
Scientia Iranica A (2014) 21(3), 525{533

Sharif University of Technology
Scientia Iranica

Transactions A: Civil Engineering
www.scientiairanica.com

Investigating climate change impact on extreme rainfall
events
Case study: Chenar-Rahdar basin, Fars, Iran

A. Pourtouiserkani� and Gh. Rakhshandehroo

Department of Civil and Environmental Engineering, School of Engineering, Shiraz University, Zand Blvd., Shiraz, 7134851156,
Iran.

Received 21 January 2013; received in revised form 28 September 2013; accepted 19 October 2013

KEYWORDS
Climate change;
Extreme events;
Downscaling;
Change factor;
LARS-WG;
SDSM.

Abstract. In this research, the impact of climate change on extreme rainfall events in the
Chenar-Rahdar Basin, Shiraz, Iran, was investigated utilizing three statistical downscaling
methods, namely, change factor, LARS-WG, and SDSM. Daily precipitations with di�erent
recurrence periods were projected for the future period of 2011-2040 (2020s), based on
two AOGCM output data (HadCM3 and CGCM3), under an A2 emission scenario. In
summary, HadCM3 (for three downscaling methods) projected an increasing trend (of
up to 21.8%) in extreme rainfall events for the period of 2011-2040, with respect to the
base period. On the other hand, CGCM3 showed an increasing trend for extreme rainfall
events for the �rst two methods (up to 24.7%), while the SDSM method resulted in an
increasing trend (up to 3.6%) for recurrence periods of 20 and 25 years and a very small
decreasing trend (down to -2%) for recurring periods of 50 and 100 years. Relatively
low correlation coe�cients in multiple regressions obtained for both AOGCMs reect the
limitations of SDSM in downscaling precipitation data in the study area. Comparing the
three downscaling techniques utilized in this study, it is concluded that using change factor
or LARS-WG downscaling methods would be conservative enough in climate change impact
assessment for the next 30 years.
c 2014 Sharif University of Technology. All rights reserved.

1. Introduction

A change in climate leads to changes in the frequency,
intensity, spatial extent, duration, and timing of ex-
treme weather and climate events, and can result in
unprecedented extreme weather and climate events [1].
In particular, climate models suggest an increase in
rainfall intensities in the northern hemisphere under
enhanced greenhouse conditions [2]. As a result,
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researchers anticipate that the frequency of heavy
precipitation or proportion of total rainfall from heavy
falls will increase in the 21st century over many areas of
the globe. This is particularly the case in high latitudes
and tropical regions and in winters in the northern mid-
latitude [1-5].

Atmospheric-Oceanic General Circulation Models
(AOGCMs) are usually used to project changes in at-
mospheric variables under the climate change scenarios
de�ned by the Intergovernmental Panel for Climate
Change (IPCC) [6]. Output data from AOGCMs are
typically coarse-gridded with 150�300 km grid spacing
and may be projected for each cell with �50000 km2

area. However, a much �ner resolution is needed
for climate change impact assessments, and, hence,
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downscaling techniques are often used to transform
coarse-gridded data from AOGCMs to �ne-gridded
ones. Fine-gridded data are usually extracted by
Regional Climate Models (RCMs) for cells of 12�50
km grid spacing.

Two main downscaling techniques most often
used in climate change impact assessment research
are dynamical and statistical downscaling methods [7].
Dynamical downscaling involves the nesting of a higher
resolution RCM within a coarser resolution General
Circulation Model (GCM). Statistical downscaling
methods, on the other hand, involve establishing a
statistical relationship between large scale climatic
conditions, and local variety based on historical data.
Statistical downscaling techniques are easier and less
costly in comparison with dynamical techniques, and
are the most used in anticipated hydrologic impact
studies under climate change scenarios [8]. Some
statistical downscaling methods used in climate change
impact assessments are the Statistical Down Scal-
ing Model (SDSM), the stochastic weather generator
(LARS-WG), the change factor, and weather typing.

Several researchers have been working on climate
change impact worldwide using di�erent downscaling
techniques and comparing the results. They have
shown that di�erent downscaling techniques may yield
di�erent results; a fact that is usually attributed to un-
certainties in the techniques, climate change scenarios,
GCM outputs, and di�erences in the structure of the
techniques [9-12].

Yimer et al. (2009) investigated climate change
hydrological response of the Beles river basin, as the
upper Blue Nile, in Ethiopia. They used the SDSM
method for downscaling temperature and precipitation
data based on the A2a emission scenario and the
HadCM3 atmospheric model for 2050. They applied a
rainfall-runo� model to transform downscaled rainfall
data to runo� and to predict future Beles river ow.
Their studies showed a projected decrease in annual
runo�; most of it being in the summer season, the main
rainy season of the area [13].

Segui et al. (2010) studied climate change impact
on French Mediterranean basins. They used output
data of an atmospheric-oceanic regional climate model
and utilized three downscaling techniques; a statistical
method based on weather regime, a quantile-mapping
method, and the method of anomaly (change factor).
They used 1970-2000 (end of 20th century) as the base
period, and 2035-2065 (middle of the 21st century) as
the future period. The three downscaling techniques
showed the same changes in mean annual precipitation
in temporal scale, while the spatial rainfall patterns of
the three methods were completely di�erent. They con-
cluded that statistical downscaling based on weather
typing is not a suitable method for generating extreme
events. Moreover, most of the stations in their study

area showed decreasing trends in river ow, especially
during the summer [14].

Sunyer et al. (2012) studied climate impact on
extreme rainfall in northern Copenhagen, Denmark.
They compared �ve statistical downscaling methods,
based on a common change factor methodology, using
results from four di�erent RCMs driven by di�erent
GCMs. The downscaling methods were mean change
factor, mean and variance change factor, Markov
chain weather generator, LARS-WG, and Neyman-
Scott rectangular pulse weather generator. They
generated time series for 2071-2100 based on the A1B
emission scenario. Results showed an increase in
extreme rainfall events for three out of four RCMs.
The major uncertainties of this study were related
to the variability of RCM output and downscaling
methods [6].

Dibike and Coulibaly (2005) studied hydrological
climate change impact assessment on the Saguenay wa-
tershed in northern Quebec, Canada. They applied two
statistical downscaling techniques: SDSM regression
based and the LARS-WG stochastic weather generator,
and generated future temperature and precipitation
based on CGCM1 output data and an A2 emission
scenario. They showed that the daily precipitation
trend and its variability, based on the SDSM down-
scaling technique, is increasing for future periods of
2020s, 2050s, and 2080s, while there is no obvious trend
for the time series downscaled with LARS-WG. They
attributed the di�erence to SDSM usage of any relevant
large-scale climate (predictor) variable from GCM out-
puts as input to estimate the corresponding local-scale
predictant such as precipitation, while LARS-WG used
the relative change in the GCM outputs of only those
variables which directly correspond to those predicted;
hence, producing di�erent results [12].

Massahbavani and Sadatashofteh (2011) studied
climate change impact on the Aidoghmoush basin, East
Azerbaijan, Iran, for the 2040-2069 period, based on
the A2 emission scenario and HadCM3 atmospheric
model. They downscaled monthly temperature and
precipitation data, using proportional downscaling as
a spatial and change factor, as a temporal downscaling
technique. Their results showed 30�40 percent change
in precipitation in the future, with respect to the base
period (1971-2000) [15].

Goodarzi et al. (2011) studied climate change im-
pact in the Azamharat river basin, in an arid region of
Yazd, Iran. They used CGCM3 output data based on
the A2 emission scenario, and applied proportional and
change factor downscaling techniques as spatial and
temporal downscaling, respectively. Their results for
the period of 2010-2039 with the base period of 1982-
2008 showed an increase in precipitation in December,
January, February, and April and a decrease in other
months of the year [16]. To the best of the authors'
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Figure 1. Chenar-Rahdar basin: (a) Satellite view; and (b) GIS basin modeled view.

knowledge, climate change impact on extreme rainfall
events in Iran has not been studied utilizing di�erent
downscaling techniques. In this research, climate
change impact on extreme precipitation is investigated
using two AOGCM model outputs (HadCM3 and
CGCM3). Atmospheric model precipitation output
data were downscaled (from monthly to daily) for
the future period of 2020s (2011-2040) using three
statistical downscaling techniques. Change factor,
LARS-WG stochastic weather generator, and SDSM,
along with a proportional downscaling method, were
used at the Chenar-Rahdar basin, Fars, Iran. Based on
the precipitation time series generated by downscaling
techniques, maximum 24-hour precipitations for the
two AOGCM models were extracted and a frequency
analysis was performed to get future daily precipita-
tions with di�erent recurrence periods.

2. Study area

The Chenar-Rahdar river basin, studied in this re-
search, lays south east of Shiraz, Iran, between 29�,330
to 29�; 440 northern latitude and 52�; 150 to 52�; 260
eastern longitude. Its elevation ranges from 1619 m
to 2870 m, with average elevation of 2033 m above
mean sea level. The area of the basin up to the
Chenar-Rahdar hydrometric station (at 29�; 370; 0300 N,
52�; 250; 2900 E with elevation of 1637 m above mean sea
level) is 174 km2. The Chenar-Rahdar river originates
from Shiraz eastern highlands of Paskoohak, Garoo,

Sorkh, and Pirbord mountains and ends in Maharloo
Lake, v 30 km downstream of the hydrometric station
(Figure 1).

Low river capacity, along with a very mild river
slope downstream of the station, adds to the vulner-
ability of these areas, with respect to low amounts
of ow increase. In fact, these regions are known as
damage centers, and climate change impact assessment
in the basin plays an essential role in area vulnerability
evaluation.

For climate change impact assessment, 30 years of
recorded precipitation data (1971-2000) at the Chenar-
Rahdar rain gage station, located at the basin outlet
(Figure 1), were used as the base period data. Output
data from two atmospheric models (HadCM3 and
CGCM3) were extracted for 2011-2040 at the Chenar-
Rahdar station. The A2 emission scenario (IPCC 4th
report) was considered and hydro meteorological data
were exploited from the Canadian Climate Change
Scenario Network (www.cccsn.ca) [17].

3. Climate change simulation methods

Three downscaling methods (change factor, stochas-
tic weather LARS-WG, and regression based SDSM)
were used to simulate climate change and scenario
generation for 2020s, based on spatial proportional
downscaling at average elevation of the basin for the
base period. Precipitation time series were generated
and extreme rainfall magnitudes were estimated by
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methods using frequency analysis, and the results were
compared.

3.1. Change factor
In this method, average monthly precipitation changes
for a future period were extracted from the two
AOGCMs based on the A2 emission scenario. Precip-
itation change factor, �p, calculated by Eq. (1) was
used as the base of the calculation for climate change
impact assessment:

�Pi = PGCM,FUT;i=PGCM,base;i; (1)

PGCM,FUT;i Simulated 30-year average precipitation
for a future period from AOGCM for
month i;

PGCM,base;i Simulated 30-year average precipitation
for the base period from AOGCM for
month i.

Precipitation time series for a future period were down-
scaled using Eq. (2). Then, maximum 24-hour (daily)
precipitations for both models (HadCM3 and CGCM3)
were extracted and frequency analysis was performed
to get precipitations with di�erent recurrence periods:

PFUT;i = POBS;i ��Pi; (2)

PFUT;i Downscaled future precipitation time
series for month i;

POBS;i Observed precipitation time series for
month i based on the rainfall gauge
data.

3.2. Stochastic weather generator LARS-WG
The LARS-WG (Long Ashton Research Station) is
stochastic weather generator software that has the
capability of modeling weather in a site based on
observed data, and using the model to extend data
for the future. These data are usually climatological
variable time series, such as minimum and maximum
temperature, precipitation, and solar radiation [18].

LARS-WG operates based on the series weather
generator described in Racsko et al. [19]. This
model utilizes Semi-Empirical Distributions (SEDs) for
lengths of wet and dry day series, daily precipitation,
minimum and maximum temperature, and daily solar
radiation.

The distribution, Emp = fao; ai; hi; i =
1; 2; ::; 23g, is a histogram with 23 intervals, [ai�1,
ai), where ai�1 < ai and hi denote the number of
events observed in the ith interval. Random values
from the SED are chosen by �rst selecting one of
the intervals, using a proportion of events in each
interval as selection probability, and then selecting a
value within that interval from a uniform distribution.

Such a distribution is exible, and can approximate
a wide variety of shapes by adjusting the intervals,
[ai�1; ai) [18,19].

The SED used in LARS-WG requires 24 pa-
rameters for boundary values and 23 parameters as
the number of events in each interval. Simulation
of precipitation occurrence is modeled by alternating
wet and dry series (days), where a wet day is de�ned
as a day with precipitation greater than zero. The
length of each series is chosen randomly from the wet
or dry SED for the month in which the series starts.
In determining the distributions, observed series are
also allocated to the month in which they start. For
a wet day, the precipitation value is generated from
the SED for the particular month, independent of the
length of wet series or the amount of precipitation
on previous days [18]. LARS-WG has the ability to
consider climate change using a climate change scenario
for future data generation based on monthly AOGCM
output data or a scenario �le manually inserted into
the program [18].

In order to generate a future precipitation time
series by the model, daily precipitation at the basin
for the base period of 1971-2000 was introduced to the
model, and its statistical distribution was found via
calibration and tested via validation. Statistical tests
were utilized for goodness-of-�t analysis during the
calibration stage. For validation, on the other hand,
synthetic data for the base period were generated and
compared with observed data. Once calibration and
validation were over, future precipitation time series
were generated using the best �tted distribution. Then,
maximum 24-hour (daily) precipitations for HadCM3
and CGCM3 were extracted, and frequency analysis
was performed to get precipitations with di�erent
recurrence periods.

3.3. SDSM linear regression model
SDSM, developed in England (2002), utilizes a com-
bination of regression methods (transferee functions)
and synthetic weather generation for downscaling. In
this model, local climatic characteristics are expressed
as regional large scale climatic conditions in the form
of R = F (X), in which R is a downscaled climatic
variable and F is the transferee function to be obtained
based on historical data analysis. Prediction of future
climatic variables inuenced by the climate change
phenomenon is accomplished by establishing statistical
relations between large scale predictor variables and
small scale predictand variables [7].

To calibrate the SDSM, daily observed large scale
variables at base period, 1971-2000, were extracted
from NCEP as independent variables and entered into
the model, in company with daily observed precip-
itation at the basin during the same period, as a
dependent variable. In order to evaluate the ability



A. Pourtouiserkani and Gh. Rakhshandehroo/Scientia Iranica, Transactions A: Civil Engineering 21 (2014) 525{533 529

of AOGCMs in modeling precipitations, large scale
variables (predictors) simulated by two AOGCMs (i.e.
HadCM3, CGCM3) for the base period were entered
to the calibrated SDSM. Downscaled precipitation was
generated and compared with the observed data. Fi-
nally, daily precipitation time series were generated by
the calibrated SDSM, based on future period large scale
variables of both AOGCMs (i.e. HadCM3, CGCM3).
Predictor variables for the study area are available on
the Canadian Climate Change Scenario Network web
site (www.cccsn.ca) for both AOGCM models.

Maximum daily precipitations that are extracted
from daily precipitation time series given by the spatial
downscaling of GCM outputs using SDSM methods,
are often not comparable to observed maximum daily
precipitations at a local site. Therefore, an adjustment
procedure (bias correction) is needed to improve the
accuracy of the spatial downscaling SDSM technique
in the estimation of local maximum daily precipita-
tions [20].

4. Results and discussions

4.1. Change factor downscaling technique
Frequency analysis was performed for maximum 24-
hr precipitations extracted from the base period time
series, along with the future downscaled time series,
using a change factor downscaling technique. Results
showed that for the base period, 2 parameter Gamma
distributions, and, for the future period, Log Pearson
type III for HadCM3 and Gumbel distribution for
CGCM3, were the best frequency distributions �tted
to the data. Figure 2 shows precipitation with di�erent
recurrence periods based on the change factor method
and two AOGCMs for the future period.

As shown in Figure 2, the daily precipitation
probability trend for HadCM3 deviated upward com-
pared to the base period, especially for less frequent
events. In particular, daily precipitation for 20, 25,
50 and 100-year recurrence periods (extreme events)
increased by 14.2, 15.3, 18.5 and 21.8 percent, respec-
tively, in comparison with the base period. On the

Figure 2. Maximum daily precipitations with di�erent
recurrence periods analyzed by change factor downscaling
technique, based on two AOGCMs for the future period
(2011-2040).

other hand, for the CGCM3 model, such a precipitation
trend is somewhat di�erent. Daily future precipi-
tations decreased for 10-year and smaller recurrence
periods, and increased for longer recurrence periods.
In particular, 20, 25, 50, and 100 year recurrence
periods (extreme events) increased by 2.7, 3.9, 7.4
and 10.9 percent, respectively, in comparison with the
base period, which is a lower increase compared to
the HadCM3 model. As shown, for both AOGCMs,
the daily future precipitation trend lies within a 99%
con�dence interval of the base period.

4.2. LARS-WG stochastic weather generator
downscaling technique

Statistical tests were used to calibrate the model and,
then, synthetic time series were generated for the base
period and compared with observed data. Maximum
daily precipitations extracted from the time series
generated at the base period showed standard deviation
of 12.9 mm, while this statistic for the observed
values was 19.1 mm. Comparison between maximum
daily precipitations generated by the LARS model and
observed values resulted in PRMSE = 30:3 mm and
MAE = 25 mm.

Figure 3 shows observed and LARS-generated
values for maximum daily precipitations with di�erent
recurrence periods at the base period. Comparison
of the results for 2, 5, 10, 20, 25, 50 and 100
year recurrence periods showed acceptable indices of
RMSE = 21 mm, MAE = 20:8 mm, and R2 = 0:99.
Relatively low RMSE and MAE, in addition to a high
correlation coe�cient, verify the high performance of
the model for data generation.

Future precipitation time series were generated by
the veri�ed model, based on scenario �les introduced
to the model. Maximum daily precipitations for the
future period of 2011-2040 (2020s) were extracted
from the generated time series and frequency analysis
was performed. 2-parameter Gamma distribution for
HadCM3 and 3-parameter Log-normal distribution for
CGCM3 were the best frequency distributions for daily

Figure 3. Comparison between observed and LARS-WG
generated maximum daily precipitation with di�erent
recurrence periods for the base period; RMSE = 21 mm,
MAE = 20:8 mm.
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Figure 4. Precipitation with di�erent recurrence periods
analyzed by LARS-WG downscaling technique based on
two AOGCMs data for the future period (2011-2040).

precipitations. Figure 4 shows daily precipitation with
di�erent recurrence periods, by LARS-WG, for the base
and future periods, under climate change impact for the
two AOGCMs.

As shown in Figure 4, for both AOGCMs
(HadCM3 and CGCM3), the daily precipitation prob-
ability trend deviates upwards compared to the base
period, especially for less frequent events. In partic-
ular, in the case of HadCM3, daily precipitation for
20, 25, 50 and 100 year recurrence periods (extreme
events) increased by 11.2, 11.3, 11.5 and 11.7 percent,
respectively, in comparison with the base period. On
the other hand, for the CGCM3 model, this increase
was 15.3, 16.6, 20.7, and 24.7 percent for 20, 25, 50,
and 100 year recurrence periods as extreme events,
respectively (Figure 4). This behavior is similar to the
results for the HadCM3 model using a change factor
downscaling technique. As shown, the future daily
precipitation trend for both AOGCMs lies within a
99% con�dence interval near the upper band, except for
the CGCM3 model, where the daily precipitation trend
lies outside the 99% con�dence interval for recurrence
periods longer than 50 years.

4.3. SDSM downscaling technique
First, a screening of downscaling predictor variables
was followed to select large-scale variables (predictors)
which correlate to the small-scale one (predictand).
Many predictors were investigated, seeking the ones
with highest correlation. The search was performed
utilizing scatter plots and partial correlation analysis.

In the calibration process, a downscaling model
was constructed based on multiple regression equa-
tions, and parameters for the regression between pre-
dictors and predictand were found. Variables listed in
Tables 1 and 2 demonstrated the highest correlation
coe�cients between predictors and predictand, with
R2 = 0:243 and R2 = 0:189 for HadCM3 and CGCM3,
respectively. Relatively low correlation coe�cients for
the two AOGCMs reect the limitations of the SDSM
model in downscaling precipitation data.

A weather generation operation in SDSM was
used to construct ensembles of synthetic daily pre-

Table 1. Predictor variables from NCEP in HadCM3
databank used for SDSM calibration and weather
generation.

No Predictors Description

1 p-zaf Surface vorticity
3 p500 af 500 hpa geo-potential height
4 r500 af Relative humidity at 500 hpa
5 r850 af Relative humidity at 850 hpa

Table 2. Predictor variables from NCEP in CGCM3
databank used for SDSM calibration and weather
generation.

No Predictors Description

1 p-zgl Surface vorticity
2 p-zhgl Surface divergence
3 p5-ugl 500 hpa zonal velocity
4 p500gl 500 hpa geo-potential height
5 s500gl Speci�c humidity at 500 hpa
6 shumgl Surface speci�c humidity
7 tempgl Mean temperature at 2m

Figure 5. Maximum daily precipitation with di�erent
recurrence period simulated by SDSM model based on
NCEP data at the base period versus observed data;
RMSE = 6:2 mm, MAE = 4:6 mm, R2=0.99.

cipitation series, given observed atmospheric predictor
variables and regression model weights produced by
calibration. Bias correction was used for any tendency
in the downscaling model to over or under-inate the
variance of the conditional process [21]. Furthermore,
bias correction values were tested in the SDSM model
to adjust simulated maximum daily precipitation val-
ues with di�erent recurrence periods to obtain mini-
mum errors, with respect to observed values at the base
period. Through this adjustment, standard deviation
of maximum daily precipitation, based on downscaled
data for NCEP values from the HADCM3 and CGCM3
data bank, increased from 8.1 mm and 6.7 mm to
13.1 mm and 13 mm, respectively. Figures 5 and 6 show
comparisons between maximum daily precipitation,
with 2, 5, 10, 20, 25, 50 and 100 year recurrence
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Figure 6. Maximum daily precipitation with di�erent
recurrence period downscaled by SDSM model based on
NCEP CGCM3 data at the base period versus observed
data; RMSE = 14:2 mm, MAE = 13:3 mm, R2=0.99"
periods generated by SDSM (based on NCEP data in
HadCM3 and CGCM3 databanks) for the base period
and the observed data at the basin. As shown in
Figure 5, comparison between NCEP HadCM3 and
observed data for di�erent recurrence periods resulted
in RMSE = 6:2 mm, MAE = 4:6 mm and a correlation
coe�cient of R2 = 0:99. Comparison between NCEP
CGCM3 data and observed precipitation, however,
resulted in RMSE = 14:2 mm, MAE = 13:3 mm
and a correlation coe�cient of R2 = 0:99 (Figure 6).
Relatively high correlation coe�cients and low errors
in both models reect the suitable selection of predictor
variables.

Once models were calibrated and veri�ed, output
data from two AOGCMs (HadCM3 and CGCM3) were
downscaled and compared with observed data at the
base period. In the course of downscaling HadCM3 and
CGCM3 data, the bias correction procedure showed
increases in the standard deviation of maximum daily
precipitations from 6.4 mm and 10.7 mm to 14.4 mm
and 14.1 mm at the base period, respectively. Appar-
ently, the bias correction adjusted standard deviations
to values closer to the standard deviation of observed
maximum daily precipitations at the base period (i.e.
19.1 mm).

Figures 7 and 8 depict evaluation results for
several bias correction trials in the SDSM model
for HadCM3 and CGCM3, respectively. As shown,
comparison between observed and generated values for
di�erent recurrence periods reects RMSE = 5:1 mm,
MAE = 4:1 mm, R2 = 0:99 for HadCM3 (Figure 7),
and RMSE = 10 mm, MAE = 9:2 mm, R2 = 0:99 for
CGCM3 (Figure 8).

Considering the fewer errors in HadCM3, one
may conclude that this model would the simulate
climate change phenomenon better than CGCM3 for
future periods. However, both models were utilized for
scenario generation in the future.

The calibrated �le at the base period was utilized
by SDSM to generate a precipitation time series for
both AOGCMs. Maximum daily precipitations for

Figure 7. Evaluation of HADCM3 model by SDSM for
maximum daily precipitation with di�erent recurrence
periods after bias correction at the base period;
RMSE = 5:1 mm, MAE = 4:1, R2=0.99.

Figure 8. Evaluation of CGCM3 model by SDSM for
maximum daily precipitation with di�erent recurrence
periods after bias correction at the base period;
RMSE = 10 mm, MAE=9.2 mm, R2= 0.99.

Figure 9. Precipitation with di�erent recurrence periods
analyzed by SDSM downscaling technique, based on the
two AOGCMs for the future period (2011-2040).

the future period, 2011-2040 (2020s), were extracted
from the generated series, and frequency analysis was
performed to obtain daily precipitations with di�erent
recurrence periods (Figure 9). Gumbel distribution for
both HadCM3 and CGCM3 was the best frequency
distribution �tted to the data.

Figure 9 indicates that, in the case of HadCM3,
daily precipitations for 20, 25, 50 and 100 year recur-
rence periods (extreme rainfalls) increase by 3.6, 3.2,
2.5 and 2.2 percent, respectively, with respect to the
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base period. In the case of CGCM3, daily precipita-
tions for 20 and 25 year recurrence periods increase
2.9 and 1.9 percent, respectively. For 50 and 100
year recurrence periods, however, slight decreases of
0.4 and 2 percent, with respect to the base period, were
observed. As shown in Figrue 9, the daily precipitation
distribution trend lies within a 99% con�dence interval
for recurrence periods longer than 5 years for both
HadCM3 and CGCM3 models. On the whole, one
may conclude that the daily precipitation distribution
trend slightly di�ers from the observed trend at the
base period, indicating a small climate change impact
on extreme rainfall for the 2011-2040 period.

5. Conclusions

The impact of climate change on extreme rainfall
events in the Chenar-Rahdar basin, Fars, Iran, was in-
vestigated utilizing three statistical downscaling meth-
ods, namely, change factor, LARS-WG, and SDSM.
Daily precipitations with di�erent recurrence periods
were projected for the future period of 2011-2040
(2020s) based on two AOGCM output data (HadCM3
and CGCM3) under the A2 emission scenario. Ac-
cording to HadCM3, future daily precipitations in-
creased up to 21.8% compared to the base period when
using the change factor downscaling technique. For
CGCM3, on the other hand, daily future precipitations
slightly decreased for small recurrence periods (t �
10 yr), and increased (up to 10.9%) for longer periods
(t > 10 yr). It may be concluded that for both
AOGCMs, the occurrence probability of extreme events
in the future increases, however, less for CGCM3
compared to HadCM3. The LARS-WG technique
projected increases in future daily precipitations for
both AOGCMs. The increases were up to 11.7% and
24.7% compared to the base period for HadCM3 and
CGCM3, respectively. Furthermore, the occurrence
probability of extreme events showed a much higher
increase in CGCM3 compared to HadCM3. The
SDSM technique projected small changes in future
daily precipitation for both AOGCMs. Similar to other
methods, in the case of HadCM3, extreme rainfall
increased up to 3.6 percent compared to the base
period. For the case of CGCM3, no signi�cant change
was seen. Furthermore, similar to the �rst two methods
for HadCM3, the occurrence probability of extreme
rainfall events increased, while, for CGCM3, remained
almost unchanged.

In summary, HadCM3 (for three downscaling
methods) projected an increasing trend (of up to
21.8%) in extreme rainfall events for the 2011-2040
period, with respect to the base period. On the
other hand, CGCM3 showed an increasing trend for
extreme rainfall events for the �rst two methods (up
to 24.7%), while the SDSM method resulted in an

increasing trend (up to 3.6%) for recurrence periods
of 20 and 25 years and a very small decreasing trend
(down to -2%) for recurrence periods of 50 and 100
years. The fact that SDSM utilizes large-scale climate
variables from HadCM3 and CGCM3 outputs as input
to estimate local-scale precipitation, apparently, makes
its output less reliable compared to LARS-WG and
the change factor, which use AOGCM output variables
directly corresponding to precipitation. Relatively low
correlation coe�cients in multiple regressions obtained
for both AOGCMs also reect the limitations of SDSM
in downscaling precipitation data in the study area. It
is concluded that using the change factor or LARS-WG
downscaling methods would be conservative enough in
climate change impact assessment for the next 30 years.
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Nomenclature

AOGCM Atmospheric Oceanic General
Circulation Model

LARS-WG Long Ashton Research Station-Weather
Generator

SDSM Statistical Down Scaling Model
HadCM3 Hadley Centre Coupled Model,

version3
CGCM3 Coupled Global Climate Model, third

generation
CF Change Factor
IPCC Intergovernmental Panel for Climate

Change
GCM General Circulation Model
RCMs Regional Climate Models
SED Semi-Empirical Distribution
RMSE Root Mean Squared Error
MAE Mean Absolute Error
NCEP National Centers for Environmental

Prediction
R Correlation Coe�cient
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