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Abstract. During an earthquake, seismic waves propagate vibrations that carry energy
from the source of the shaking outwards. Seismic waves can be distinguished by the velocity
and shape of propagation. The velocity of waves depends on the elastic properties and
density of the soil layers through which the waves pass. Probabilistic analysis of earthquake
waves can be used as an e�ective tool to evaluate inherent uncertainty in the soil properties
and the resulting uncertainty in site classi�cation. In this research, the jointly distributed
random variables method is used for probabilistic analysis and reliability assessment of
the shear wave velocity relationship. The selected stochastic parameters are density,
elastic modulus and Poisson's ratio which are modeled using truncated normal probability
distribution functions. The results are compared with the Monte Carlo simulation, point
estimated method and �rst order second moment method. Comparison of the results
indicates very good performance of the proposed approach for assessment of reliability. It
is shown that this method can correctly predict the in
uence of stochastic input parameters
and capture the expected probability distribution of shear wave velocity correctly. It is also
shown that the modulus of elasticity is the most e�ective parameter in shear wave velocity.

c
 2013 Sharif University of Technology. All rights reserved.

1. Introduction

The importance of shear wave velocity has been widely
acknowledged in many �elds. It has been generally
recognized that shear wave velocity is a basic soil
property. It has been used to obtain several soil
parameters [1-5] and to study many aspects of soil
behavior such as liquefaction [6-13], ampli�cation of
ground shaking [14], peak ground acceleration [15]
and site classi�cation [16,17]. There are two methods
available for determining shear wave velocity for a
particular soil. It may be determined directly in-
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situ by geophysical tests or indirectly based on soil
parameters. In the direct method, the seismic wave
propagates through the soil and the velocity of the wave
is determined. In the indirect method, wave velocity
can be obtained as a function of modulus of elasticity,
Poisson's ratio and the bulk density of soil. In this
method, the results are sensitive to changes in density,
temperature, composition, water level, and volatile
content of soil layers [18]. The inherent uncertainties
in the characteristics which a�ect shear wave velocity
dictate that determination of shear wave velocity by
this method is of a probabilistic nature rather than
being deterministic. Recent research on probabilistic
analysis of shear wave velocity is documented in the
literature [19-24].

In general, uncertainty is divided into three dis-
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tinctive categories: uncertainty in soil parameters,
model uncertainty and human uncertainty [25]. Pa-
rameter uncertainty is the uncertainty in the input
parameters for analysis, model uncertainty is due to
limitation of the theories and models used in the
performance prediction [26], while human uncertainty
is due to human error and mistakes [27]. Many
probabilistic methods may be used for stochastic anal-
ysis of shear wave velocity. These methods can be
grouped into three categories: analytical methods
[28-30], approximate methods [31-35], Monte Carlo
simulation [36] and arti�cial intelligence methods [37].
To the author's knowledge, there has been no analytical
solution in the literature for the reliability assessment
of shear wave velocity. In this research, the jointly
distributed random variables method is used as an
e�ective analytical method to assess the reliability
of shear wave velocity considering uncertainty in the
values of the parameters.

2. Shear wave velocity

The shear wave velocity is determined by Eq. (1) [5].
It can be seen that the shear wave velocity depends on
three parameters.

Vs =

s
E

2�(1 + �)
; (1)

where:
Vs : Shear wave velocity;
E : Modulus of elasticity;
� : Poisson's ratio;
� : Bulk density of soil.

3. Stochastic parameters

To account for uncertainties in determination of shear
wave velocity, three input parameters have been consid-
ered as stochastic variables. The selected parameters
are modulus of elasticity (E), Poisson's ratio (�), and
bulk density (�). These stochastic parameters are
modeled using truncated normal probability distribu-
tion functions (pdf). The distribution functions of the
above mentioned stochastic parameters are as follows:
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where:8<: Emin = Emean � 3�E
�min = �mean � 3��
�min = �mean � 3��

9=; (5)

�E : Standard deviation of soil elastic
modulus;

Emean : Average value of soil elastic modulus;
Emin Minimum value of soil elastic modulus;
�� : Standard deviation of soil Poisson's

ratio;
�mean : Average value of soil Poisson's ratio;
�min : Minimum value of soil Poisson's ratio;
�p Standard deviation of soil bulk density;
�mean : Average value of soil bulk density;
�min : Minimum value of soil bulk density.

By considering the stochastic variables within the
range of their mean, plus or minus 3 times standard
deviation (Eq. (5)), 99.8% of the area beneath the
normal density curve is covered [37]. Thus, area correc-
tion will not be necessary. It should be noted that for
choosing the initial data, the following conditions must
be observed for modulus of elasticity (E), Poisson's
ratio (�), and bulk density (�):8><>:Emean � 3�E > 0

�mean � 3�� > 0
�mean � 3�� > 0

(6)

4. Jointly distributed random variables
method

The Jointly Distributed Random Variables (JDRV)
method is an analytical probabilistic method. In
this method, density functions of input variables are
expressed mathematically and jointed together by
statistical relations. The jointly distributed random
variables method has a number of advantages over
other methods:

(i) It is a nearly exact method and can be used
for stochastic parameters with any distribution
curve (such as normal, exponential, gamma, uni-
form. . . ), whereas some methods, like point es-
timate and �rst order second moment, require
speci�c (e.g., normal) distribution functions.
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(ii) The computational time of this method is signi�-
cantly less than the Monte Carlo simulation, which
requires a signi�cant number of simulation runs.

The available statistical and probabilistic rela-
tions between parameters are given in this section [27-
29].

If X is a random variable with the probability
density of fX(x) and Y is a function of X in the
form Y = g(x), the probability density of Y can be
determined as:

fY (y) = fX(g�1(y))�
����dg�1(y)

dy

���� : (7)

If X and Y are two independent random variables with
the probability densities fX(x) and fY (y), and Z =
X + Y , the probability density of Z will be:

fX+Y (z)=
+1Z
�1

fX(x)fY (z � x)dx; �1< z <+1:
(8)

If X and Y are two independent random variables with
the probability densities fX(x) and fY (y), and Z =
Y=X, the probability density of Z will be calculated
as:

fY=X(z)=
+1Z
�1
jXj fX(x)fY (x:z)dx; �1< z <+1:

(9)

This method has recently been used in a number of
geotechnical applications [38-40].

5. Probabilistic assessment of shear wave
velocity

In this research, the terms of the shear wave velocity
equation (Eq. (1)) are grouped together in the follow-
ing form (Eq. (10)) and the probability distribution
equation of each group is derived separately using Eqs.
(11) to (15). Derivations of these equations are given
below:8>>>>>>>>>>>>><>>>>>>>>>>>>>:
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Using the above mathematical functions for k1 to k5
and fK1 (k1) to fK5 (k5), a computer program was
developed (coded in MATLAB) to determine the prob-
ability density distribution curve for the shear wave
velocity. In addition, for comparison, determination of
shear wave velocity using the Monte Carlo simulation
was also coded in the same computer program. To
illustrate the capabilities of this method, an example
with arbitrary data is given in the following sections.

6. Monte Carlo simulation

Monte Carlo simulation (MCs) can solve problems
by generating suitable random numbers (or pseudo-
random numbers) and assessing the dependent vari-
ables for a large number of possibilities. MCs involves
the de�nition of the variables that generate uncertainty
and probabilistic distribution function (pdf), determi-
nation of the value of the function using variable values
randomly obtained considering the pdf, and repeating
this procedure until a su�cient number of outputs are
obtained to build the pdf of the function [36].

The statistics of the resulting set of values of the
function can be computed and � (reliability index)
or Pf (probability of failure) calculated directly. The
method has the advantage of conceptual simplicity, but
it can require a large set of values of the performance
function to obtain adequate accuracy. Furthermore,
the method does not give insight into the relative
contributions of the uncertain parameters that are
obtained from other methods. The computational
e�ort can be reduced by using statistical techniques
known as variance reduction schemes, and these should
be employed whenever possible [41]. Generally, the
number of MCs is determined through trial-and-error
or based on the target failure probability [34,35].

7. Point estimate method

Rosenblueth [31] proposed the Point Estimate (PE)
method, which uses a series of point estimates (point by

point evaluations) of the response function at selected
values (known as weighting points) of the input random
variables to compute the moments of the response
variable. This method applies appropriate weights to
each of the point estimates of the response variable to
compute moments.

In the PE method, all possible combinations are
taken into account for two point estimates for each
independent variable. One of the disadvantages of the
original method is that it requires the performance
function to be evaluated 2n times, and this can become
a very large number when the number of uncertain
parameters is large. Recent modi�cations reduce the
number of evaluations to the order of 2N but introduce
their own complications [41]. If the probability density
functions are symmetric (e.g., normal distribution), the
estimated points are separated one standard deviation
below and above the average. The mean and variance
are given by the following equations:

EFunction �= 1
2n

2nX
j=1

g(xj); (16)

�2
Function =

1
2n

(
2nX
j=1

g(xj))2 � E2; (17)

where:
Xj = Input variables;
g(xj) = The function of input variables xj ;
n = Number of variables;
EFunction = Mean;
�2

Function = Variance.

8. First order second moment method

The First Order Second Moment (FOSM) method
[32,33] is an approximate approach based on the Taylor
series expansion of the function to be evaluated. This
expansion is truncated after the linear term (hence
\�rst order"). The modi�ed expansion is then used,
along with the �rst two moments of the random
variables, to determine the values of the �rst two
moments of the dependent variable (hence \second
moment"). If the number of uncertain variables is
N , this method requires either evaluating n partial
derivatives of the performance function or performing
a numerical approximation using evaluations at 2n+ 1
points. This method takes no account of the form of
the probability density function, describing the random
variables using only their mean and standard deviation.
One of the great advantages of the FOSM method is
that it reveals the relative contribution of each variable
to the overall uncertainty in a clear and easily tabulated
manner [41]. For uncorrelated input variables, the
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mean and variance of the function are given by the
following equations:

EFunction �=
nX
j=1

g(E(xi)); (18)

�2
Function

�=
nX
j=1

�
@g
@xi

�2

:�2(xi): (19)

9. Example

To demonstrate the e�ciency and accuracy of the
proposed approach in determining the probability den-
sity distribution curve of the shear wave velocity, an
illustrative example is presented. For this purpose,
the mean and variance of the stochastic parameters are
selected as: Emean=25000 kN/m2, �E=5000 kN/m2 for
modulus of elasticity, �mean=0.25, ��=0.05 for Pois-
son's ratio and �mean= 1.8 Ton/m3, ��= 0.1 Ton/m3

for the bulk density of the soil. The probability density
functions of the parameters are shown in Figures 1
to 3. In order to compare the results of the presented
method with MCs, PE and FOSM methods, the �nal
probability density distribution curves for the shear
wave velocity are determined using the same data and
the four methods.

For this purpose, 5,000,000 generation points are
used for the MCs. The adequacy of simulations was
determined though trial-and-error. Table 1 shows the
results. It can be seen that by increasing the number

Figure 1. Probability density functions of the modulus of
elasticity.

Table 1. The adequacy of Monte Carlo simulations.

Number of simulation 1,000,000 2,000,000 5,000,000
Mean of Vs 74.396 74.431 74.442

Figure 2. Probability density functions of bulk density.

Figure 3. Probability distribution of Poisson's ratio.

of simulations, the di�erence between the mean of Vs
decreases.

In the PEM and FOSM methods, 8 points are
selected. Tables 2 and 3 show calculations for determin-
ing the mean and variance of the shear wave velocity
by PEM and FOSM methods, respectively, as de�ned
in Eqs. (16) to (19).

Figure 4 shows the probability distribution func-
tions of these methods. As seen in this �gure, the
probability of shear wave velocity, obtained using the
developed method, has normal distribution and is
very close to other methods' probability distributions.
Figure 5 shows the cumulative density function of shear
wave velocity obtained using the jointly distributed
random variables method. The cumulative probability
of shear wave velocity at an arbitrary value of shear
wave velocity, Vs = 80 m/sec, is shown in this �gure. It
can be seen that with the selected data, the probability
of shear wave velocity (Vs=80 m/sec) is about 75%.
Also, with a probability of 100%, the shear wave
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Table 2. Results from point estimate method for shear wave velocity (m/sec).

Point E
(kN/m2)

�
(Ton/m3)

� Vs
(m/sec)

w w:Vs w:V 2
s

1 30000 1.9 0.3 779.29 0.125 9.74 759.11
2 20000 1.9 0.3 636.28 0.125 7.95 506.07
3 30000 1.7 0.3 823.85 0.125 10.30 848.42
4 30000 1.9 0.2 811.11 0.125 10.14 822.37
5 20000 1.7 0.3 672.67 0.125 8.41 565.61
6 30000 1.7 0.2 857.49 0.125 10.72 919.12
7 20000 1.9 0.2 662.27 0.125 8.28 548.25
8 20000 1.7 0.2 700.14 0.125 8.75 612.75

Sum Mean of Vs = 74.29 5581.69
Variance of Vs = 5581.69-(74.29)2 = 62.68

Table 3. Results from �rst order second moment method for shear wave velocity (m/sec).

Parameters
xi

Mean
(�xi)

Standard
deviation

(�2)

@Vs
@xi

���
�xi

�
@Vs
@xi

�2 � �2
xi

E (kN/m2) 25000 5000 1.49e-5 55.56
� (kN/m3) 1.8 0.1 20.71 4.29

v 0.25 0.05 -29.81 2.22

Mean of Vs = Vs(�E ; ��; �v) = 74.75 Sum=variance of Vs = 62.07

Figure 4. Shear wave velocity probability distributions
function predicted by the four methods.

velocity of this site is less than 100 m/sec, hence,
this site can be classi�ed as grade \E" based on
NEHRP and UBC codes. For comparison, the mean
for MCs, PE and FOSM methods are given in Table 4.
The results show that the jointly distributed random
variables method has a mean and variance close to
the other methods and is the closest method to Monte
Carlo simulation.

Table 5 shows a beneath area comparative evalu-

Figure 5. Cumulative probability function of shear wave
velocity using jointly distributed random variables.

ation of the developed probability density function of
shear wave velocity (Vs) using the JDRV method based
on di�erent variance. However, in this research, mean
+/- 3*sigma is used for variance [37].

10. Sensitivity analysis

To evaluate the model response to changes in input
parameters, a sensitivity analysis was carried out. For
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Table 4. Methods comparing.

Method Mean

Jointly distributed random variables 74.51
Monte Carlo 74.44
Point estimated 74.29
First order second moment 74.54

Table 5. Area beneath comparing of developed Vs pdf
using JDRV method.

Variance Area beneath of developed pdf
using JDRV method

mean +/- 1*sigma 99.0866
mean +/- 2*sigma 99.8740
mean +/- 3*sigma 99.99882283
mean +/- 4*sigma 99.99999949

this purpose, the three stochastic input parameters
were increased based on their standard deviation (new
mean = old mean + 1.0�Std.). To evaluate the
in
uence of changes in mean elastic modulus, this
parameter was increased, while the ranges of the other
stochastic input parameters were kept constant. The
results are shown in Figure 6. It is shown, as expected,
that with an increase in mean elastic modulus, the
Cumulative Distribution Function (CDF) of the shear
wave velocity shifts rightwards, indicating that for
a given probability, the magnitude of shear wave
velocity is increased by increasing the elastic modulus.
Furthermore, this �gure shows that with an increase in
bulk density or Poisson's ratio, the CDF of the shear
wave velocity shifts leftwards. Also, this �gure shows
the modulus of elasticity is the most e�ective parameter
in shear wave velocity.

Figure 6. Sensitivity analysis to determine the most
e�ective parameter based on change in mean of input
parameters.

Additionally, a sensitivity analysis was carried out
based on change in variance of input parameters [34].
For this purpose, variances of the three stochastic input
parameters (�) were changed based on initial variances
(�i). To evaluate the in
uence of changes in variance of
each parameter, the selected parameter was changed,
while the range of variances of the other stochastic
input parameters was kept constant. The results are
shown in Figure 7. This �gure shows the modulus
of elasticity has a larger slope and, therefore, is the
most e�ective parameter in shear wave velocity. This
is consistent with the results obtained from another
form of sensitive analysis assessment (Figure 6).

11. Parametric analysis

For further veri�cation of the proposed method, a
parametric analysis was performed. The main goal was
to �nd the e�ect of each parameter on the probability
distributions function of shear wave velocity. Figures 8

Figure 7. Sensitivity analysis to determine the most
e�ective parameter based on change in variance of input
parameters.

Figure 8. Parametric analysis of output model with
respect to soil elastic modulus.
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Figure 9. Parametric analysis of output model with
respect to soil bulk density.

Figure 10. Parametric analysis of output model with
respect to soil Poisson's ratio.

to 10 present the predicted values of the probability
distributions function of shear wave velocity as a
function of each parameter, where others were kept
constant.

Figure 8 shows that, as expected, the mean
of probability distributions function of shear wave
velocity continuously increases with an increase in soil
elastic modulus. Furthermore, this �gure indicates that
the height of the probability density function increases
with an increase in soil elastic modulus. As a result,
the variance decreases because the area underneath the
normal density curve should be 1.

Figure 9 shows the parametric analysis of the
model with respect to soil bulk density. It can be
seen that the mean of probability distributions function
of shear wave velocity continuously decreases with
an increase in soil bulk density. Furthermore, this
�gure indicates that the height of the probability
density function increases with an increase in soil bulk
density. As a result, the variance decreases, as the area
underneath the normal density curve should be 1.

Finally, parametric analysis of the model, with
respect to the Poisson's ratio of soil, is given in Figure
10. It can be seen that by changing the Poisson's ratio
of the soil, the change in the trend of variations of mean
of probability distributions function of shear wave
velocity is the same as that of shear wave velocity when
the bulk density changes. It continuously decreases
(shifts leftward) with an increase in the Poisson's ratio
of the soil, but the e�ect of this parameter is less than
that of bulk density on shear wave velocity.

12. Conclusion

Shear wave is an important wave that propagates
from an earthquake. Determination of this parameter
for a site can be used for many purposes such as
site classi�cation. The shear wave velocity can be
obtained as a function of in situ soil parameters.
The determination of shear wave velocity using this
approach is a probabilistic problem due to the inherent
uncertainties in the geotechnical parameters, model
performance, and human uncertainty. In this paper,
an analytical method; Jointly Distributed Random
Variables (JDRV) method, was used to assess the
reliability of this type of wave, based on the uncertainty
in geotechnical properties. The selected stochastic
parameters were bulk density, elastic modulus and
the Poisson's ratio of soil, which were modeled using
truncated normal probability distribution functions.
The results showed that the probability distribution of
shear wave velocity has a near normal distribution and
compares with the output of other methods of analysis
such as Monte Carlo simulation, point estimated and
�rst order second moment methods. In addition, a
sensitivity analysis of the selected method indicated
that this method correctly predicted the in
uence of
stochastic input parameters. The results also indicated
that the jointly distributed random variables method
was able to capture the expected probability distribu-
tion of shear wave velocity correctly. The sensitivity
analysis also showed that the modulus of elasticity is
the most e�ective parameter in shear wave velocity.
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