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Abstract. The optimal groundwater bioremediation design problem is complex, nonlin-
ear, and computationally expensive. In this paper, an improved Ant Colony Optimization
(ACO) algorithm is employed for optimizing a groundwater bioremediation problem, and
the BIOPLUMEII model is used to simulate aquifer hydraulics and the bioremediation
process. Injection and extraction pumping rates and well locations are treated as decision
variables. Optimization results show that the proposed approach performs better than
the Genetic Algorithm (GA), Simulated Annealing (SA) and the hybrid SA-GA algorithm,
called Parallel Recombinative Simulated Annealing (PRSA), and reduces the computational
time of a number of function evaluations compared with the mentioned algorithms.
Applying the optimal dynamic pumping strategy in the second stage reduces bioremediation
costs by 13:3%.
c
 2014 Sharif University of Technology. All rights reserved.

1. Introduction

A variety of technologies have been examined for restor-
ing the quality of contaminated groundwater to achieve
remedial measures such as allowed concentration of
contaminant. It is usually costly to implement a
remediation program due to slow contaminant-removal
rates and complex hydrogeological and biochemical
conditions. Therefore, �nding cost e�ective ways for
remediation programs is important. To improve reme-
diation design, application of simulation-optimization
methods has become an area of active research [1]. Pre-
vious studies have successfully developed optimization
techniques to solve groundwater remediation design
problems.

Examples of such optimization techniques applied
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to groundwater remediation design include linear pro-
gramming [2], nonlinear programming [3], dynamic
programming [4], simulated annealing [5], and Genetic
Algorithms (GA) [6].

The solution of this complex and nonlinear prob-
lem is computationally intensive [7]. Di�erent analyti-
cal and heuristic alternatives for a solution have been
proposed to solve this problem. Heuristic methods
eliminate the requirement of computing derivatives,
with respect to decision variables, and are also easily
coupled with simulators. One heuristic technique is the
ant colony algorithm. The Ant Colony Optimization
(ACO) method applied to combinatorial optimization
problems was originally developed by Dorigo [8]. The
formulation of this algorithm is straightforward, with
no requirement for computing derivatives. The ant
colony is one optimization method not applied to
groundwater remediation problems.

It is the purpose of this paper to use the ant colony
optimization method on a groundwater bioremediation
problem to help understand when this method is
likely to be computationally e�cient. For testing the
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performance of the ant colony algorithm, hybrid genetic
algorithms from the work of Shieh and Peralta [9]
are considered. In this research, well locations and
pumping rates are decision variables for in situ biore-
mediation technology. The cost of the bioremediation
process has been considered as the objective function.
In the \simulation model" part, the BIOPLUMEII
model has been brie
y introduced, and in the \case
study" part, a system design study area has been
described. In the \Bioremediation design modeling",
\Model setup", \Results and discussion" and \Con-
clusion" sections, an in situ bioremediation design, by
ACO, and summarized �ndings are demonstrated.

2. Materials and methods

2.1. Ant colony algorithm
Ant Colony Optimization (ACO) is a discrete meta-
heuristic method that is used for solving a rage of
combinatorial optimization problems. The ant system
was the �rst ACO algorithm used in the literature, but
there are several variants of this. Among the available
ACO algorithms, the Ant Colony System (ACS) is
successfully used [0]. ACS is an e�cient algorithm
to solve di�erent mathematical problems. Generally,
there are few applications of ACO in water resource
management [11-14].

ACO is based on the indirect communication
of ants, and mediated by pheromone trails. The
pheromone trails in ACO serve as distributed and
numerical information, which the ants use to proba-
bilistically construct solutions to the problem being
solved and which the ants adapt during the algorithm's
execution to re
ect their search experience.

In the ACO algorithm, ants are permitted to
release pheromones while developing a solution or after
a solution has been fully developed, or both. The
amount of pheromone deposited is made proportional
to the goodness of the solution an ant develops. A
rapid drift of all ants towards the same part of the
search space is avoided by employing the stochastic
component of the choice decision policy and numerous
mechanisms, such as pheromone evaporation, explorer
ants and local search.

Let �ij(t) be the pheromone deposited on path ij
at time t, and �ij(t) be the heuristic value of path ij
at time t according to the measure of the objective
function. We de�ne the transition probability from
node i to node j at time period t as follows [8]:

pij(k; t) =

8<: [�ij(t)]�[�ij(t)� ]PNC
j=1[�ij(t)]�[�ij(t)� ] if j 2 Nk(t)

0 otherwise (1)

where Pij(k; t) is the probability that ant k selects path
ij at time period t, NC is the number of release intervals

(or classes), Nk(t) is the feasible neighborhood of ant
k when located at time period t, and � and � are two
parameters that control the relative importance of the
pheromone trail and heuristic value.

Let q be a random variable uniformly distributed
over [0,1], and q0 2 [0; 1] be a tunable parameter. The
next option, j, that ant k chooses is [15]:

j =

(
arg maxf[�il(t)]�g if q � q0; l 2 Nk(t)
J otherwise (2)

where J is randomly selected according to the probabil-
ity distribution of Pij(k; t) (Eq. (1)). Eqs. (1) and (2)
provide a probabilistic decision policy to be used by
the ants to direct their search towards the optimal
regions of the search space. To simulate pheromone
evaporation, the pheromone evaporation coe�cient,
(�), is de�ned which enables greater exploration of the
search space and minimizes the chance of local minima
upon completion of a tour by all ants. The global trail
updating is done as follows:

�ij(t) iteration ����� (1� �):�ij(t) + �:��ij(t); (3)

where 0 � � � 1; (1��) is evaporation rate. There are
several de�nitions for pheromone deposition on path ij
during time period, t, ��ij(t). The Ant Colony System
global-best (ACSgb) was chosen in this study [14] in
which:

��ij(t) =

(
1=Gk

�
gb if (i; j) 2 tour done by ant k�gb

0 otherwise (4)

where Gk
�
gb is the value of the objective function for

the ant with the best performance within the past total
iterations.

2.2. Simulation model
In order to evaluate the aquifer system, a bioremedi-
ation model that incorporates physical, chemical, and
biological processes is required. One of them is BIO-
PLUMEII, which has been successfully applied to �eld
cases [16,17]. BIOPLUMEII, previously developed by
Rifai et al. [18], is a two-dimensional computer model
that simulates the transport of dissolved hydrocarbons
under the in
uence of electron acceptors (e.g. oxygen)
biodegradation, and computes the variation in species
concentration over time due to convection, dispersion,
mixing, and biodegradation. The model is based on
the United States Geological Survey (USGS) solute
transport code by Konikow and Bredehoeft [19]. In
BIOPLUMEII, the �nite di�erence method is used for
solving hydraulic heads, and the Method Of Charac-
teristics (MOC) is used for solving concentrations of
contaminant and an electron acceptor (e.g. oxygen).
It also uses instantaneous biodegradation kinetics to
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simplify the problem. The contaminant and oxygen
transport equations are formulated as follows [18]:
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where C and O2 are contaminant and oxygen concen-
trations (M=L3), respectively; C 0 and O02 are contam-
inant and oxygen concentrations in a source or sink

uid (M=L3); ne is e�ective porosity; b is aquifer
saturated thickness (L); t is time (T ); xi and xj are
Cartesian coordinates (L); W is volume 
ux per unit
area (L=T ); Vi is seepage velocity in the direction of xi
(L=T ); Rc is retardation factor for the contaminant;
and Dij is the hydrodynamic dispersion coe�cient
(L2=T ).

BIOPLUMEII solves the solute transport equa-
tion twice; once for hydrocarbon and once for oxygen.
As a result, two plumes are computed at every time
step. The model assumes an instantaneous reaction
between oxygen and hydrocarbon to simulate biodegra-
dation processes. The principle of superposition is
used to combine the two plumes. So, contaminant
and oxygen concentration decreases at a node and are
calculated from:

�CRC = O2=F ; O2 = 0 if C > O2=F; (7)

�CRO2 = CF ; C = 0 if O2 > CF; (8)

where �CRC and �CRO2 are calculated changes in
contaminant and oxygen concentrations, respectively,
and F is the ratio of consumed oxygen to consumed
contaminant.

In this research, the BIOPLUMEII is used as sim-
ulation model in the bioremediation design problem.
This simulation model is coupled with an optimization
method, within an overall S=O management model.

2.3. Bioremediation design problem
The example optimization problem for groundwater
remediation design focuses on two systems. The �rst
one is in situ bioremediation, which inject electron
acceptors and nutrients into the contaminated ground-
water, and the second one is a classic pump and
treat system using granular activated carbon with air

striping technologies to treat extracted water.

Minimize cost =
MnX
t=1

0@ 1
(1 + ir)tyP

MPX
e=1

CP (e)p(e; t)
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+

MpX
e=1

CIP (e)IP (e)
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(9)

where cost is the total worth of the in situ bioreme-
diation system; 1=(1 + ir)tyP is the factor used to
convert injection, extraction and treatment costs to
their present value; ir is discount rate; yP is stress
period duration (T ); e is the index of the potential
injection or extraction location; p(e; t) is injection or
extraction rate at location e for stress period t (L3=T );
Cp(e) is the cost coe�cient for injection (including
electron acceptor, nutrient, and pumping operation
costs) or extraction (including treatment and pumping
operation costs) ($ per L3=T ); Mn is total number of
stress periods; Mp is total number of wells; CIP is well
installation cost at location e ($ per well); IP (e) is a
zero-one integer variable for well existence at location e;
D(
PMi

e=1 p(e)) is oxygen and nutrient injection facility
capital cost, a function of total injection rate ($); M i

is the total number of injection wells; E(
PMe

e=1 p(e))
is treatment facility capital cost, a function of total
extraction rate ($); Me is total number of extraction
wells; and MP = M i +Me.

Facility capital cost is a discrete function of
capacities. Because only speci�c sizes of pumps and
facilities are produced, a discrete function is de�ned to
represent the facilities capital costs. The capital cost
of the injection facility is discreted as:

D

0@MiX
e=1

p(e)

1A = 0 if
MiX
e=1

p(e) = 0;

D

0@MiX
e=1

p(e)

1A = Dq if CDq�1 <
MiX
e=1

p(e) � CDq;

q = 1; 2; :::;MQ; (10)

where Dq is the capital cost of the injection facil-
ity when the total injection rate is between design
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injection capacity CDq�1 and CDq; and MQ is the
total number of alternative design injection capacities.
Injection capacity CD0 is 0. Eq. (11), de�ning the
capital cost of treatment facility E, is analogous to
Eq. (10) and obtained by substituting E(

PMe

e=1 p(e; t))
for D(

PMi

e=1 p(e; t)), M
e for M i, Eq for Dq, CEq for

CDq, and MR for MQ. Eq is the treatment facility
capital cost when the total extraction rate is between
design treatment capacity, CEq�1 and CEq; and MR

is the total number of alternative design treatment
capacities. Treatment capacity CE0 is 0.

E

 
MeX
e=1

p(e)

!
= 0 if

MeX
e=1

p(e) = 0;

E

 
MeX
e=1

p(e)

!
= Eq if CEq�1 <

MeX
e=1

p(e) � CEq;

q = 1; 2; :::;MR: (11)

The presented objective function is discrete and non
di�erentiable, then it cannot be used by analytical
based optimization methods. This matter is about
discrete facilities and mixed integer well installation
cost functions. So, ACO is mathematically capable
of solving this kind of problem. Constraints can be
de�ned as:

max (p(e; t))M
i

e=1 � Qmax inj; (12)

max (p(e; t))M
e

e=1 � Qmax ext; (13)

hmin � h(e; t) � hmax; e = 1; ::::;Mp; (14)

Cij � Ctr; i = 1; :::;m; j = 1; :::; n; (15)

Cm � Cal 8m 2 	; (16)

where Qmax inj is the upper bound of injection rates
(L3=T ); Qmax ext is the upper bound of extraction rates
(L3=T ); hmin and hmax are minimum and maximum
allowable aquifer hydraulic heads at extraction and
injection wells, respectively (L); h(e; t) is aquifer hy-
draulic heads at well e for stress period t (L); m and n
are number of cells in x and y directions, respectively;
Ctr is the target concentration of pollutant at the
end of remediation M=L3; Cm is concentration at
the monitoring wells M=L3; Cal is the upper bound
of allowable concentration to assure prevention of
pollutant migration.

2.4. Case study
The ability of the ACO algorithm was assessed in the
design of a groundwater bioremediation system for a
hypothetical aquifer, similar to the case studied by

Figure 1. Initial contaminant plume location and
unmanaged condition after 5 years.

Figure 2. Insitu bioremediation system [9].

Shieh and Peralta [9]. The aquifer is homogenous
and isotropic. It is assumed to be contaminated with
dissolved hydrocarbon. A plan view of the aquifer is
shown in Figure 1, including the location of the initial
contaminant plume, unmanaged plume after 5 years,
and the monitoring wells. Figure 2 shows the potential
remediation well sites. The potential remediation wells
were grouped into two sets of locations; upgradient and
downgradient. The upgradient set consists of seven
potential well locations within the plume that can po-
tentially inject water containing oxygen and nutrients.
The downgradient set consists of six potential well
locations that can extract contaminated groundwater.
Injection and extraction rates are between 0 and
1:26 L/s.

The size of this aquifer is 510 m � 690 m, with
an average depth of 15 m. In plan, a square uniform
grid size of 19 � 25 is used. Two types of boundary
condition, impervious or zero 
ux at two sides (north
and south), and constant head boundaries at the other
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Table 1. Input parameters of simulation model [9].

Input parameters Value

Grid size 19� 25

Cell size 30 m�30 m

Hydraulic conductivity 6� 10�5

Longitudinal dispersivity 10 m

Transverse dispersivity 2 m

E�ective porosity 0:3

Retardation factor 1

Anisotropy factor 1

Injected oxygen concentration 8 ppm

Background oxygen concentration 8 ppm

Remedial time 3 years

two sides (west and east), are speci�ed. The e�ective
porosity of the soil is taken as 0:3. It is assumed
that there is no recharge throughout the area of the
aquifer. Groundwater 
ow simulation is steady state
and the general direction of 
ow is from the west to
the east boundary. The values of �xed head boundaries
at west and east are, 30:5 and 27:7 m, respectively.
Along the left and right boundaries, the contaminant
concentration was set to 0 mg/L. The details of the
hydraulic conductivity and initial plume are described
in Table 1.

Preliminary analysis shows that the plume will
reach downgradient monitoring wells after 5 years, and
natural aerobic decay reduces the total contaminant
mass by only 16%. In the contaminant plume area,
initial oxygen concentration is zero because of aerobic
biodegradation. The remainder of the aquifer area
has 5 ppm oxygen concentration. The injected oxygen
through the well is 8 ppm. Upper and lower bounds
on the hydraulic head for the injection wells are 33:5
and 27:7 m, respectively, and the upper and lower
bounds on the hydraulic head for the extraction wells
are 30:5 and 24:4 m, respectively. The remediation
period is 3 years and the cleanup target concentration
for contaminant, Ctr, is 3 ppm for the entire study area.
To avoid unacceptable plume spreading because of too
much water injection, additional monitoring wells are
installed at the other sides of the aquifer according
to Figure 2. The maximum allowable contaminant
concentration in monitoring wells, Cal, is 1 ppm. Ta-
ble 2 lists the cost coe�cients related to bioremediation
system costs.

2.5. Model setup
The proposed modeling structure has been setup for
two di�erent schemes; namely, schemes A and B.
Scheme A assumes a uniform pumping rate from
each well for the entire remediation horizon, whereas,
in scheme B, pumping rates are permitted to vary

Table 2. Cost function coe�cient [9].

Coe�cient Value

ir 0:05
Cp for injection cost 4; 755 ($ per L/s-year)
Cp for extraction cost 15; 850 ($ per L/s-year)
CIP 12; 000

D

D1.26 L/s=$ 20,000
D2.52 L/s=$ 24,000
D3.79 L/s=$ 28,000
D5.05 L/s=$ 32,000
D6.31 L/s=$ 36,000
D7.53 L/s=$ 40,000
D8.83 L/s=$ 44,000

E

E1.26 L/s=$ 30,000
E2.52 L/s=$ 38,000
E3.79 L/s=$ 46,000
E5.05 L/s=$ 54,000
E6.31 L/s=$ 62,000
E7.57 L/s=$ 70,000

dynamically during the remediation horizon. Scheme
A has 13 di�erent decision variables, of which 7 wells
are injection and the remaining 6 are discharge wells.
Due to the discrete nature of the proposed ant colony
optimization algorithm, the decision space for injection
and extraction wells has been discreted with uniform
increments ranging from zero to 1:26 L/s. Realizing
the number of decision variables of the discretization
scheme, the search space will contain 713 options, which
may be classi�ed as a medium size problem.

Scheme B assumes di�erent injection and/or ex-
traction rates in each period for each well. Therefore,
for scheme B, there are 78 decision variables. In this
case, the search space will contain 778 di�erent options.

In scheme A, values of 1, 0, 0.1, 1, 0.9 for the
basic tunable parameters, namely, �, �, �, �0 and
q0, were set to the best values of previously reported
ones [14,15,21]. Mentioned parameters for scheme
B are presented in Table 3. A total number of
110 and 350 ants were used, with 60, 300 iterations
for schemes A and B, respectively. To improve the
quality of the solutions and reduce the chance of being
trapped in local optimums, pheromone re-initiation
(PRI) and Partial Path Replacement (PPR) strategies,
as recommended by Hon et al. [20], and Pheromone
Promotion (PP) strategies, as recommended by Jalali
et al. [21], were employed.

PRI is used when the possibility of stagnation is
increased (i.e., for a pre-de�ned number of iterations,
no improvement is achieved). Pheromone concentra-
tions in all paths are reinitialized by setting them
equal to the initial value, �0. After pheromone re-
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Table 3. Input parameters of ant colony algorithm.

Description Scheme A Scheme B

Number of ants (ant) 110 350

Internal iteration (itr) 60 300

Initial pheromone (�0) 1 1

Pheromone evaporation (�) 0.1 0.1

Control parameter (�) 1 1

Control parameter (�) 0 0

Tunable parameter (q0) 0.8 0.9

initiation, the search continues as normal. The PPR
employed in the present algorithm is based on random
displacement of some components of pairs of solutions
in each iteration. To reduce computational time, in
each iteration, a number of ants are chosen and parts
of their solutions are randomly displaced with those
of the global best from the beginning of the trail. A
Pheromone Promotion (PP) mechanism is used to pre-
vent falling in local optima. Due to pheromone deposi-
tion and evaporation, a rapid convergence syndrome or
stagnation problem may prevail, if no improvement is
gained after a few iterations. So, if a new solution with
an improved objective value is identi�ed, its pheromone
must be promoted to the maximum existing pheromone
concentration (i.e., available global best solution). If
the existing pheromone concentration is very low, such
an improved solution may not be desirable for the
agents to follow.

3-opt is a local search procedure that is used
to generate new solutions with mutations of the best
ever solution produced at three decision points. In
this research, the three optimization approach (3-opt),
recommended by Dorigo and Gambaldella [15], is used
as another strategy to improve local search.

A simple 
ow diagram of the proposed simulation-
optimization approach for the optimal design of a
groundwater remediation system is depicted in Fig-
ure 3.

3. Results and discussion

3.1. Static pumping strategy (scheme A)
In all cases, the results represent the best policy found
from each set of replicates. All the designs discussed
meet all constraints, including the water quality con-

Figure 3. ACS algorithm for groundwater bioremediation
system.

straint. Because of the stochastic nature of ACO, 20
di�erent runs are performed for each setting. The best,
worst, and average values of the objective function for
20 runs, as well as standard deviation for the solutions,
are presented in Table 4. Figure 4 illustrates the
convergence behavior of the proposed ACO algorithm
for the best solution. It shows the change of system
cost versus number of ACO internal iterations. Results
from Table 5 show that the minimum cost in the
constant pumping strategy, for scheme A, would be
$185, 900, resulted by selecting 4 wells (U1, U2, U4 and
E2). According to Table 5, in scheme A, extraction
and treatment operations through well E2 have the
largest portion of cost, by $43,600, and the cost of
the other 3 injection wells is $36,300. The cost of
oxygen and nutrient injections in the three wells is

Table 4. Optimal system costs for Scheme A and B.

Formulation Mean The
best

The
worst

S.D. C. V. Number of model
runs

Scheme A 191.4 185.9 200.2 4.8 0.02 20
Scheme B 164.8 161.2 170.1 2.5 0.02 10
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Table 5. Optimal system costs of scheme A for ACO, SA, GA and PRSA (20 runs for each model).

Algorithm
Well

installation
cost ($)

Injection
cost ($)

Extraction
and

treatment
cost ($)

Injection
facility
capital
cost ($)

Treatment
facility
capital
cost ($)

Number of
simulations

call

System
cost ($)

SA [9] 60,000 36,200 43,100 28,00 30,000 7,767 197,300
GA [9] 48,000 38,100 52,400 28,00 30,000 13,100 196,500

PRSA [9] 48,000 37,600 44,900 28,000 30,000 13,300 188,500
ACO 48,000 36,300 43,600 28,000 30,000 6,000 185,900

Figure 4. System cost versus number of model internal
iterations for the best solutions.

Figure 5. Injection and extraction values for the best
solution of scheme A.

less than the cost of extraction and treatment from
one well. In addition, the set up cost of extraction
and treatment facilities is $30,000 and higher than that
of the injection facilities, $28,000, which con�rms the
outcome of the model in using more injection wells.
Wells, identi�ed as U2 and U4, are injected with their
near maximum capacity, and well U1, which is located
on the symmetry line of the study area, is being
operated at near half capacity of the two other injection
wells (Figure 5). The operation of injection wells,
especially U1, possibly makes the problem infeasible.
In some cases, where the observed concentrations in
the west control wells (Figure 1) would be higher than
the allowed concentration (1 ppm), the solution would
be infeasible.

In Shieh and Peralta [9], the aforementioned
problem was studied by Simulated Annealing (SA),
Genetic Algorithm (GA) and Parallel Recombinative
Simulated Annealing (PRSA). According to Table 5,
among the four optimization algorithms, ACO has the
best solution, with a minimum cost of $185,900. The
minimum cost resulted by the PRSA algorithm for con-
stant pumping was $188,500. In order to achieve this
solution, PRSA called the simulator (BIOPLMEII),
13,300 times, while, in our approach, to achieve a min-
imum cost of $185,900, the ACO algorithm called the
simulator 6,600 times. The ACO best solution quality
is 1:38% better than the PRSA algorithm, with almost
50% reduction in the number of function evaluations
(i.e. simulation calls). Results presented in Table 5
show that, for this problem, the proposed simulation-
optimization scheme with the ACO algorithm performs
slightly better than all the other 3 algorithms. In
fact, with approximately 78%, 45% and 45% of the
number of function evaluations of SA, GA and PRSA,
the proposed approach resulted in slightly smaller cost,
respectively.

This outcome shows the phenomenal capability of
ACO algorithm in cutting calculation cost in compari-
son to SA, GA and PRSA algorithms.

3.2. Dynamic pumping strategy (scheme B)
In the second part of this study, the aquifer remediation
horizon has been divided into multiple management
intervals. The three-year remediation period is divided
into 6, half-year pumping intervals. The pumping
discharges can vary from interval to interval. Shieh
and Peralta [9] applied varying pumping approaches
using the previous selected wells (scheme A, outputs
U1, U2, U4 and E2). As mentioned earlier, there
are 78 decision variables for 13 wells, with 7 states
as decision variables. As seen, the number of decision
variables in scheme B is more than scheme A, which
is 13, and this problem would be computationally
more complicated and time consuming. Table 6
shows the results and cost of the optimum solution.
Comparing to the constant pumping strategy, only
the costs associated with injections and discharges are
decreased.

The varying pumping strategy was modeled by
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Table 6. Optimal system costs of scheme B for ACO and PRSA (10 runs for each formulation).

Algorithm
Well

installation
cost ($)

Injection
cost ($)

Extraction
and

treatment
cost ($)

Injection
facility
capital
cost ($)

Treatment
facility
capital
cost ($)

Number of
simulations

call

System
cost ($)

ACO 48,000 24,400 30,800 28,000 30,000 105,000 161,200
PRSA [9] 48,000 25,800 31,500 28,000 30,000 NA� 163,300

* Not assigned.

Table 7. Injection and extraction rates of the best solutions of schemes A and B.

Wells Injection rates (lit/sec) Extraction rates (lit/sec)

U1 U2 U3 U4 U5 U6 U7 E1 E2 E3 E4 E5 E6
Scheme A One period 0.63 1.26 0 1.25 0 0 0 0 1.05 0 0 0 0

Scheme B

Period 1 0.42 1.26 0 1.26 0 0 0 0 0 0 0 0 0

Period 2 0.42 1.26 0 1.26 0 0 0 0 0 0 0 0 0

Period 3 0 1.26 0 1.26 0 0 0 0 0.84 0 0 0 0

Period 4 0 0.84 0 0.84 0 0 0 0 1.05 0 0 0 0

Period 5 0 0 0 0 0 0 0 0 1.26 0 0 0 0

Period 6 0 0 0 0 0 0 0 0 1.26 0 0 0 0

Shieh and Peralta [9] using the PRSA optimization
algorithm, resulting in a minimum cost of $163,300.
The authors indicate they have used a population
size of 200, instead of 100, in the constant pumping
problem. However, they did not mention the number
of function evaluations or BIOPLUMEII calls. Since
the problem is more complicated than the previous
one, for PRSA formulation, the number of simulation
calls greatly exceeds that of the static case (i.e.,
13,300).

Results of the proposed scheme selects three
injection wells, U1, U2, U4, and one extraction well,
E2, as the optimum decision. According to Table 6,
the minimum cost for the selected solution is $161,200,
which is slightly (1:3%) better than the PRSA outcome.
The reported near optimum solution was achieved with
105,000 function evaluations (i.e., simulation calls).
The convergence behavior of the proposed ACO algo-
rithm for the best solution of scheme B is illustrated in
Figure 4.

The minimum cost obtained in the dynamic
pumping strategy (scheme B) is 13:3% better than
the static pumping (scheme A). In various stages of
the remediation process, operation discharges vary
by contamination concentration changes (Figure 6).
According to Table 7, injection wells are super active
during the �rst 4 operational intervals (�rst two years),
in which wells U2 and U4 should be used with almost
full capacity. In addition, during the last year of
operation, the discharge rate of injection wells is zero.
It shows that during the last two periods, contamina-
tion has moved downstream, and the injection process

Figure 6. Injection and extraction values for the best
solution of scheme B.

at upstream is no longer e�ective. So, in line with
this movement, the optimization algorithm shows zero
pumping for upstream injection wells. On the other
hand, according to the results, the discharge value
of well E2 during the �rst 2 periods is zero, which
indicates that discharge wells, unlike injection wells,
have no contribution during the �rst two periods.
The far distance of the contamination plume from the
downstream monitoring wells during the early periods
of remediation is the reason for the inactiveness of
extraction wells during the mentioned periods. By
migration of contamination to the downstream, ex-
traction wells begin their contribution, and, as it gets
closer to the last operational periods, the discharge
rates of those wells increase, in such a way that they
reach maximum capacity during the last two periods.
Figure 7 shows the �nal contamination plume after 6
operational periods (3 years).
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Figure 7. Change of contaminant plume (ppm) after 3
years bioremediation in scheme B.

4. Conclusion

In this research, an improved ant colony optimization
model has been employed to optimize the in situ biore-
mediation design system. The model is coupled with a
simulator called BIOPLUMEII. Decision variables in
the simulation/optimization model are the pumping
values of injection and extraction wells, and the loca-
tion of wells. The objective function is minimization
of total system cost. Reduction of contaminant to
the cleanup standard is a target in this problem. PP,
PRI, PPR and 3-opt mechanisms have been employed
to improve the convergence and performance of ACO
algorithm, so called ACSgb-PP-PRI-PPR-3opt.

ACSgb-PP-PRI-PPR-3opt was compared with
GA, SA and PRSA in scheme A and with PRSA in
scheme B. The scheme A problem has been solved
with steady, and scheme B with time varying, pumping
strategies. The number of simulations in the ACO
is less than the other mentioned algorithms in both
schemes. Also, the quality of solutions in ACO is better
too.

Results of this research show the ability of the pro-
posed ACO algorithm in the computationally expensive
problem of groundwater bioremediation system design,
and show that it can be used as a method for enabling
the solution of larger-scale groundwater remediation
design problems.

Nomenclature

�ij(t) Total pheromone deposited on path ij
at time t

�ij(t) Heuristic value of path ij at time t
Nk(t) Feasible neighborhood of ant k when

located at time period t
NC Number release intervals (or classes)

� Control parameter of pheromone trail
� Control parameter of heuristic value
q Random variable uniformly distributed

over [0,1]
q0 Tunable parameter 2 [0,1]
� Pheromone evaporation coe�cient
�0 Initial pheromone value

Gk
�
gb Value of the objective function for the

ant with the best performance within
the past total iterations

C and O2 Contaminant and oxygen concentration
in aquifer

C 0 and O02; Contaminant and oxygen concentration
in a source or sink 
uid

ne E�ective porosity
b Aquifer saturated thickness
t Time
xi and xj Cartesian coordinates
W Volume 
ux per unit area
Vi Seepage velocity in the direction of xi
Rc Retardation factor
Dij Hydrodynamic dispersion coe�cient
�CRC ;�CRO2 Change in contaminant and oxygen

concentrations
F Ratio of consumed oxygen to consumed

contaminant
ir Discount rate
yP Stress period duration
e Index of potential injection or

extraction location
p(e; t) Injection or extraction rate at location

e for stress period t
Cp(e) Cost coe�cient for injection or

extraction
Mn Total number of stress periods
Mp Total number of wells
CIP Well installation cost at location e
IP (e) Zero-one integer variable for well

existence at location e
M i Total number of injection wells
Me Total number of extraction wells
Dq; Eq Capital cost of injection and extraction

facilities at di�erent level
CDq; CEq Design injection and extraction

capacity at level q

MQ Total number of alternative design
injection capacities

Qmax inj Upper bound of injection rates
Qmax ext Upper bound of extraction rates
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hmin; hmax Minimum and maximum allowable
aquifer hydraulic heads at wells

m;n Number of cells in x and y directions
Ctr Target concentration of pollutant at

the end of remediation
Cm Concentration at the monitoring wells
Cal Upper bound of allowable

concentration
	 Set of monitoring wells
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