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Abstract. A damage plastic constitutive model for metals is proposed in this paper. An
anisotropic damage tensor and a damage surface are adopted to describe the degradation
of the mechanical properties of metals. The model is developed within the thermodynamic
framework and creates an anisotropic damage plastic model with the ability to describe
the plastic and damage behavior of iron based materials. According to the principle
of strain energy equivalence between the undamaged and damaged materials, the linear
elastic constitutive equations for the damaged material expressed a sti�ness tensor in the
damaged con�guration. The damaged material is modeled using the constitutive laws of
the undamaged material, in which the stresses in the undamaged con�guration are replaced
by the stresses in the damaged con�guration. To simulate the onset of plastic deformation
and damage, yield and damage surfaces are applied and, in accordance with the normality
rule, evolution laws for the damage variables are achieved to complete the proposed damage
plastic model. Implementation of the model in the form of a practical method, based on the
forward Euler integration scheme (modi�ed forward Euler integration with error control)
is discussed. Finally, the constitutive response is compared with some experimental results
and classical plasticity results for validating the capability of the proposed model. Good
agreement between the experimental results and the model is obtained.
c
 2014 Sharif University of Technology. All rights reserved.

1. Introduction

In recent decades, plasticity theories have been de-
veloped for materials such as metals and concrete.
Plasticity theories have evident advantages over elastic
approaches in the modeling hardening and softening
characteristics of materials. However, they do not
clearly incorporate the damage process due to microde-
fects (microcracks and microvoids), such as sti�ness
degradation.
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Although classical fracture mechanics models
were originally developed for demonstrating material
degradations, much e�ort is still being devoted towards
developing new fracture mechanics models. In spite
of some successful applications of fracture mechanics,
for practical applications, it is di�cult to de�ne the
location and geometry of the microcracks accurately
before they are formed.

Damage models were produced to create an al-
ternative approach towards modeling material degra-
dation based on the thermodynamics of an irreversible
process. In damage plasticity models, material nonlin-
earity may be associated with two di�erent material
mechanical processes: plasticity (dislocations along
crystal slip planes) and damage mechanics (microvoids,
microcracks). These two degradation phenomena are
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described by the theories of plasticity and continuum
damage mechanics. Therefore, a model that accounts
for both material deterioration and the dislocations
along slip planes is needed. This can be achieved by
using a plastic surface and a damage surface.

The concept of damage models was �rst proposed
by Kachanov [1] who considered the isotropic damage
model of a one dimensional (scalar) variable, de�ned
as the e�ective surface density of microdefects per unit
volume [2,3]. This phenomenological damage model
was introduced upon the assumption that microdefects
start from the very beginning of loading, with two
stages in the fracturing process. Firstly, the regular
development stage of microdefects and, secondly, the
accelerated stage of fracturing. Therefore, it notes
that \in the presence of an aggressive environment,
microdefecting grows, mostly, from the surface of the
body." Accordingly, they de�ne the scalar damage
variable (e�ective surface density of microdefects per
unit volume) as the ratio of damage surface area to
total surface area. This concept is established upon
considering the equivalence between the imaginary un-
damaged con�guration of a body and the real damaged
con�guration. Rabotnov [4] proposed the concept of
e�ective stress in continuum damage mechanics. The
scalar damage variable, �rst proposed by Kachanov, is
the simplest case of continuum damage models.

Many researchers used this scalar measure to
adequately solve many mechanics problems [4-6]. How-
ever, in actuality, it is shown that all materials have
anisotropic damage characteristics and, in the most
general case of anisotropy, the description of damage
needs to be embodied in an eight-order tensor, while
the principle of strain equivalence allows the use of
fourth-order tensors [7].

Careful consideration of isotropic models leads us
to the fact that these models have less strength in
comparison to anisotropic damage models. Moreover,
in cases of triaxial loading, the di�erences between
isotropic (scalar) models and anisotropic (tensorial)
models are much more noticeable. On the other hand,
for better characterization of the material damage
behavior, such as di�erent microcracks in diverse di-
rections, anisotropic damage should be characterized.
In general, a fourth order tensor should be used as a
damage state variable in order to capture the true e�ect
of microcracks [6]. Nevertheless, anisotropic damage is
complex. Its combination with plasticity and its appli-
cation to structural analysis are non-straightforward [8-
11] and, therefore, it has been avoided by many
authors.

In this work, a coupled anisotropic damage and
plasticity constitutive model that can be used to
predict metal behavior is formulated within the basic
framework of thermodynamics.

In this model, using the second law of thermody-

namics, the internal energy of material (current), which
is expressed through Helmholtz free energy, is de�ned.
Then, using Helmholtz free energy, useable variables
to show the plastic and damage growth of material
are introduced. Finally, in the framework of ther-
modynamics of irreversible processes, thermodynamic
conjugate forces are established via state equations
using state potential.

In this work, computational aspects concerning
numerical implementation and the algorithmic con-
sistent tangent modulus for the constitutive model
are presented. Therefore, two nonlinear problems are
considered, and the results obtained by the proposed
model are compared with corresponding experimental
results of specimens to validate and demonstrate the
capability of the proposed model.

2. Anisotropic damage

In classical plasticity theory, the growth and coales-
cence of microdefects in material due to an increase
in deformations were not considered. By using an
anisotropic damage model, it is attempted to regard the
growth and coalescence of microdefects, besides plastic
deformation, in the material. In this article, two con-
�gurations; undamaged and damaged, are considered.
The former are designated by a superimposed dash
and the latter are designated without a superimposed
dash. Throughout this work, superscript T indicates
the transpose of the tensor as de�ned by ATijkl = Aklij ,
superscript -1 indicates the inverse of the tensor as
de�ned by A�1

ijklAmnkl = �im�jn, and superscript �T
indicates the transpose of the inverse of the tensor (�ij
is Kronecker delta).

Cordebois and Sidoro� [12] proposed the stress
relationship between undamaged and damaged con�gu-
rations. That is, the damaged material is formulated by
using the constitutive laws of the undamaged material,
in which the Cauchy stress tensor in the damaged
con�guration (�) is replaced by the stress tensor in the
undamaged con�guration (��) [12-16]:

�ij = Mijkl�kl; (1)

where Mijkl is the fourth order damage e�ect tensor.
In order to create a symmetrical stress tensor in
the damaged con�guration, many di�erent expressions
for Mijkl have been proposed. In this work, the
following expression for Mijkl, proposed by Cordebois
and Sidoro� [12], is used:

Mijkl =
1
2

(�ilwkj + wil�kj) : (2)

In this relationship, �ij is Kronecker delta and wij is
de�ned as follows:

wij = (�ij � 'ij)�1 ; (3)
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where 'ij is the second order damage tensor. The
second order damage tensor is de�ned as follows [2,13-
14,17-20]:

'ij =
p
didj ; (4a)

di =
Adi
Ai

(no sum on i); (4b)

where di is the microdamage density vector, and
de�ned in Eq. (4b). Adi (i = 1; 2; 3) is the total area
of the defects and Ai is the total area of the surface,
whose unit normal is ni.

The explicit matrix representation for the fourth
order damage tensor (Mijkl) is mentioned in [19].

One can write the linear elastic constitutive
equations for the damaged material according to the
principle of elastic strain energy equivalence between
the undamaged and damaged material [12,18]:

1
2
�ij"eij =

1
2
�ij"eij : (5)

One of the main hypotheses of the small strain theory
of plasticity is decomposition of the total strain tensor,
"ij , into the sum of an elastic strain tensor (reversible
part), "eij , and a plastic strain tensor (irreversible part),
"pij . Therefore, the total strain tensor, "ij , in both
con�gurations are de�ned as follows:

"ij = "eij + "pij ; (6a)

"ij = "eij + "pij : (6b)

The relationships between stress and elastic strain
tensors in damaged and undamaged con�gurations are:

�ij = Eijkl"ekl; (7a)

�ij = Eijkl"ekl; (7b)

where Eijkl and Eijkl are, respectively, the sti�ness
tensors in damaged and undamaged con�gurations.

Substituting Eqs. (7a) and (7b) in Eq. (5) and
using Eq. (1) gives:

Eijkl = M�1
ijmnEmnpqM

�T
pqkl: (8)

Substituting Eqs. (7a) and (7b) in Eq. (1) and using
Eq. (8) leads to the elastic strain tensor relationship in
damaged and undamaged con�gurations.

"eij = M�Tijkl"ekl: (9)

3. Thermodynamic framework

To explain the elastic, plastic and damage behavior of
material, a thermodynamic framework can be used [21-
26]. In this work, the deformations in the material
are divided into elastic, plastic and damage parts. In
this division, elastic deformation is a reversible process
that does not result in an entropy increase in the
system, while plastic and damage deformations are
irreversible processes that lead to entropy production
in the system.

Clausius-Duhem inequality is the result of substi-
tuting the content of the second law of thermodynamics
in the notation of continuum mechanics; this inequality
means the production of entropy within a system in
an irreversible process [21], and can be expressed as
follows:

�ij _"ij � � _ � 0; (10)

in this equation,  is Helmholtz free energy, � is
material density, �ij is stress tensor and _"ij is the rate
of strain tensor.

In this work, the Helmholtz free energy function
is de�ned based on four variables:

1. Elastic strain tensor ("eij);
2. Equivalent plastic strain variables in damaged

con�guration ("ep), which is used to characterize
isotropic hardening accumulated plastic strain;

3. Second order damage tensor ('ij);
4. Equivalent damage variable ('eq) used to char-

acterize accumulated inelastic-damage strain, and
which represents the creation and dissemination of
microcracks in materials.

 =  
�
"eij ; "

ep; 'ij ; 'eq
�
: (11)

Chaboche [27] expressed the thermodynamic conjugate
forces of these variables as follows:

Yij = �� @ 
@'ij

; (12a)

K = �
@ 
@'eq

; (12b)

C = �
@ 
@"ep

: (12c)

If the mechanical 
ux vector is de�ned as J , and vector
X is considered to be thermodynamic conjugated forces
expressed as follows:

J = �
�

_"pij ; _'ij ;� _"ep;� _'eq
	T ; (13a)

X = f�ij ; Yij ; C;Kg : (13b)
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The production rate of entropy is expressed as [28,29]:

�ij _"ij � � _ = X:J � 0: (14)

With assuming the components of J vector, (Jk) are
de�ned, one to one, as a function of X vector (Xk),
and the existence of potential functions, FP and g, are
proved as follows [29,30]:

F p = F p
�
�ij ; C; _"pij ; _"ep

�
; (15)

g = g (Yij ;K; _'ij ; _'eq) : (16)

Now, components of J vector (Jk) are expressed as
follows [29,30]:

_"pij = _�p
@F p

@�ij
; (17a)

_'ij = _�d
@g
@Yij

; (17b)

_"ep = _�p
@F p

@C
; (17c)

_'eq = _�d
@g
@K

; (17d)

where _�p and _�d are obtained by plastic and damage
consistency.

4. Helmholtz free energy function

The Helmholtz free energy function is a part of the
internal energy of a system that can do work under a
constant temperature [21]. In this work, the Helmholtz
free energy function is divided into elastic, plastic and
damage parts. These three parts are expressed as
follows:

� e =
1
2
�ij"eij ; (18)

� p = Q
�
"ep +

1
Bc

e�Bc"ep
�
; (19)

� d('eq) =
1
2
Kd('eq)2: (20)

In these relationships, Q, Bc and Kd are material
constants that are obtained from a uniaxial test.

Using Eqs. (12a), (12b), (12c), and the Helmholtz
free energy function expressed in Eqs. (18), (19) and
(20), thermodynamic conjugate forces can be obtained
as follows:

Yrs = ��ij @Mijmn

@'rs
E�1
mnpqMpqkl�kl; (21)

C = �
@ 
@"ep

= Q
�

1� e�Bc"ep� ; (22)

K = �
@ 
@'eq

= Kd'eq; (23)

where Yrs, C and K are, respectively, the thermody-
namic conjugate forces of 'rs, "ep and 'eq.

5. Damage plastic model

To explain the behavior of iron based materials, such as
high strength steel and aluminum, in triaxial loading,
an appropriate constitutive model based on two yield
surfaces is applied. One of the yield surfaces shows the
plastic onset, and the other shows the damage onset of
material.

5.1. Plastic yield surface
In order to describe the hydrostatic stress dependency
of the plastic material, a yield surface based on I1 �
J2 � J3, taking into account isotropic nonlinear work
hardening, is used.

Burzynski [31,32] gave the �rst consistent energy-
based formulation of a yield surface, accounting for the
�rst invariant of the stress tensor, in 1928. Moreover,
Vadillo et al. [33] presented a numerical approach based
on the Burzynski yield condition, while Pecherski et
al. [34] gave the extension of the energy-based Burzyn-
ski yield condition accounting for the third invariant
of the stress deviator. The yield surface derived from
experimental results on aluminum and high strength
steels was proposed by Spitzig et al. [35,36] and Spitzig
and Richmond [37], and is expressed as follows:

a�I1 +
p

�J2 + b 3
p

�J3 = �C(�"ep): (24)

In this equation, �I1 = ��ii is the �rst invariant of the
stress tensor, �J2 = �Sij �Sij=2 is the second invariant
of the deviatoric stress tensor, �J3 = �Sij �Sjk �Skl=3 is
the third invariant of the deviatoric stress tensor, and
�Sij = ��ij � ��kk�ij=3 is the deviatoric stress tensor.
All variables are in undamaged con�guration. a is
a coe�cient relating the hydrostatic stress state, b
describes the deviation of the yield condition from the
von Mises circle in the deviatoric stress plane, �"ep =
tR

0
_�"epdt is equivalent plastic strain in the undamaged

con�guration, and �C is the hardening parameter, which
can be expressed as follows [16]:

�C(�"ep) =
C("ep)

1� 'eq : (25)

Experimental data from tests on steel and aluminum
alloys by Spitzig et al. [35,36] have shown that the ratio
of � = a= �C is constant, � = b= �C is assumed constant,
and the yield function is written in general form as:

f (��; �"ep) =
p

�J2�
1� ��I1 � � 3

p
�J3

� � �C(�"ep) = 0: (26)
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The rate of plastic strain tensor in strain space is nor-
mal to plastic potential function (FP ) that is de�ned
by Eq. (17a). This relationship in the undamaged
con�guration is expressed as follows:

_�"pij = _��p
@F p

@��ij
: (27)

In elasto-plastic deformed and damaged metals, irre-
versible volumetric strains are essentially caused by
material damage and volumetric plastic strains are
insigni�cant [35,36]. Thus, the non associated plastic
potential function is expressed as:

F p =
p

�J2: (28)

The derivative of plastic potential function (F p), with
respect to ��ij , leads to:

@F p

@��ij
=

�Sij
2
p

�J2
: (29)

Since material in a plastic state should always be on
a plastic yield surface ( _f = 0), plastic consistency is
expressed as follows [38]:

f � 0; _��p � 0; _��pf = 0; _��p _f = 0: (30)

The time derivative of plastic yield surface function (f)
is:

_f =
@f
@��ij

_��ij +
@f
@�"ep

_�"ep = 0; (31)

where:

Eqs. (32) and (33) are shown in Box I.

Evolution of the isotropic hardening function
( @ �C
@�"ep ) is de�ned by the following exponential law [16]:

@ �C
@�"ep

= Bc
�
Q� �C

�
: (34)

If e�ective stress in the undamaged con�guration is
assumed to be equal to the yield stress of material in
uniaxial tests, this stress in the undamaged con�gura-
tion is de�ned as:

��e =
p

3 �J2

1� ��I1 � � 3
p

�J3 +
�
�+ �

3p2
3

�p
3 �J2

: (35)

Assuming that the rate of e�ective plastic work per
unit volume and rate of plastic work per unit volume
are equal in the undamaged con�guration, gives:

dwp = ��e _�"ep = ��ij _�"pij : (36)

By substituting Eqs. (27) and (35) in Eq. (36), the
rate of equivalent plastic strain in the undamaged
con�guration is de�ned as follows:

_�"ep =
1� ��I1 � � 3

p
�J3 +

�
�+ �

3p2
3

�p
3 �J2p

3 �J2

_��p��ij
@F p

@��ij
; (37a)

_��p =
1
�h
@f
@��ij

�Eijkl _�"kl: (37b)

The elastoplastic tangent operator in the undamaged
con�guration that is not principal symmetric, due to
the assumption of a non associated plastic 
ow rule, it
can be expressed as follows:

_��ij = �Dijkl _�"kl; (38a)

�Dijkl = �Eijkl � 1
�h

�Eijrs
@F p

@��rs
@f
@��mn

�Emnkl; (38b)

where �h is equal to:

�h =
@f
@��ij

�Eijkl
@F p

@��kl
+
@f
@ �C

@ �C
@�"ep

1���I1�� 3
p

�J3+
�
�+ beta

3p2
3

�p
3 �J2p

3 �J2
��ij

@F p

@��ij
:
(39)

@f
@��ij

=
�Sij

�
1���I1�� 3

p
�J3

�
2
p

�J2
+
�
��ij + �

3 �J2=3
3

� �Sik �Skj � 2
3

�J2�ij
��p �J2�

1� ��I1 � � 3
p

�J3

�2 ; (32)

@f
@�"ep

=
@f
@ �C

@ �C
@�"ep

= �Bc �Q� �C
�
: (33)

Box I
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5.2. Damage surface
To establish the onset and growth of damage in iron
based materials, the damage surface proposed by Chow
and Wang [18] can be used:

g =
r

1
2
YijLijklYkl � (K0 +K) : (40)

In this equation, g is the damage surface, Yij is the
thermodynamic conjugate force of 'ij , Lijkl = (�ik�jl+
�il�jk)=2 is a symmetric fourth order tensor [38-41],
K0 is the material constant that is described as the
initial damage, and K is the thermodynamic conjugate
force of 'eq. Writing the consistency condition for the
damage surface ( _g = 0) gives [16]:

_g =
@g

@Ymn
_Ymn +

@g
@K

@K
@'eq

_'eq = 0; (41)

where:

@g
@Yij

=
LijklYkl

2
q

1
2YmnLmnpqYpq

; (42)

@g
@K

= �1; (43)

@K
@'eq

= Kd: (44)

The time derivation of Yij gives:

_Yij =
@Yij
@�kl

_�kl +
@Yij
@'kl

_'kl: (45)

And the rate of equivalent damage is de�ned as [9,16]:

_'eq =
p

_'ij _'ij : (46)

Substituting Eq. (17b) in Eq. (46) gives:

_'eq =
��� _�d���s @g

@Yij
@g
@Yij

: (47)

Substituting Eqs. (47) and (45) in Eq. (41) leads to
an incremental relationship between the second order
damage tensor and the stress tensor [16]:

_'ij = B�1
ijklAklmn _�mn; (48)

where:

Bijkl = �ki�lj �
@g

@Ymn
@Ymn
@'kl

@g
@Yij

�� @K
@'eq

@g
@K

; (49)

and:

Aklmn =
@g
@Yij

@Yij
@�mn

@g
@Ykl

�� @K
@'eq

@g
@K

; (50)

� =
r
LmnklYklLmnpqYpq

2YrsLrstuYtu
: (51)

The rate of stress tensor in the damage con�guration
obtained by the time derivative of Eq. (1) is:

_��ij =
@Mijkl

@'mn
_'mn +Mijkl _�kl: (52)

Substituting Eq. (48) in Eq. (52) leads to:

_�ij = P�1
ijkl _��kl; (53)

where:

Pijkl = Mijkl +
@Mijpq

@'rs
B�1
rsmnAmnkl�pq: (54)

For mapping the elastoplastic tangent operator in the
undamaged con�guration to the damaged con�gura-
tion, by substituting Eq. (53) into Eq. (38a), the
elastoplastic damaged tangent operator is de�ned as
follows:

Cepdijkl = P�1
ijmn

�Dmnkl: (55)

The elastoplastic damage tangent operator (Cepdijkl)
represents the relationship between the rate of stress
in the damaged con�guration and rate of strain in the
undamaged con�guration.

_�ij = Cepdijkl _�"kl: (56)

The elastoplastic damage tangent operator is used
in the next section in order to obtain a relationship
between the rate of stress in the damaged con�guration
and the rate of strain in the undamaged con�guration
(Newton Raphson iterations).

6. Finite element simulation

In the �nite element method, the Newton Raphson
algorithm is mainly suitable for the solution of the
nonlinear incremental equations. When a good initial
guess of the solution is not available, this method
results in divergence. To avoid divergence, the load
must be applied in incremental form. Within each
load increment, the procedure should be solved by the
Newton Raphson algorithm. After the solution corre-
sponding to the previous load increment has converged,
the next load increment is applied.

The tangent sti�ness matrix is written for each
element using the incremental elastoplastic damage
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stress strain law expressed in previous sections, as-
sembled into the global matrix and then solved for
increments in nodal displacements in the undamaged
con�guration (��u). From the de�nition of the strain
displacement matrix, the incremental strains in the
undamaged con�guration can be obtained as follows:

��" = B��u: (57)

The well known discrete symmetric gradient operator
(or strain displacement matrix) relating the increments
of strain and displacement can be written as:

B =
Num NodeX

i=1

2666666666666666664

@Ni
@x 0 0

0 @Ni
@y 0

0 0 @Ni
@z

@Ni
@y

@Ni
@x 0

0 @Ni
@z

@Ni
@y

@Ni
@z 0 @Ni

@x

3777777777777777775
; (58)

where Ni is the standard shape function of each node
in 3D elements. By computing the corresponding stress
increments in the undamaged con�guration (���), the
new stress state is obtained (��trial = ��prev + ���).
The state determination calculations must be used for
each Gauss point, because, at each Gauss point, it is
required to know whether or not the stress has reached
the yield surface or the damage surface.

If the trial stress is not outside the plastic surface
and the damage surface, the step is elastic and the
assumption is correct. However, if the trial stress is
outside the plastic surface or the damage surface, the
intersection point for these must be calculated. If
the trial stress is outside both the plastic and damage
surfaces, two intersections must be calculated, and the
lower one will be considered. The remaining portion
of the trial stress that does not lie within the elastic
domain, must be eliminated e�ciently in some way,
because, at all times, one must also make sure that
the computed stresses do not drift away from the yield
surface or damage surface.

The incremental constitutive equations are known
as di�erential equations. The computational pro-
cedures are established upon numerically integrated
di�erential equations, using methods such as the Euler
method. Many researchers proposed several di�erent
explicit and implicit methods for numerical solution
of these di�erential equations. In this work, a useful
method proposed by M. Asghar Bhatti [42], based
on the forward Euler integration, which introduces an
automatic step size rule based on predictable error in

the solution (modi�ed forward Euler integration with
error control), is used.

In general, there are two basic categories of
step-by-step integration methods, i.e. explicit meth-
ods (forward Euler integration) and implicit methods
(backward Euler integration). A method is explicit if
the equation of motion of the current time step (i+1) is
not used in determining the current step displacement
(i+1), while it is implicit if the current time step (i+1)
is used in computing the current step displacement
(i+ 1).

The advantage of explicit methods is that it is
not necessary to solve a system of equations, or to use
iterative procedures in each time step. Hence, far less
computational e�ort is needed per time step. This also
leads to an easy implementation of explicit methods.
Conditional stability is the major disadvantage of
explicit methods. Consequently, a very small time step
and, thus, a very large number of time steps may be
needed in a time history analysis.

In implicit algorithms, nonlinear algebraic equa-
tions must be solved using the Newton Raphson
scheme to advance the solution. For complicated
yield functions, it may not even be possible to get an
analytical expression for some derivatives needed in the
Newton Raphson algorithm. Furthermore, numerical
experiments suggest that with reasonable error control,
the explicit method is fairly e�ective [42,43]. Modi�ed
forward Euler integration with error control introduce
an automatic step size rule based on estimated error
in the solution. The step size is denoted by �T
and the total interval denoted by 0 � T � 1, with
T = 0 representing the current known state and T = 1
the �nal unknown state. Initially, the step size is
set to �T = 1. Thus, by using the known values
at the current state, the solution at the �nal step is
achived. An initial estimate for the new state is then
obtained and the second �nal estimate is computed.
The di�erence between the stress at the two points is
used as an indicator of the local error in stress. By
looking at the normalized value of this error, a decision
is made whether to reduce the step size or accept the
step results [42].

Since the elastic, plastic and damage evolution
problem is of a strain driven nature, the integration
process is split into an elastic predictor and plastic and
damage return mapping, to restore plastic and damage
consistency, as established in Table 1 with Eqs. (59-
61).

According to the concept of operator split [44],
Eq. (56) can be decomposed into elastic, plastic and
damage parts, leading to the corresponding numerical
algorithm, including elastic-predictor, plastic-corrector
and damage-corrector steps.

It is noted that during the elastic predictor and
the plastic corrector steps, the damage variables are
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Table 1. Elastic predictor, plastic and damage corrector.

Elastic predictor Eq. (59) Plastic corrector Eq. (60) Damage corrector Eq. (61)
_�" = B _�u _�" = 0 _�" = 0
_�"p = 0 _�"p = _��p @F

p

@��
_�"p = 0

_�"ep = 0 _�"ep = 1
��e

_��p�� : @F
p

@��
_�"ep = 0

_�� = �E : _�" _�� = � �E : _�"p _�� = 0
_� = P�1 �E : _�" _� is obtained from Eq. (61) �� = �P�1 : _��
_' = 0 _' = 0 _' = B�1 : A : _�
_'eq = 0 _'eq = 0 _'eq =

p
_' : _'

not changed. So, Eqs. (59) and (60) are decoupled
with the damage part (Eq. (61)), constituting a usual
elastoplastic problem in the undamaged stress space.

At the moment when �� is updated in the elastic
predictor and plastic corrector steps, the damage vari-
ables ( _' and _'eq) are updated in the damage corrector.
The stress in damaged con�guration (�) is obtained
from Eq. (53) that is coupled with the damage. It
is notable that the consistent tangent sti�ness is used
to speed up the rate of convergence of the Newton
Raphson method.

7. Application

In order to test the applicability of the proposed
constitutive model in the previous sections, and eval-
uate their e�ectiveness, two nonlinear problems are
presented in this section. As a means of validat-
ing, the software is produced for performing these
analyses, and the obtained results are compared with
the results cited in the literature. The solution is
checked for mesh-dependency and, thus, a �ne mesh,
with considerable numerical e�ort, has been applied
to the model for predicting the damage propagation.
Furthermore, the results obtained from the presented
constitutive model are compared with the results from
Abaqus software with classical plasticity (von-Mises)
and isotropic damage plasticity (ductile damage in
Abaqus software).

Numerical tests were conducted by means of
displacement control to apply the loads in order to
predict hardening and softening in specimens.

7.1. Cylindrical notched bar
This specimen is a cylindrical bar with nominal diam-
eter of 18 mm, height of 40 mm and a notch with a
4 mm radius. Figure 1 shows the geometry of the
steel cylindrical notched bar; all dimensions are in
millimeters. Numerical simulation on this specimen
was done by Souza Neto et al. [43], with isotropic
Lemaitre's coupled plasticity damage model [43,45,46].

Due to symmetry conditions, only one eighth of
the tension specimen is considered in the �nite element
simulation. A spatially non-uniform �nite element
mesh, composed of 1216 higher order (27 nodes) 3D

Figure 1. Cylindrical notched bar.

Figure 2. Non uniform �nite element mesh of cylindrical
notched bar.

isoparametric elements, has been used in order to
illustrate the stress and damage in the necking zone
properly (see Figure 2). Table 2 presents the material
parameters in �nite element simulation.

Material parameters such as E, �, �y, Bc and
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Table 2. Material parameters considered in the simulation of tensile cylindrical notched bar.

Property Value

Initial Young's modulus, �E (GPa) 210
Poisson's ratio, � 0.3
Initial yield strength, �y (MPa) 620
Initial isotropic hardening �Cinitial (MPa) 174.2
Material constant in yield surface � (MPa�1) 1:87 � 10�6

Material constant in yield surface � (MPa�1) 1:3 � 10�5

Initial damage surface K0 (MPa) 0.22
Material constant in damage part of Helmholtz free energy function Kd (MPa) 15.5
Material constant in plastic part of Helmholtz free energy function Q (MPa) 3300
Material constant in plastic part of Helmholtz free energy function Bc (MPa) 0.4

Q are cited in the literature and others are obtained
by using an inverse identi�cation procedure. There-
fore, only �rst estimates of the material parameters
in Eq. (26) are obtained from the equivalent stress-
equivalent plastic strain curves. Afterwards, �nite
element simulations of the smooth tension tests have
been performed, which leads to the �nal material
parameters for the work-hardening function Eq. (26)
using an inverse identi�cation procedure.

The evolution of the damage variable obtained
in the numerical simulation is shown in the contour
plots in Figure 3(a)-(d). It can be seen that during

the early stages of the loading process, maximum
damage is detected near the edge of the notch. As the
specimen is gradually pulled, the maximum damage
zone moves slowly towards the middle of the specimen,
and localizes there. At the end stage, damage is
particularly localized around the centre.

In Figure 4, the contour distribution of von Mises
stress is shown at the end of loading.

Furthermore, good correlation of the reaction
forces against edge displacement obtained numerically
by Souza Neto et al. [43] and predicted by �nite element
simulation, based on the presented model, can be seen

Figure 3. Damage contour plots in cylindrical notched bar: (a) At u = 0:05; (b) at u = 0:1; (c) at u = 0:25; and (d) at
the end of loading.
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Figure 4. Von Mises stress of the cylindrical notched bar.

Figure 5. Edge displacement against reaction force of the
cylindrical notched bar.

in Figure 5. This prediction is in accordance with
experimental observations by Hancock and Macken-
zie [47], and Cescotto and Zhu [48], which show that
for speci�c notched specimen con�gurations, damage
initiates at the edge of the notch, and by increase
in loading extends radially towards the center of the
notch.

Figure 5 also shows that the presented model
anticipates the force-displacement better than classical
plasticity with isotropic damage, which is given by
Abaqus software.

The reason for the rapid growth of damage at the
centre of the specimen is the fact that damage growth
in ductile metals is strongly dependent on the stress
triaxiality ratio, which is highest at the centre of the
specimen.

7.2. Flat shear specimen
The specimen is a 3.19 mm thick aluminum alloy
plate, from which shear, pre notched specimens were

Figure 6. Flat shear specimen.

Figure 7. Non uniform �nite element mesh of 
at shear
specimen.

machined. The specimen was tested in a screw driven
machine, INSTRON3369, by Brunig [49]. Figure 6
shows the geometry of the 
at shear specimen, and all
dimensions are in millimeters.

Machining a circular channel of 4 mm diameter in
the middle of the shear specimens is necessary in order
to achieve a localized shear area where triaxiality is
ideally zero.

For numerical simulation of the specimen, a
spatially non-uniform �nite element mesh, composed
of 1288 higher order (27 nodes) 3D isoparametric
elements, has been chosen (see Figure 7). Material
parameters are presented in Table 3.

Figure 8(a)-(d) demonstrates the evolution of the
equivalent damage variable �eld computed in �nite
element simulation in contour plots.

Damage occurrence is at u=l = 2:2% and, in
this loading stage, maximum damage is detected near
the circular channels. With gradual loading, damage
initiates in the circles, and later reaches the area
between the circles in the middle of the specimen.
At the �nal stages of loading, damage expands in a
diagonal direction, up to failure.

Figure 9 demonstrates Von Mises contour dis-
tribution at the end of loading. Figure 10 shows
the comparison between the experimental [49] and
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Table 3. Material parameters considered in the simulation of 
at shear specimen.

Property Value

Initial Young's modulus, �E (GPa) 65

Poisson's ratio, � 0.3

Initial yield strength, �y (MPa) 340

Initial isotropic hardening �Cinitial (MPa) 189.7

Material constant in yield surface � (MPa�1) 5*10�5

Material constant in yield surface � (MPa�1) 2.1*10�6

Initial damage surface K0 (MPa) 1

Material constant in damage part of Helmholtz free energy function Kd (MPa) 24

Material constant in plastic part of Helmholtz free energy function Q (MPa) 350

Material constant in plastic part of Helmholtz free energy function Bc (MPa) 24

Figure 8. Damage contour plots in 
at shear specimen: (a) At u=l = 2:8%; (b) at u=l = 3:5%; (c) at u=l = 3:8%; and (d)
at the end of loading.

predicted results by numerical simulation. In this
�gure, the external force is plotted against strain in the
critical area (12.5 centimeters from the middle of the
specimen). It can be seen that the present model ac-
curately describes the experimental results. Figure 10
also shows that the presented model anticipates the
force-displacement better than classical plasticity with
isotropic damage given by Abaqus software.

8. Conclusion

This paper presents a new anisotropic damage con-
stitutive model for iron base materials based on a
thermodynamics framework. Anisotropic damage is
used to represent material degradation in all directions.
The stress in the undamaged con�guration is computed
by a plastic surface proposed by Spitzig et al.
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Figure 9. Von Mises stress of the 
at shear specimen.

Figure 10. Load engineering strain curve of the 
at shear
specimen.

Following standard thermodynamics and using
reasonable state variables, a complete set of constitu-
tive equations were derived, wherein a plastic surface
was used to determine the occurrence of plasticity, and
a damage surface was used to determine the occurrence
of damage.

The numerical algorithm for this coupled model
was also given. A modi�ed forward Euler integration
with error control was developed to be solved in a New-
ton Raphson solution procedure. Comparison between
the numerical and experimental results demonstrates
convincingly that the proposed constitutive model is
able to capture the damage behavior of metals accu-
rately.
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