more parameters are
included in the model, the number of determinations
can be excessive. When compared with SCE-UA, GA
seems more suitable to determine the parameters for
SVM, for our problem. It is because GA is a search
heuristic inspired by natural evolution, which is often
used to generate useful solutions to optimization. In
addition, compared with the average solutions of GA
and SCE-UA, the stabilization performance of SCE-
UA (in which the di�erence between the best solution
and the average solution is about 1.2%), is the worst of
the three methods. However, the average time of the
grid search is the highest. This could be due to the fact
that the grid search computes the performance at all
combinations of C, " and � to get the performance
surface. We can also see that the time consumed
by GA is more than that of SCE-UA. This may be
because it is a �tness-based process, and using natural
evolution, such as inheritance, mutation, selection, and
crossover, will involve high computational time. Thus,
for the practical prediction model of rock displacement
surrounding the tunnel, GA is used to determinate
the parameters for SVM, and the optimal values are
attained as C = 6:4371, " = 0:0032 and � = 1:4129.

3.2. The determination of forgetting factors
and the number of prediction steps

The forgetting factor is used to weigh the inuence
from the new and the old data. The choice of the
forgetting factor is typically a compromise between the
ability to track changes in the parameters and the need
ofsuppressing stochastic behaviors of the estimates. A
large forgetting factor (e�ectively, a large memory of
data) is used when the learning is in the steady state
and there is no obvious model variation, while a small
one (to fade away the very old data) is applied when
the model error is large. A too large and too small

Figure 3. Comparison of various forgetting factors and
prediction steps ahead.

forgetting factor will a�ect prediction accuracy and,
even worse, the prediction ability of SVM. In addition,
in the multi-step-ahead prediction model, the number
of prediction steps is an important factor a�ecting
prediction accuracy. It can be due to the fact that
the MS prediction technique needs the recursive use
of Single-Step (SS) predictors for reaching the end-
point. Even small errors from preceding predictions
are accumulated and propagated, thus, resulting in
poor prediction accuracy in following predictions. To
determinate the value of forgetting factors and the
number of prediction steps, the prediction errors of
SVMFF under various forgetting factor and prediction
steps are shown in Figure 3.

From Figure 3, it can be observed that the
changing trends of RMSEs on the two sections are
almost the same, and prediction accuracy is the highest
when prediction step is n = 6 and forgetting factor is
� = 0:85. When the forgetting factor is from 0.8 to
0.9, prediction accuracy is relatively less than others.
Furthermore, as we predict ahead, the errors accumu-
late and propagate. There are both increasing trends of
RMSEs of the displacement predictions on two sections,
as the increase of the step ahead. However, at the
beginning, the prediction errors increase slightly with
the increase of the step ahead, while they start to
increase greatly after the number of prediction steps is
8. It can be attained that too long a step will increase
prediction errors. Therefore, the forgetting factor and
the number of prediction steps ahead are determined
as 0.85 and 6 in this study, respectively.
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Figure 4. Comparison between the performances of
SVMFF and ANNFF.

3.3. Results
To further analyze the characteristics of the MS predic-
tion for the tunnel surrounding rock, we select the 6th
to the 12th data from the second section, as test bed I
(note: the �rst �ve data as the inputs), and the 27th
to 33rd data from the second section, as test bed II.
Here, the two test beds reect, respectively, two typical
cases: One is the phase where tunnel surrounding
displacement increases obviously, and the other is the
phase when tunnel surrounding displacement changes
smoothly.

Then, to evaluate the performance of the pro-
posed model, a three-layer ANN model with forgetting
factor (ANNFF) is also introduced in this paper. To
get a good comparison, the same input and output vari-
ables of ANNFF should be the same as the SVMFF. In
the ANNFF, a scaled conjugate gradient algorithm [24]
is employed for training. To prevent overtraining and
improve the generalization ability, the hidden neurons
are generally optimized by a trial and error procedure.
In this study, the �nal ANNFF architecture consists of
�ve hidden neurons that yield the best performance.
Then, we compare the performance of the SVMFF
with that of ANNFF using RMSE. Figure 4 depicts the
prediction performance of the two models on the two
test beds. It can be found that the two models obtain
more accurate values at the former rather than at the
latter data in each test bed. It can be attributed to
the fact that the MS predictor is based on the recursive
use of the SS predictor for reaching the end-point on
the horizon. The prediction errors at the beginning

Figure 5. Comparison between the prediction errors of
SVMFF and ANNFF.

of the horizon accumulate and propagate till the end
prediction. It is true that prediction errors increase.
However, in some real-world applications, especially
for the prediction of rock displacement surrounding a
tunnel, which has a relatively smaller time period, it
requires enough time to take preventive measures to
combat danger. Thus, it is acceptable to adapt to MS
techniques to predict future displacements.

The relationship between observations and pre-
dictions for the two test beds is also illustrated in
Figure 5. It is obvious that the errors from SVMFF
models, generally, are smaller than those of ANNFF.
This can be explained by the fact that SVMFF uses the
structural risk minimization principle to minimize the
generalization error, while ANNFF uses the empirical
risk minimization principle to minimize the training
error. Furthermore, SVMFF always seeks to �nd the
global solution, while ANNFF may tend to fall into a
local optimal solution. Therefore, it is feasible to use
our model to solve the displacement prediction of rock
surrounding a tunnel.

4. Conclusions

The deformation of rock mass surrounding a tunnel is
an e�ective factor to reect the stability of a tunnel.
Proving accurate displacement prediction in advance
is a method to identify potential danger and some
e�ective measures are used to reduce losses. In this
paper, an MS prediction based on SVM is used to
predict surrounding rock deformation. To improve the
training e�ciency of SVM, grid-search, SCE-UA and
GA are implemented for determining the parameters
in SVM. To deal with the time-varying features of rock
displacement surrounding a tunnel, a forgetting factor
is used to weigh the e�ects from old and new data. In
addition, considering the fact that long-time prediction
by the MS technique will worsen the prediction errors,
an experiment from the Chijiangchong tunnel is applied
to determine the prediction horizon. The result shows
that 7 is the suitable prediction horizon for our problem
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in this study. Then, compared with ANNFF, the
proposed SVMFF can provide a better performance
in most situations than ANNFF. Thus, SVMFF has
been proved an e�ective method for prediction of rock
displacement surrounding a tunnel.
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