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Abstract. In this paper, a new Hybrid Charged System Search and Particle Swarm
Optimization, HCSSPSO, is presented. Although Particle Swarm Optimization (PSO) has
many advantages, including directional search, it has also some disadvantages resulting
in slow convergence rate and low performance. On the other hand, the Charged System
Search (CSS) is a robust optimization algorithm which has been successfully utilized in
many structural optimization problems. In this study, the goal is to incorporate the positive
features of the PSO in CSS and make it more capable of solving optimization problems.
The hybrid CSS and PSO is named HCSSPRO, and it uses the positive features of the PSO
to further improve the CSS. In order to show the higher performance of the HCSSPSO, it is
implemented and applied to some engineering problems. These structures are benchmark
examples which are optimized by many other methods and are suitable for comparison.
Results of the present algorithm show its better performance and higher convergence rate
for the problem studied.
c 2014 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, many meta-heuristic optimization al-
gorithms have been developed and employed in the
optimal design of engineering structures. Nowadays,
there is considerable e�ort made towards designing
engineering structures and machines using the least
possible amount of materials and resources. For this
purpose, many mathematical programming and meta-
heuristic methods of optimization based on natural
events, the social behavior of animals and insects, and
physics laws, are applied to engineering design. Due
to the simplicity and versatility of the meta-heuristic
methods compared to mathematical programming ap-
proaches, these algorithms have become the focus of
attention among many researchers.
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In general, gradient-based methods converge
faster and can obtain solutions with higher accuracy
compared to stochastic approaches in ful�lling the local
search task. However, for e�ective implementation
of these methods, the variables and cost function of
the generators should be continuous. Also, a good
starting point is vital for these methods to be executed
successfully. In many optimization problems, prohib-
ited zones, side limits, and non-smooth or non-convex
cost functions need to be considered. As a result,
non-convex optimization problems cannot be solved by
the traditional mathematical programming methods.
Although dynamic programming or mixed integer non-
linear programming and their modi�cations o�er some
facility in solving non-convex problems, these methods,
in general, require considerable computational e�ort.

Particle Swarm Optimization is a multi-agent
meta-heuristic optimization algorithm which was intro-
duced by Eberhart and Kennedy [1]. This algorithm
is inspired by social interaction among animals and
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insects that are living in swarms and ocks, having
social behavior. In this algorithm, each member
(particle) of the society (swarm) tends to follow the
member which has a better position and this directs
the exploration of the search space. Some advantages
of the PSO consist of the ease of its implementation
and directional search, resulting in its popularity.
However, a lack of balance between exploration and
exploitation reduces its performance and convergence
rate. Another problem with PSO is not having an
e�cient method for dealing with violated particles from
the feasible search space. Kaveh and Nasrollahi [2]
used a linear varying inertia weight for balancing
exploration and exploitation, as well as a Harmony
Search Based approach for reproducing violated par-
ticles.

On the other hand, the CSS is another multi-
agent meta-heuristic optimization algorithm which was
developed by Kaveh and Talatahari [3]. This algorithm
is based on the laws of Coulomb and Gauss from
electrostatics and the Newtonian laws of mechanics.
The CSS was successfully applied to many structural
optimization problems by Kaveh and Talatahari [4-8],
Kaveh and Ahmadi [9], and Kaveh and Behnam [10].
Results from the above research show that CSS has a
fast convergence rate and there is a suitable balance
between exploration and exploitation. However, the
main problem with CSS is the direction of movement
of each Charged Particle (CP), since all CPs which can
exert forces onto a CP, have the same inuence, i.e.
the best CPs have the same inuence as other CPs.
Previously, Kaveh and Laknejadi [11] introduced a
hybrid CSS and PSO for multi-objective optimization.
Kaveh et al. [12] also presented a new version of
CSS by introducing magnetic, as well as electrostatic,
forces.

In this paper, the directional search characteristic
of the PSO is added to the CSS to master the inuence
of the best CP and the best position history of CP itself.
This modi�cation improves the capability of the CSS
in �nding the minimum of an objective function. The
new algorithm is applied to four benchmark structural
design problems and the higher performance of the
HCSSPSO is shown compared to other methods. The
obtained improvements correspond to both the design
output and the convergence rate of the algorithm.

2. Particle swarm optimization

The PSO makes use of a velocity vector to update the
current position of each particle in the swarm. The
position of each particle in the swarm, which adapts to
its environment by ying in the direction of the best
position of all particles and the best position of the
particle itself, provides the search process of the PSO.
The position of the ith particle at iteration k + 1 is

calculated using the following relationship:

xik+1 = xik + vik+1:�t; (1)

where, xik+1 is the new position; xik is the position at
the kth iteration; vik+1 is the updated velocity vector
of the ith particle; and �t is the time step which is
considered as unity. The velocity vector of each particle
is determined by:

vik+1 = w:vik + c1:r1:
�
pik � xik�

�t
+ c2:r2

�
pgk � xik�

�t
;
(2)

where, vik is the velocity vector at iteration k; r1 and r2
are two random numbers between 0 and 1; pik represents
the best ever position of particle i, local best; pkg is the
global best position in the swarm up to iteration k; c1
is the cognitive parameter; c2 is the social parameter;
and w is the inertia weight.

With the above description of the PSO, the
algorithm can be summarized as follows.

The initial position, xi0, and the velocities, vi0,
of the particles are distributed randomly in a feasible
search space:

xi0 = xmin + r: (xmax � xmin) ; (3)

vi0 =
xmin + r: (xmax � xmin)

�t
; (4)

where, r is a random number uniformly distributed
between 0 and 1, and xmin and xmax are minimum
and maximum possible variables for the ith particle,
respectively.

3. Charged system search

The Charged System Search (CSS) algorithm is an
optimizer based on the Coulomb and Gauss electro-
statics laws and the Newtonian Mechanics laws. A brief
explanation of the CSS is as follows: This algorithm is
a multi-agent approach, where each agent is a Charged
Particle (CP). A CP is considered as a charged sphere
with radius a, having a uniform volume charge density
of magnitude:

qi =
�t(i)� �tworst

�tbest� �tworst
; i = 1; : : : ; N; (5)

where �tbest and �tworst are the best �tness and the
worst �tness of all the particles, �t(i) represents the
�tness of the agent, i, andN is the total number of CPs.

CPs can impose electric forces on the others. The
forces are considered as attractive and their magnitude
for a CP located inside the sphere is proportional to the
separation distance, rij , between the CPs. For a CP
located outside the sphere, it is inversely proportional
to the square of the separation distance between the
particles. In continuous problems, it is su�cient to
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consider all the forces as attractive. Therefore, the
forces can be obtained as follows:

Fj = qj
NX

i;i 6=j

 
qi
a3 rij :i1 +

qi
r2
ij
:i2

!
:pij (Xi �Xj) ; (6)

where Fj is the resultant force acting on the jth CP,
and rij is the separation distance between two charged
particles, which is de�ned as:

rij =
kXi �Xjk

k(Xi +Xj)=2�Xbestk+ "
; (7)

where Xi and Xj are the positions of the ith CP and
jth CP, respectively; Xbest is the position of the best
current CP, and " is a small positive number. The
initial positions of the CPs are determined randomly
in the search space, and the initial velocities of charged
particles are assumed to be zero.

pij determines the probability of moving each CP
towards the others, as:

pij =

(
1 �t(i)��tbest

�t(j)��t(i) > rand _ �t(j) < �t(i)
0 otherwise

(8)

The resultant forces and motion laws determine the
new location of the CPs. At this stage, each CP
moves toward its new position under the action of the
resultant forces and its previous velocity as:

Xj;new =randj1:ka:
Fj
mj

:�t2 + randj2:kv:Vj;old:�t

+Xj;old; (9)

where ka is the acceleration coe�cient; kv is the
velocity coe�cient to control the inuence of the pre-
vious velocity; and randj1 and randj2 are two random
numbers uniformly distributed in the range of (0,1):

Vj;new =
Xj;new �Xj;old

�t
: (10)

To save the best design, a memory (Charged Memory
or CM) is considered in the CSS. If a CP moves out
of the allowable search space, its position is corrected
using the Harmony Search handling method. Accord-
ing to this mechanism, any component of the solution
vector violating boundaries can be regenerated from
CM as:

xi;j =8>>>>>>>><>>>>>>>>:

w.p. CMCR
) select a value for a variable from CM
) w.p. (1-PAR) do nothing
) w.p. PAR choose a neighboring value

w.p. (1-CMCR)
) select a new variable randomly

(11)

where xi;j is the ith component of the CP, j. The
Charged Memory Considering Rate (CMCR), varying
between 0 and 1, sets the rate of choosing a value
in the new vector from the historic values stored in
the CM, and (1-CMCR) sets the rate of choosing one
random value from the possible range of values. The
pitch adjusting process is performed only after a value
is chosen from the CM. The value (1-PAR) sets the
rate of doing nothing. Here, \w.p." stands for \with
probability".

4. Hybrid charged system search and particle
swarm optimization

In this section, a new hybrid Charged System Search
and Particle Swarm Optimization is presented. For this
purpose, some of the PSO parameters which provide
good search for the PSO are added to the CSS. These
modi�cations include:

1. Initial velocities of CPs are not considered as 0,
but it is assumed to be de�ned by Eq. (4). This is
necessary for the next stages.

2. For providing a balance between exploration and
exploitation in the PSO, Fourie and Groenwold [13]
have considered a dynamic varying of the inertia
weight. In this approach, the inertia weight is not
considered as constant. It varies by the progress of
the algorithm and, in iteration k + 1, the inertia
weight is de�ned as:

wk+1 = kw:wk; (12)

where wk and wk+1 are the inertia weights in
iteration k and k + 1, respectively; and kw is a
constant multiplier.

However, in the CSS, the linear varying of
force e�ect and velocity e�ect is considered as:

ka = 0:5
�

1 +
iter

itermax

�
; (13)

kv = 0:5
�

1� iter
itermax

�
: (14)

In this study, by inspiration of the dynamic varying
of inertia weight, a new dynamically varying of the
force e�ect and the velocity e�ect are introduced as
follows:

ka = (k1)
iter

itermax ; (15)

kv = (k2)
iter

itermax ; (16)

where, k1 and k2 are two constants. Since, at
the initial stages of the optimization there must
be a focus on exploration, the velocity must have
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more signi�cant e�ect and, in the latest iterations
exploitation, must be performed by an algorithm,
it is recommended to consider the values of k1
and k2 as 2.0 and 1:0E � 5, respectively. These
values ensure a good balance between exploration
and exploitation in the algorithm. By using a
dynamically varying concept, the convergence rate
of the CSS can be increased.

3. Since, in the CSS, the velocity vectors of particles
depend on the amount of force, and, on the other
hand, the forces exerted on a CP depend on the
distances of other particles and the amount of the
cost function corresponding to each CP, it is not
ensured that the best particle has the most e�ect.
This may cause reduction of the convergence rate
and exploration. Thus, if we can master the e�ect
of the best CP, the performance of the CSS will be
improved. The key of this problem exists in the
de�nition of the velocity in the PSO. If we consider
the velocity of CPs by Eq. (17), the e�ect of the
best CP will be raised, and the e�ect of the best
position of CP up to the current iteration will be
added to the CSS:
vik+1 = w:vik +c1:r1:

�
pik� xik�+c2:r2:

�
pgk� xik� :

(17)

However, in this approach, it is necessary to add
a memory to the CSS for each particle in order
to save the best position of the CP up to the
current iteration. With these modi�cations, the
performance of the CSS improves in such a way that
by de�ning the dynamical variance, it is expected
to raise the convergence rate, and by the use of
the velocity de�nition of the PSO in the CSS, a
better search will be performed. The stages of
implementation of the HCSSPSO are similar to
that of the CSS and only these modi�cations are
applied. With the above de�nitions, the steps of
optimization by the HCSSPSO are shown in the
owchart of Figure 1.

5. Numerical examples

To illustrate the e�ectiveness of the mentioned modi�-
cations, several benchmark examples that have previ-
ously been optimized by other researchers, are consid-
ered. These examples have been studied before using a
variety of methods and are suitable for measuring the
capability of an algorithm compared to existing ones.
In these examples, the number of CPs is considered
to be 20, and 20 independent runs are performed for
each example. After some trial and error processes for
�nding suitable values for constants, w, c1, and c2, the
best value for these parameters is found to be 1.0. In
order to deal with the constraints, a penalty function
approach is utilized.

Figure 1. Flowchart of the HCSSPSO.

Figure 2. Geometry and the parameters of the
tension/compression spring design.

5.1. A tension/compression spring design
problem

This problem is described by Belegundu [14] and
Arora [15]. It consists of minimizing the weight of a
tension/compression spring subjected to constraints on
shear stress, surge frequency, and minimum deection,
as shown in Figure 2.

The design variables are the mean coil diameter,
D (= x1), the wire diameter, d (= x2), and the number
of active coils, N (= x3). The problem can be expressed
with the following cost function:

fcost (X) = (x3 + 2)x2x2
1; (18)

to be minimized in the presence of the following
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constraints:

g1 (X) = 1� x3
2x3

71; 785x4
1
� 0; (19)

g2 (X) =
4x2

2 � x1x2

12; 566 (x2x3
1 � x4

1)
+

1
5; 108x2

1
� 1 � 0;

(20)

g3 (X) = 1� 140:45x1

x2
2x3

� 0; (21)

g4 (X) =
x1 + x2

1:5
� 1 � 0: (22)

The variables are selected from the following regions:

0:1 � x1 � 2; (23)

0:25 � x2 � 1:3; (24)

2 � x3 � 15: (25)

This problem has been solved by Belegundu [14] using
eight di�erent mathematical optimization techniques
(only the best results are shown). Arora [15] has also
solved this problem using a numerical optimization
technique, called constraint correction, at a constant
cost. Coello [16], and Coello and Montes [17] solved
this problem using a GA-based method. Additionally,
He and Wang [18] utilized a Co-evolutionary Particle
Swarm Optimization (CPSO). Recently, Montes and
Coello [19], and Coelho [20] used evolution strategies to
solve this problem. Table 1 presents the best solution of
this problem obtained using the HCSSPSO algorithm
and compares the HCSSPSO results to the solutions
reported by other researchers. From Table 1, it can
be seen that the best feasible solution obtained by the
HCSSPSO is better than those previously reported.
This issue is in both obtained cost function and
standard deviation or the number of runs required for
�nding a reliable minimum by the algorithm. As can

Figure 3. Geometry and parameters of the pressure
vessel.

be seen, the results of the present algorithm compared
to those of the CSS are better, and one can state that
the advantages of the PSO are successfully added to
the CSS.

5.2. A pressure vessel design problem
A cylindrical vessel clapped at both ends by semispher-
ical heads, as shown in Figure 3, is considered as the
second design example. The objective is to minimize
the total cost, including the cost of material, forming
and welding [21]:

fcost (X) =0:6224x1x3x4 + 1:7781x2x2
3

+ 3:1661x2
1x4 + 19:84x2

1x3; (26)

where x1 is the thickness of the shell (Ts), x2 is the
thickness of the head (Th), x3 is the inner radius (R),
and x4 is the length of the cylindrical section of the
vessel (L), not including the head. Ts and Th are integer
multiples of 0.0625 inches, the available thickness of the
rolled steel plates, and R and L are continuous.

The constraint can be expressed as:

g1 (X) = �x1 + 0:0193x3 � 0; (27)

g2 (X) = �x2 + 0:00954x3 � 0; (28)

g3 (X) = ��x2
3x4 � 4

3
�x3

3 + 1; 296; 000 � 0; (29)

g4 (X) = x4 � 240 � 0: (30)

Table 1. Optimal results of the tension/compression spring design.

Method x1(d) x2(D) x3(N) Best
result

Mean of
the results

Worst
results

SD

Belegudu [14] 0.050000 0.315900 14.250000 0.012833 N/A N/A N/A
Arora [15] 0.053396 0.399180 9.185400 0.012730 N/A N/A N/A
Coello [16] 0.051480 0.351661 11.632201 0.012705 0.012769 0.012822 3.939E-05
Coello and Montes [17] 0.051989 0.363965 10.890522 0.012681 0.012742 0.012973 5.900E-05
He and Wang [18] 0.051728 0.357644 11.244543 0.012675 0.012730 0.012924 5.199E-05
Montes and Coello [19] 0.051643 0.355360 11.397926 0.012698 0.013461 0.164850 9.660E-04
Coelho [20] 0.051515 0.352529 11.538862 0.012665 0.013524 0.017759 1.268E-3
CSS (present work) 0.052952 0.387880 9.671307 0.012694 0.013518 0.015435 1.088E-03
HCSSPSO (present work) 0.051799 0.359380 11.134561 0.012665 0.013142 0.015134 8.893E-04



300 A. Kaveh and A. Nasrollahi/Scientia Iranica, Transactions A: Civil Engineering 21 (2014) 295{305

Table 2. Result of the optimal design of pressure vessel.

Author or method x1(Ts) x2(Th) x3 (R) x4 (L) Best
result

Mean of
the results

Worst
results

SD

Sandgren [21] 1.125 0.625 47.7 117.701 8,129.10 N/A N/A N/A
Kannan and Kramer [22] 1.125 0.625 58.291 43.69 7,198.04 N/A N/A N/A
Deb and Gene [23] 0.9375 0.5 48.329 112.679 6,410.38 N/A N/A N/A
Coello [16] 0.8125 0.4375 40.3239 200 6,288.74 6,293.84 6,308.15 7.4133
Coello and Montes [17] 0.8125 0.4375 42.09739 176.654 6,059.95 6,177.25 6,469.32 130.9297
He and Wang [18] 0.8125 0.4375 42.09126 176.7465 6,061.08 6,147.13 6,363.80 86.4545
Montes and Coello [19] 0.8125 0.4375 42.09808 176.6405 6,059.75 6,850.00 7,332.88 426
Coelho [20] 0.8125 0.4375 42.0984 176.6372 6,059.72 6,440.38 7,544.49 448.4711
CSS (present work) 0.8125 0.3871 40.9604 191.2691 6,052.89 6,539.16 7,174.35 408.312
HCSSPSO (present work) 0.8125 0.3916 41.4370 185.0857 6,003.56 6,172.06 6,807.91 271.8559

The design space is as follows:

0 � x1 � 99; (31)

0 � x2 � 99; (32)

10 � x3 � 200; (33)

10 � x4 � 200: (34)

The approaches applied to this problem include a
branch and bound technique [21], an augmented La-
grangian multiplier approach [22], genetic adaptive
search [23], a GA-based co-evolution model [16], a
feasibility-based tournament selection scheme [17], a
co-evolutionary particle swarm optimization [18], an
evolution strategy [19], and a Gaussian quantum-
behaved PSO approach [20]. The best solutions ob-
tained by the above mentioned approaches and their
statistical simulation results are listed in Table 2. From
Table 2, it can be seen that the best solution found
by the HCSSPSO is better than the best solutions
found by other techniques. Also, from this table, it
can be seen that the average searching quality of the
HCSSPSO is better than that of other methods.

5.3. A 25-bar element space truss
As the third example, a 25-bar space truss, as a
transmission tower, is considered, as described by
Schmit and Fleury [24], and shown in Figure 4. The
design variables are the cross sectional areas of the
members, which are categorized into eight groups, as
shown in Table 3. The loading of the structure is
shown in Table 4. Constraints are imposed to cross-
sectional areas of the members between 0.01 in2 to 3.4
in2, and to the allowable stresses, which are included in
Table 5. Another considered constraint is the allowable
displacement, which is taken as � 0:35 in for every
direction.

Table 3. Truss member grouping of the 25-bar truss
members.

Group Truss members

1 1

2 2 � 5

3 6 � 9

4 10 � 11

5 12 � 13

6 14 � 17

7 18 � 21

8 22 � 25

Table 4. Nodal load of the 25-bar truss.

Node Fx (lb) Fy (lb) Fz (lb)

1 10,000 �10; 000 �10; 000

2 0 �10; 000 �10; 000

3 500 0 0

6 600 0 0

Table 5. Allowable stresses for the 25-bar truss members.

Element
group

Allowable
compressive stress

ksi (MPa)

Allowable
tensile stress

ksi (MPa)

1 35.092 (241.96) 40.0 (275.80)

2 11.590 (79.913) 40.0 (275.80)

3 17.305 (119.31) 40.0 (275.80)

4 35.092 (241.96) 40.0 (275.80)

5 35.092 (241.96) 40.0 (275.80)

6 6.759 (46.603) 40.0 (275.80)

7 6.959 (47.982) 40.0 (275.80)

8 11.082 (76.410) 40.0 (275.80)
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Figure 4. Geometry and element grouping of the 25-bar element space truss.

Table 6. Results of the optimal design of the 25-bar truss structure.

Element
group

Wu and
Chow [25]

Zhu
[26]

Haftka and
Grudal [27]

Zhou and
Rozvany

[28]

Erbatur
et al.
[29]

Perez and
Behdinan

[30]

CSS
(present
work)

HCSSPSO
(present
work)

1 0.1 0.1 0.01 0.01 0.1 0.1 0.104 0.1
2 0.5 1.9 1.987 1.987 1.2 1.0227 0.3475 0.4438
3 3.4 2.6 2.991 2.994 3.2 3.4 3.3667 3.3946
4 0.1 0.1 0.01 0.01 0.1 0.1 0.1 0.1
5 1.5 0.1 0.012 0.01 1.1 0.1 1.845 1.7925
6 0.9 0.8 0.683 0.684 0.9 0.6399 0.9538 0.9497
7 0.6 2.1 1.679 1.677 0.4 2.0424 0.5993 0.51
8 3.4 2.6 2.664 2.662 3.4 3.4 3.3921 3.3969

Best result
(kips)

486.29 562.93 545.22 545.16 493.8 485.33 485.54 484.43

Mean of results
(kips)

N/A N/A N/A N/A N/A N/A 487. 90 485.04

Worst result
(kips)

N/A N/A N/A N/A N/A 534.84 489.37 486.364

SD N/A N/A N/A N/A N/A N/A 1.732174 0.60718

Table 6 shows the chronic solution of this example
and, also, results of the CSS and HCSSPSO are in-
cluded. From this table, it can be seen that HCSSPSO
has a better solution for this example. It is also
obvious that the CSS has better results compared to
other methods except HCSSPSO, and by the use of the
HCSSPSO, a better solution than CSS is obtained. A
smaller standard deviation indicates that the obtained

weights from di�erent runs are nearer than those of a
higher standard deviation and this can be regarded as
an additional capability of the algorithm. As shown
in Table 6, the HCSSPSO has a smaller standard
deviation compared to the CSS results. Thus, it can be
stated that the HCSSPSO is more reliable and, in a few
runs, we can be sure that a nearly optimum weight is
obtained. The HCSSPSO and CSS progression curves
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Figure 5. Convergence history of the 25-bar space truss.

have been shown in Figure 5. From this �gure, it can
be observed that the convergence rate of the HCSSPSO
is higher than that of CSS and PSO.

5.4. 120-bar dome space truss
The design of a 120-bar dome truss, shown in Figure 5,
is considered the last example to compare the practical
capability of the HCSSPSO algorithm. This dome
is utilized in literature to �nd a size design using
metaheuristic algorithms. The modulus of elasticity
is 30,450 ksi (210,000 MPa), and the material density
is 0.288 lb/in3 (7971.810 kg/m3). The yield stress of
steel is taken as 58.0 ksi (400 MPa). The dome is
considered to be subjected to vertical loading at all the
unsupported joints. These loads are taken as �13:49
kips (�60 kN) at node 1, �6:744 kips (�30 kN) at
nodes 2 through 14, and �2:248 kips (�10 kN) at the
remaining nodes. The minimum cross sectional area
of all members is 0.775 in2 (2 cm2) and the maxi-
mum cross-sectional area is taken as 20.0 in2 (129.03
cm2). The stress constraints of the structural members
are calculated as per AISC (1989) speci�cations, as
illustrated in Eqs. (34) and (35). Also, displacement
limitations of � 0.1969 in (� 5 mm) are imposed on
all nodes in x; y and z directions. The 120-bar truss
members are categorized into 7 groups, as shown in
Figure 6.(

�+
i = 0:6Fy for�i � 0
��i for�i < 0

(35)

where, ��i is calculated according to the slenderness
ratio using:

��i =

8<:
h�

1� �2
i

2C2
c

�
Fy
i
=
�

5
3 + 3�i

8Cc� �3
i

8C3
c

�
for�i<Cc

12�2E
23�2

i
for�i�Cc (36)

where, E is the modulus of elasticity; Fy is the
yield strength of steel; Cc is the slenderness ratio
which divides the elastic and inelastic buckling regions,�
Cc =

p
2�2E=Fy

�
; and �i is the slenderness ratio.

Figure 6. Geometry and element grouping of the 120-bar
dome space truss.

Figure 7. Convergence history of the 120-bar dome truss.

Figure 7 shows the convergence history of the
CSS, HCSSPSO, and PSO. As can be seen, the conver-
gence rate of the HCSSPSO is nearly the same as that
of the CSS and higher than PSO. Also, results of the
HCSSPSO are included in Table 7 for comparison. As
shown, similar to other examples, HCSSPSO performs



A. Kaveh and A. Nasrollahi/Scientia Iranica, Transactions A: Civil Engineering 21 (2014) 295{305 303

Table 7. Results of the optimal design of the 120-bar truss dome.

Element
group

Lee and Geem [31] Kaveh and
Talatahari [32]

Present work

HS PSO PSOPC HPSACO CSS HCSSPSO

1 3.295 3.147 3.235 3.311 3.0189462 3.019056

2 3.396 6.376 3.37 3.438 4.1942215 3.737462

3 3.874 5.957 4.116 4.147 3.2376359 3.241314

4 2.571 4.806 2.784 2.831 2.2364713 2.236411

5 1.15 0.775 0.777 0.775 1.454316 1.728342

6 3.331 13.798 3.343 3.474 2.554482 2.483966

7 2.784 2.452 2.454 2.551 2.3006106 2.300618
Best result

(lb)
19707.77 32432.9 19618.7 19491.3 18288.863 18268.6

Mean of results
(lb)

N/A N/A N/A N/A 18478.759 18377.6

Worst result
(lb)

N/A N/A N/A N/A 18773.834 18495.32

SD N/A N/A N/A N/A 192.67962 51.03623

much better, and the results obtained by the use of the
present algorithm are better, in terms of both standard
deviation and weight. These results also indicate the
improvement of the CSS when the advantages of the
PSO are added to it. However, as seen from Table 7,
the CSS results are better than other methods for the
design of this dome.

6. Mechanism of exploration and exploitation
in the present algorithm

In order to show how the particles follow the global best
and local best of the swarm, a 3-variable exponential
function (two independent variables and one dependent
variable) with a 2-dimensional search space is exam-
ined. This function is chosen because the search space
can be visualized in a plane coordinate and thus, one
can follow the search mechanism. The aforementioned
function is in the following form:

fcost (X) = � exp
��0:5

�
x2

1 + x2
2
��
; X 2 [�1; 1]2 :

(37)

This function is visible in Figure 8 in the assumed
search space and, from gradient based methods of
�nding the global minimum, it is evident that this
function has a minimum of �1 at the point (0,0).

The search phase of the algorithms is shown in
Figure 9. This �gure shows two distinguished phases
of search. The �rst phase takes place during the
iterations 1 to 30 and is a global search or exploration.
In this phase, the displacements of the particles are
considerable and particles move from one side to

Figure 8. Graph of exponential function.

Figure 9. Exploration and exploitation mechanism of the
HCSSPSO.
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another with a direction towards the global minimum.
The second phase starts from iteration 30, which is an
exploitation involving the movement of the particles in
a more contracted search space. This is a local search
phase, which causes the correction of the particles
positions and �nally �nds the correct point of the
minimum value. From this �gure, one can see that
both exploration and exploitation of the HCSSPSO are
performed accurately and properly and this mechanism
makes the HCSSPSO a robust algorithm. This is
obvious, since most of the particles are gathered at
point (0,0).

7. Concluding remarks

In this paper, a new hybrid algorithm called HC-
SSPSO is presented. This algorithm consists of the
hybridization of the CSS and PSO algorithms and can
be considered an enhanced CSS with some advantages
of the PSO. Since the de�nition of the velocity in
CSS is a�ected by all the CPs exerting forces on each
CP and is dependent, all the CPs have the same
inuence and the best CP does not, necessarily, have
the most e�ect. This problem may cause a reduction
in the search e�ciency of the algorithm. On the
other hand, the de�nition of the velocity in the PSO
is dependent on the position of the best particle and
the best position of the particle up to the current
iteration. If the de�nition of velocity in the PSO
is used in the CSS, it can work better. Another
enhancement of the CSS, based on the PSO concept, is
using a dynamic varying approach for the parameters,
ka and kv, of the CSS. This modi�cation has been
previously implemented in inertia weight de�nition in
the PSO, resulting in a higher convergence rate. These
modi�cations are also added in the CSS. To prove
positive modi�cation of the HCSSPSO compared to
CSS, four numerical examples extensively proposed by
researchers are considered. Results illustrate the higher
capability of the HCSSPSO compared to other methods
of optimization and also CSS. Thus, it can be concluded
that these improvements promote the performance of
the CSS, and HCSSPSO can successfully be utilized in
engineering design optimization problems.
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