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Abstract. A great number of studies on the vibration of plates subjected to moving loads
are available, which are gained by moving force and moving mass modeling frameworks.
As a result, evaluating the reliability of the approximate simulation of a moving oscillator
problem through moving force/mass would be of interest to engineering applications.
Therefore, in this article, transverse vibration of a thin rectangular plate under a traveling
mass-spring-damper system is revealed using the eigenfunction expansion method. Both
moving force and moving mass modeling approaches are compared with the moving
oscillator and various plate �xity cases, and load trajectories are involved to present
benchmark solutions. The spring sti�ness range, in which the plate response agrees closely
with the corresponding moving force/mass analysis, is recommended. The results elucidate
that the moving mass can be considerably unrealistic in predicting the contact force of
an undamped oscillator. Moreover, errors in the orbiting force/mass simpli�cation of
the orbiting oscillator in predicting the resonant conditions of the plate vibration are not
negligible.
c
 2014 Sharif University of Technology. All rights reserved.

1. Introduction

The dynamic behavior of structures due to moving
loads have been evaluated in several branches of
engineering and technology, and the transportation
industry is one of the most well-known instances.
The magnitude of traveling train and vehicle dynamic
loads are coupled with railway, highway and bridge
deformation, because of the inertial interaction of the
load and the substructure. The in
uences of aircraft
on airport pavements or on the decks of carrier ships
are other examples of moving loads. Moving load
consideration is also of importance for a mechanical
engineer scrutinizing high speed precision machinery,
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computer disk memory and wood saws. Based on
the situation, in practice, several types of continuum
model excited by the traveling loads can be simulated.
These include cables [1,2], beams [3-6], plates and
half-space [7], where voluminous literature is currently
available devoted to the dynamics of beams acted upon
by moving loads (see [8,9]).

Moving force simulation is very customary in
approximating the dynamics of structures in
uenced
by traveling inertial loads with 
exible suspension
systems. A moving force refers to a traveling constant
force a�ecting a continuum, disregarding the inertia of
the agent applying the load. In moving mass modeling,
the inertia interaction of the load and supporting
structure comes into play. Using the moving oscillator
formulation yields more realistic results by accounting
for the e�ects of the suspension system. This paper
focuses on the 2-D distributed systems undergoing
traveling loads, and related published work includes
the following.
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Cifuentes and Lalapet [10] determined the dy-
namic response of a rectangular thin plate undergo-
ing an orbiting load using the FEM (�nite element
method), employing an adaptive mesh. Esen [11]
developed a new �nite element for vibration of rectan-
gular plates traversed by a moving mass. Shadnam et
al. [12] coped with the vibration of a simply supported
rectangular plate due to a moving mass, utilizing
the eigenfunction expansion method. The e�ect of
moving mass convective acceleration terms, as well as
the weight and velocity of the moving lumped body,
has been inspected by Nikkhoo and Rofooei [13] in
a comprehensive parametric study. A classical closed
looped control algorithm has been proposed by Rofooei
and Nikkhoo [14] to suppress the vibration of a simply
supported rectangular plate under a moving mass,
adopting a number of bounded active piezoelectric
patches. They investigated the rectilinear and circular
trajectories of the moving load in detail. Wu [15]
handled the dynamics of a rectangular plate under a
series of orbiting forces using FEM to investigate the
e�ect of rotating speed, radius of the circular path
and the number of loads. Wu [16] also developed a
technique based on scale beam and scaling law, dealing
with the vibration of a rectangular plate subjected to
moving line loads (via a moving force approach). In
another work, he analyzed the vibration of an inclined

at plate under a moving mass by FEM [17]. Sound
radiation from the vibration of orthotropic plates under
moving loads has been explored by Au and Wang [18],
and the e�ect of light and heavy moving loads have
been discussed. A technique based on FEM with
adaptive mesh, as well as the perturbation method, is
proposed by de Faria and Oguamanam [19], tackling
the dynamics of Mindlin plates under traversing loads.
Gbadeyan and Oni [20] devoted a study to the dynamic
behavior of beams and plates by modi�ed generalized
�nite integral transforms and the modi�ed Struble
method. Takabatake [21] evaluated the vibration of
a rectangular plate with stepped thickness acted upon
by a moving load. Dynamic response of an initially
stressed rectangular plate under a moving mass has
been dealt with by Eftekhari and Jafari [22] via the
Ritz, Di�erential Quadrature and Integral Quadra-
ture methods. Vaseghi Amiri et al. [23] studied the
transverse vibration of a rectangular shear deformable
plate under moving force and moving mass. They
compared the FSDT (�rst order shear deformation
plate theory) with the CPT (classical plate theory)
widely. By employing the series expansion of mode
functions and applying Banach's �xed point theorem,
Shadnam et al. [24] represented nonlinear thin plate
vibration caused by a moving mass. A semi-analytical
solution, as well as an adaptive �nite element method,
was introduced by Ghafoori et al. [25] to compute the
dynamic response of a simply supported rectangular

plate to a moving sprung mass. Mohebpour et al. [26]
presented a numerical study of the vibration of a shear
deformable laminated composite plate loaded by a
moving oscillator.

Moving force/mass results are usually accepted to
be equivalent to a moving oscillator having a soft/rigid
spring. However, so far, no clear measure seems to
be given to categorize the softness/rigidness of the
suspension system for a speci�c problem. Moreover,
the resonance of a plate vibration due to an orbiting
oscillator has also not been accounted for yet. Thus, in
this article, it is proposed to give an initial estimate
for a soft or sti� spring. The plate resonant state,
due to an orbiting oscillator, is also discussed. The
moving oscillator trajectory and the �xity condition
of the plate are not con�ned to a speci�c case in
the given numerical examples. Moreover, the contact
force between the moving oscillator and the plate is
compared with that revealed by the moving mass. The
presented solution in this paper is considerably time-
saving in comparison with the modal analysis of the
moving mass. It also provided more realistic results,
which makes the introduced technique more quali�ed
to perform parametric studies. The methodology can
also be used in future studies as a fast and robust
model for detecting possible damage to the structure
via Bayesian �lters, e.g. the extended Kalman �lter,
the sigma-point Kalman �lter, the particle �lter and
the extended Kalman-particle �lter [27-29].

2. Problem de�nition and formulations

A thin rectangular plate acted upon by a moving
mass-spring-damper system traveling along an ar-
bitrary trajectory is considered (Figure 1). The
trajectory of the moving oscillator is given by the
parametric coordinates; (X(t); Y (t)):M; c and k, are
the mass, damping and sti�ness of the oscillator,
respectively. �v(t) is the distance between the mass
and the plate mid-plane and W (X(t); Y (t); t) rep-
resents the plate deformation beneath the oscillator
(Figure 2).

The constitutive equation of the plate forced

Figure 1. Moving oscillator traversing the plate with
(X(t); Y (t)) trajectory.
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Figure 2. The position of the mass with respect to the
plate mid-plane.

vibration can be written as:8>>><>>>:
Dr4W (x; y; t) + �h

@2W (x; y; t)
@t2

= P�(x�X(t))�(y � Y (t));

D =
Eh2

12(1� v3)
; (1)

in which, E;D; �; h; t and � are Young's modulus, plate

exural rigidity, mass per unit of volume, thickness of
plate, time, and Dirac delta function, correspondingly.
The moving oscillator exerts the transverse dynamic
force, P , on the plate surface. Regarding the function
of the damper and the spring, as well as the inertia of
the mass, P should satisfy the dynamic equilibrium.
Thus, one can write the equilibrium constraints for the
moving mass-spring-damper system as:(

M d2

dt2 (�v(t) +W (X;Y; t)) + P +Mg = 0;
P = c ddt �v(t) + k(�v(t)� �v0);

(2)

where �v0 and g are the initial length of the spring and
gravitational acceleration, respectively.

The equation of plate free vibration is:

Dr4wi(x; y) = �h!2
iwi(x; y); (3)

where wi and !i are mode shape and frequency of
plate free vibration, respectively. Since the di�erential
operator of Eq. (3) is self-adjoint, the eigenfunction
expansion of W (x; y; t) can be employed:

W (x; y; t) =
1X
i=1

ai(t)wi(x; y): (4)

Finding the unknown time dependent coe�cients,
ai(t), leads to the determination of the plate dynamic
response. For normalized mode shapes, one can write:Z
Aplate

Z
�hwi(x; y)wj(x; y)dA = �ij =

(
0; i 6= j
1; i = j:(5)

Let us de�ne the inner product of:

hwi(x; y); wj(x; y)i =
Z

Aplate

Z
wi(x; y)wj(x; y)dA:

(6)

Introducing Eq. (4) into Eqs. (1) and (2), yields:

1X
i=1

�
ai(t)Dr4wi(x; y) + �hwi(x; y)

d2

dt2
ai(t)

�
= P�(x�X(t))�(y � Y (t)); (7-1)

M
�
d2

dt2
�v(t) +

1X
i=1

d2

dt2
(ai(t)wi(X;Y ))

�
+ P +Mg = 0: (7-2)

By applying an inner product of wj(x; y) on both
sides of Eq. (7-1) and performing some simpli�cations
regarding Eq. (3), one can eliminate the space in Eq. (7-
1), arriving at:�

!2
jaj(t) +

d2

dt2
aj(t)

�
= Pwj(X;Y ): (8)

The second order derivative of ai(t)wi(W;Y ), with
respect to time, in Eq. (7-2), can be expanded as:

d2

dt2
(ai(t)wi(X;Y )) = wi(X;Y )

d2

dt2
ai(t)

+ 2
��

@wi(x; y)
@x

�
dX
dt

+
�
@wi(x; y)

@y

�
dY
dt

�
x=X
y=Y

d
dt
ai(t) +

��
@2wi(x; y)

@x2

��
dX
dt

�2

+
�
@2wi(x; y)

@y2

��
dY
dt

�2

+ 2
�
@2wi(x; y)
@x@y

��
dX
dt

��
dY
dt

�
+
�
@wi(x; y)

@x

��
d2X
dt2

�
+
�
@wi(x; y)

@y

��
d2Y
@t2

��
x=X
y=Y

ai(t):
(9)

The solution can be approximated by selecting a �nite
number of involved mode shapes of free vibration, n,
which can be taken large enough, based on the demand
for precision.

The matrix version of Eqs. (7-2) and (8) is:

M(t)
d2

dt2
a(t) + C(t)

d
dt

a(t) + K(t)a(t) = F(t); (10)
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in which:

a(t) =
�
a1
a2

�
(n+1)�1

; (11)

M(t) =
�
M11 M12
M21 M22

�
(n+1)�(n+1)

; (12)

C(t) =
�
C11 C12
C21 C22

�
(n+1)�(n+1)

; (13)

K(t) =
�
K11 K12
K21 K22

�
(n+1)�(n+1)

; (14)

F(t) =
�
F1
F2

�
(n+1)�1

; (15)

where the sub-matrixes in Eqs. (11)-(15) are:8><>:a1 = [ai(t)]n�1

a2 = [v(t)]1�1

v(t) = �v(t)� �v0

(16)

8>>><>>>:
M11 = [�ij ]n�n
M12 = [0]n�1

M21 = [Mwj(X;Y )]1�n
M22 = [M ]1�1

(17)

8>>>>>>>>>><>>>>>>>>>>:

C11 = [0]n�n
C12 = [�cwi(X;Y )]n�1

C21 =
�
2M
��

@wj(x; y)
@x

�
dX
dt

+
�
@wj(x; y)

@y

�
dY
dt

�
x=X
y=Y

�
1�n

C22 = [c]1�1

(18)

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

K11 = [!2
i �ij ]n�n

K12 = [�kwi(X;Y )]n�1

K21 =

"
M
��

@2wj(x; y)
@x2

��
dX
dt

�2

+
�
@2wj(x; y)

@x2

��
dY
dt

�2

+ 2
�
@2wj(x; y)
@x@y

��
dX
dt

��
dX
dt

�
+
�
@wj(x; y)

@x

��
d2X
dt2

�
+
�
@wj(x; y)

@y

��
d2Y
dt2

��
x=X
y=Y

#
1�n

K22 = [k]1�1

(19)

(
F1 = [0]n�1

F2 = [�Mg]1�1
(20)

The second order ODEs in Eq. (10) can be replaced by:

d
dt

Q(t) = A(t)Q(t) + G(t);

Q(t0) = Q0; (21)

where:

A(t)=
�
O(n+1)�(n+1) I(n+1)�(n+1)�M�1K �M�1C

�
2(n+1)�2(n+1)

;
(22)

Q(t) =
�

a(t)
d
dta(t)

�
2(n+1)�1

; (23)

G(t) =
�

On�1
M�1F

�
2(n+1)�1

: (24)

There are several methods to cope with Eq. (21). In
this paper, the solution is achieved by the matrixexpo-
nential [30].

3. Numerical examples

Six distinct con�gurations are analyzed in Sections 3.1
and 3.2 according to Figure 3, which are referred to
as C-a, C-b, C-c, C-d, C-e and C-f (The trajectories
are given in Table 1 and the related eigenfunctions are
given in Appendix A.), having set the values below for
the parameters:

v = 0:30; g = 9:81 m/s2; � = 2400 kg/m2;

a = b = 10 m; h = 0:3 m; E = 20 GPa:

In Section 3.3, the validity of the results is evaluated
by �nite element method. Additionally, an existing
railway bridge is assessed in Section 3.4.

T1 = 2�=!1 and u0 = a=T1 are introduced to
present normalized time and velocity, in which !1 de-
notes the �rst natural frequency of the plate. Moreover,
Wc is the deformation of the plate center point and
Ws stands for the plate center point static deformation
when the oscillator is located at the center of the
plate. (The static deformation caused by P applied
at (x0; y0) can be computed by the fast converging
series, W (x; y) = P

Pn
i=1[wi(x; y)wi(x0; y0)=!2

i ]). The
parameters, Mp; � and !, are de�ned as:

Mp = �hab; � = c=2m!; ! =
p
k=M:

By default, at t = 0 the plate and the oscillator are at
rest, i.e @W

@t = 0; dvdt = 0 and the initial deformation
of the plate, W (x; y; 0), corresponds to that statically
caused due to the oscillator's weight at its initial
position, and the initial sag of the spring is assumed
to be �Mg

k .
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Table 1. Parametric coordinates of trajectories in Figure 3.

Con�guration X(t) Y (t)

C-a ut 0.5 b

C-b 0.25 a cos(
t) + :5a 0.25 b sin(
t) + :5b

C-c ut 0.4 b sin
�

1:5�X(t)
a

�
+ 0:5b

C-d 0:5a ut

C-e a� ut b
�
X(t)
a

�
C-f 0.3a cos

� 2�
b Y (t)

�
+ 0:5a ut

Figure 3. Plate boundary conditions and moving
oscillator trajectories: (a) C-a; (b) C-b; (c) C-c; (d) C-d;
(e) C-e; and (f) C-f.

The moving mass and moving force results are
provided by the eigenfunction expansion method [13],
where the employed methods of the state-space solution
for a moving force/mass and moving oscillator are the
same.

3.1. Modal contribution and computational
time cost

The contribution of the �rst 5, 25 and 50 natural mode
shapes are depicted in Figure 4. The results support
that employing 25 modes yields adequate precision
within the scale of the diagrams. The presented
method results in less time varying coe�cients in the

Figure 4. Contour plot of W (x; y; t)=Wc when
X(t) = 0:6a (C-a). M = 0:1Mp; ! = 0:5!1; � = 0:2 and
u = 1:0u0.

state-space equations, in comparison with the modal
analysis of the moving mass, as formulated in [13,23].
Consequently, the computational e�ort of the current
technique requires less CPU usage and runs noticeably
faster (see Figure 5). Thus, the proposed technique can
be regarded as a suitable choice for parametric studies.

3.2. Comparing moving oscillator, moving
force and moving mass

In Figure 6, the plate center point deformation versus
the eigenfrequency of the oscillator is depicted consider-
ing an undamped traveling oscillator. As evident in the
diagram, the time history of the plate deformation does
not exhibit an appreciable sensitivity to the variation
of spring sti�ness for ! values greater than 10!1 and
less than 0:1!1. In Figure 7, the dynamic response of
the plate, regarding ! = 0:05!1; 1:0!1, and 20!1 � ! is
compared to the moving mass and moving force related
analyses. It can be concluded that for ! � 0:05!1 and
20!1 � !, moving force and moving mass modeling
frameworks yield a plate response very close to that re-
vealed by the moving oscillator, correspondingly. Thus,
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Figure 5. Comparison of state-space computational time
cost of current method and moving mass modal analysis
(C-a).

Figure 6. Time history of plate center point response
versus oscillator eigenfrequency (C-a).
M = 1:0Mp; � = 0:0 and u = 1:0u0.

Figure 7. Time history of plate center point response
versus oscillator eigenfrequency (C-a).
M = 1:0Mp; � = 0:0 and u = 1:0u0.

the suspension systems with ! � 0:05!1 and 20!1 �
! can be categorized as soft and sti�, respectively,
considering M �MP .

Assessment of the contact force is necessary in
the design and durability evaluation of bridges and
highway pavements. In most research into the vibra-
tion of plates under the action of moving loads, plate
deformation has been taken as a dynamic response
representation, and the contact force of the moving
body and the supporting media has been ignored.

In Figure 8, the contact force of an oscillator with
sti� suspension is evaluated for the general case of
a non-zero initial condition. To this end, the plate
is analyzed under the action of 4 moving loads with
the same characteristics and velocities. The distance
between the loads is and the initial condition of the

Figure 8. Time history of contact force (C-a).
M = 0:5Mp; � = 0:05; u = 0:4u0; ! = 20!1: (a) 1st load;
(b) 2nd load; (c) 3rd load; and (d) 4th load.
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plate (Q(0)) at the moment of the next load entrance
is regarded the same as when the last load leaves the
plate surface (Q(a=u0)). For the undamped oscillator, a
high frequency component is realizable, which oscillates
in the vicinity of the moving mass contact force.
This high frequency component can signi�cantly grow
when the excitation continues by the next entering
load. Therefore, the de�ciency of the moving mass
in modeling an undamped suspension contact force
becomes clear. However, the moving mass output
for contact force corresponds closely to the traveling
oscillator analysis for a damped oscillator with a large
enough damping coe�cient.

3.2.1. The orbiting load and resonance occurrence
Investigating the plate dynamic performance under an
orbiting load is of interest when dealing with high speed
precision machining processes (see [10,12-14,23,25]).
Some researchers have inspected the resonant stats of
plate vibration due to the orbiting mass and force, such
as those presented in [5,6] and [15]. In Figure 9, the
plate resonance is sought for di�erent eigenfrequencies
of the orbiting oscillator. The results indicate that
for 0:2!1 � ! � 1:0!1, the variation of the oscil-
lator eigenfrequency can considerably alter the plate
dynamic performance. Therefore, in this case, the
de�ciency of moving force/mass modeling becomes
obvious. Another point worth mentioning is that for
an orbiting oscillator, resonance does not take place
between the resonant orbiting frequencies computed by
the orbiting force and orbiting mass.

3.2.2. Miscellaneous benchmark solutions
Di�erent plate boundary conditions (SFSF, SCSF,
SSSF and SCSS) and moving oscillator trajectories are

Figure 9. Maximum plate center point deformation in an
exciting duration of 50T1 (C-b). M = 0:4Mp and � = 0:0.

Figure 10. Plate deformation beneath the moving load
(C-c). M = 0:4Mp; � = 0:01 and u = 0:8u0.

Figure 11. Plate deformation beneath the moving load
(C-d). M = 0:5Mp; � = 0:15 and u = 0:5u0.

involved in Figures 10-13. As evident, the sensitivity of
the plate response to the variation of spring sti�ness for
0:2!1 � ! � 2!1, cannot be ignored. Hence, in general,
the approximate modeling of the moving oscillator
when 0:2!1 � ! � 0:1!1, may yield unrealistic
outputs.

3.3. Veri�cation
A plate with v = 0:25; � = 2500 kg/m3, a = 100
m, b = 10 m, E = 31 GPa and h = 0:3 m is
considered. The plate is simply supported at edges
parallel to the y axis and free along edges parallel to
the x axis. A moving load is traveling on the plate
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Figure 12. Plate deformation beneath the moving load
(C-e). M = 0:6Mp; � = 1:2 and u = 0:2u0.

Figure 13. Plate deformation beneath the moving load
(C-f). M = 0:5Mp; � = 0:6 and u = 0:4u0.

lengthwise along a position vector of (ut; 0:5b). The
dynamic response of the plate, due to the traveling
oscillator, is compared with that obtained by de Fari
and Oguamanam [19] by utilizing the FEM and moving
mass approach in Figure 14. The very close agreement
of outputs con�rms that a moving mass simulation
corresponds to a traveling oscillator, having 20!1 �
!.

3.4. Simulation of an existing bridge
In this section, the vibration of the vinival concrete
railway bridge is simulated by making recourse to the
presented semi-analytical approach. Vinival is a single

Figure 14. Plate de
ection under the traveling load.
M = 0:01359Mp; � = 0 and u = 4:1734u0.

Figure 15. Plate de
ection under the train wheel. u = u0.

Table 2. Parameters of Vinival Bridge.

a (m) 9.7
b (m) 4.34

D (N.m) 9.4779 �108

�h (kg/m2) 1483

span and simply supported bridge constructed as part
of the Spanish railway network [31]. The mechanical
properties of the bridge are given in Table 2. An Italian
ETR500Y high speed train is traversing the bridge
with the same trajectory described in Section 3.3. The
mass, sti�ness and damping of the train SDF equivalent
model are set as M = 27988 kg, k = 618368 kN/m and
c = 15250 kNs/m, respectively. As shown in Figure 15,
underestimation of plate response by moving force is
noticeable, while the moving mass simulation shows
excellent agreement with that of the moving oscillator
in this speci�c case.
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4. Conclusions

Transverse vibration of a thin rectangular plate excited
by a moving oscillator has been tackled using a semi
analytical method. The introduced method runs no-
ticeably faster with respect to the modal analysis of
the moving mass. SSSS, SFSF, SSSF, SCSF and SCSS
boundary conditions are involved, as well as a variety
of trajectories, to present benchmark solutions. The
precision of the moving force and mass simulations are
assessed with the moving oscillator exact formulation.
For an undamped moving oscillator with !1 � 0:05!1
and 20!1 � !, and , the moving force and moving mass
simulations can predict the plate response very close to
the real results, respectively. Furthermore, simplifying
an orbiting oscillator by moving force/mass to achieve
resonant frequencies can cause considerable errors.
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Appendix A

Eigensolutions of a rectangular plate free vibration
related to the boundary conditions in Figure 3 are
given, herein, to ease reproduction of the presented
solution. One can also �nd an in depth survey on
the roots of eigenequations, a description of shape
functions and more corresponding research work in [32].

Constraints for the classical boundary conditions
of an edge parallel to the x axis (y = 0 and y = b) are
given in the following:

S (Simply supported edge):

w =
@2w
@y2 + v

@2w
@x2 = 0: (A.1)

C (Clamped edge):

w =
@w
@y

= 0: (A.2)

F (Free edge)

@2w
@y2 + v

@2w
@x2 =

@3w
@y3 + (2� v)

@3w
@y@x2 = 0: (A.3)

The general format of plate eigenfunctions, with regard
to the equation of free vibration, Eq. (3), can be stated
according to the Voigt solution [32]:8>>><>>>:
w(x; y)=(A sin

p
�2��2y+B cos

p
�2��2y

+ C sinh
p
�2 � �2y

+D cosh
p
�2 � �2y) sin�x;

if �2 > �2:
(A.4-1)

8>>><>>>:
w(x; y)=(A sinh

p
�2��2y+B cosh

p
�2��2y

+ C sinh
p
�2 � �2y

+D cosh
p
�2 � �2y) sin�x;

if �2 < �2;
(A.4-2)

where k4 = �!2=D, and � = m�=�;m = 1; 2:::; and
A, B, C and D are integration constants. The shape
functions in Eqs. (A.4) satisfy the simply supported
�xity constraints at edges parallel to the y axis, i.e
w = @2w

@x2 + v @
2w
@y2 = 0 at x = 0 and x = b.

Introducing Eqs. (A.4-1) and (A.4-2) into the four
remaining boundary conditions of edges parallel to the
x axis, and assuming a nontrivial solution, results in
the determination of eigenequations:
SFSF (corresponding to (C-c) in Figure 4):8>><>>:

2�1�2[�2 �m4�4(1�v)2]2(cos�1 cosh�2�1)
+ f�2

1[�+m2�2(1� v)]4 � �2
2[�

�m2�2(1�v)]4g sin�1 sinh�2 =0;
if �2 > �2:

(A.5-1)

8>><>>:
2�1�2[�2 �m4�4(1�v)2]2(cos �1 cosh�2�1)

+ f�2
1 [�+m2�2(1� v)]4 � �2

2 [�
�m2�2(1�v)]4g sinh �1 sinh�2 =0;

if �2 < �2:
(A.5-2)

SSSF (corresponding to (C-d) in Figure 4):8<:�1[�+m2�2(1� v)]2 tanh�2 � �2[�
�m2�2(1� v)]2 tan�1 = 0;

if �2 > �2:
(A.6-1)

8<:�1[�+m2�2(1� v)]2 tanh�2 � �2[�
�m2�2(1� v)]2 tanh�1 = 0;

if �2 < �2:
(A.6-2)
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SCSF (corresponding to (C-e) in Figure 4):8>>>>>><>>>>>>:
�1�2[�2 �m4�4(1� v)2] + �1�2[�2

+m4�4(1� v)2]]� cos�1 cosh�2

+m2�2 (
b
a

)2[�2(1� 2v)�m4�4(1
� v)2] sin�1 sinh�2 = 0;

if �2 > �2:

(A.7-1)

8>>>>>><>>>>>>:
�1�2[�2 �m4�4(1� v)2]�1�2[�2

+m4�4(1� v)2] cosh�1 cosh�2

+m2�2 (
b
a

)2[�2(1� 2v)�m4�4(1
� v)2] sinh�1 sinh �2 = 0;

if �2 < �2:

(A.7-2)

SCSS (corresponding to (C-d) in Figure 4):(
�1 tanh�2 � �2 tanh�1 = 0;
if �2 > �2:

(A.8-1)

(
�1 tanh�2 � �2 tanh�1 = 0;
if �2 < �2:

(A.8-2)

where, in the above equations:8>>>>>><>>>>>>:
� = !a2

p
�=D;

�1 = b
a

p
��m2�2;

�2 = b
a

p
��m2�2;

�1 = b
a

p
m2�2 � �;

�2 = b
a

p
m2�2 � �:

For the SSSS plate �xity case (corresponding to (C-
a) and (C-b) in Figure 4), the eigenfunction and

the eigenfrequency equations get the simple forms of

w(x; y) = sin
�
m�x
a

�
sin
�
n�y
b

�
and ! =

�
m2

a2 +

n2

b2

�
�2
q

D
�h , respectively, in which m;n = 1; 2; � � � .
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