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Abstract. In this paper, a novel procedure is introduced and employed to transform
the partial di�erential steady saturated 
ow equation in porous media into a system of
linear equations using Pore Network Models (PNMs). At �rst, a simple Square Pore
Network Model (SPNM) is introduced and then this model is improved by increasing
node connectivity (Square-Diagonal PNM; S-DPNM) and modifying the handling of
impermeable boundaries by introducing imaginary nodes and pipes (S-DPNMi). Finally, a
generalized formulation for the unstructured discretization (Unstructured PNM; UPNM)
of the domain is given and the e�ect of handling impermeable boundaries (UPNMi) on
model accuracy is investigated. To explore the capabilities of these models as numerical
tools, three examples are solved. Application of these models without modi�cations for
impermeable boundaries (SPNM, S-DPNM, and UPNM) yields comparable results to those
of traditional Finite Di�erence (FD) and Finite Element (FE) methods. Modi�cation in
handling impermeable boundary nodes not only yields results that are everywhere more
accurate than FD and FE, but also bene�ts by the simplicity of formulations.

c
 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Pore Network Models (PNMs) are much more sys-
tematic than real pore spaces, and hence, have been
widely used and developed by many researchers since
their �rst introduction by Fatt in 1956. Complexity of

uid 
ow in porous media, di�culty in determination
of 
uid phase relative permeabilities and capillary
pressures [1], and an inability to obtain pore scale
observations [2] are among reasons that encourage
researchers to use PNMs to study 
uid(s) 
ow in porous
media.

Investigation of interfacial area, capillary pres-
sure, saturation relationships [3-7], porosity and per-
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meability [8-10], displacement of water by DNAPL [11],
and transport properties [3,12] were all done utilizing
PNMs. PNMs may be divided into two categories: (1)
a network that is only made up of throats and (2) a
network that is made up of throats and pores. Throats
and pores of PNMs may have di�erent shapes and
properties. For example, prismatic throats with cir-
cular cross sections were used by Fatt [13], Koplic [14],
Mazaheri et al. [15], Joekar-Niasar et al. [7], and
Nsir and Schafer [11], while rectangular, triangular,
and grain boundary cross sections were considered by
Ioannidis and Chatzis [3], �ren et al. [16], Man and
Jing [4], Kagen and Pinczewski [17], Joekar-Niasar
et al. [5]. Non prismatic throats, mainly converging-
diverging types, were used by Dias and Payatakes
[18], Thahivan and Mohanty [8], Acharya et al. [10].
Randomly sized pore bodies and throats were utilized
by Dias and Payatakes [18], Steele and Nieber [12],
Acharaya et al. [10], Pirri and Blunt [1], and Nsir
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and Schafer [11], and a distribution of coordination
numbers was considered in the study by Raoof and
Hassanizadeh [19].

In this paper, a simple PNM is presented and
utilized as a numerical tool with superior capabilities
to solve steady saturated 
ow in porous media. In
this model, a porous media is replaced by a network
of pipes, which is shown to be governed by the
Laplace equation. A simple 
exible procedure is then
introduced to transform the equation into a set of n-
linear algebraic equations. First, a simple example is
solved by the model, and then alterations are made
on the model to account for node connectivity and
boundary condition treatment. Results of these models
are veri�ed by their comparison with the analytical
solution and their errors are compared with those of
Finite Di�erence (FD) and Finite Element (FE). The
sensitivity of models to mesh size is also investigated.
Finally, a more complex example is solved by an un-
structured PNM to show the capabilities and strengths
of the model over FD and FE methods.

2. Methodology and formulation

2.1. Network pattern
It is assumed that a pore network in a porous media
may be modeled by elemental tubes forming a network
simply consisting of horizontal and vertical cylindrical
throats (pipes). No volume is assigned to nodes where
the pipes intersect. A typical rectangular PNM is
shown in Figure 1. The model architecture is later
altered by adding diagonal cylindrical throats. It is
worth noting that the cross sectional area and length
of the throats would vary where porous media exhibits
non-homogeneity and/or an isotropy.

2.2. Discretized 
ow equation for a typical
PNM

A fundamental element for a typical PNM is shown in
Figure 2. To develop 
ow equation for the element, it

Figure 1. A typical rectangular PNM.

Figure 2. Fundamental element for the typical PNM.

is assumed that:

1. The 
uid is Newtonian incompressible.
2. The 
ow is steady laminar.
3. No capillary pressure exists.

The mass balance equation for the element with 4 inlets
and 4 outlets may be written as:

Qin = Qout; (1)�
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Assuming that the cross sectional areas in each direc-
tion are the same (i.e. ajx = ax, ajy = ay) the above
equation simpli�es to:

@u
@x
ax�x+

@v
@y
ay�y = 0: (3)

In order to model groundwater 
ow (usually considered
laminar), the velocity through throats is replaced by
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the Hagen-Poiseuille law:

Vij =

D2

ij

32�
hi � hj
lij

; (4)

where Dij is the diameter of the bond connecting the
nodes, hi and hj are hydraulic heads at nodes (i) and
(j), `ij is the length of the bond connecting the nodes,
and 
 and � are the speci�c weight and kinematic
viscosity of the 
uid, respectively.

Assuming that the length of each pipe (�x, �y)
is much smaller than the pore network size (L, H), and
inserting Eq. (4) into Eq. (3), one gets:
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Letting Dx = Dy, dx = dy, and eliminating K:

@2h
@x2 +

@2h
@y2 = 0: (8)

This is the well-known Laplace equation which governs
steady state 
ow in a saturated homogenous porous
media.

Now, considering continuity at a typical node (i)
surrounded by 4 nodes in a square lattice (Figure 3(a)),
the 
ow equation may be transformed into n-linear
equations as:

4X
j=1

Qij = 0; (9)

Figure 3. (a) A typical interior node for a Square PNM
(SPNM). (b) Computational stencil for the typical node.
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where:

Cij =
�
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D4
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Lij
: (12)

For equally spaced nodes (square lattice) connected by
pipes with equal cross sectional areas, Eq. (11) yields:

4hi � h1 � h2 � h3 � h4 = 0: (13)

This equation is the equivalent form of discretized
Laplace equation and is the same as the central
di�erence formulation for a FD scheme. Eq. (13)
holds for each and every interior node in a SPNM.
The computational stencil of the equation is shown in
Figure 3(b).

2.3. Node connectivity
Node connectivity re
ects how a speci�c node is related
or connected to its neighboring nodes. As stated by
Raoof and Hassanizadeh [19], in many recent works,
nodes are only connected to their neighboring nodes
that are located along the lattice axes. This results in
no 
ow along the diagonal direction, even if diagonal
pressure gradients exist. In general, one might expect
that utilizing more neighboring nodes when discretizing
a domain, 
ow equations would yield more accurate
results. Besides concerns of accuracy, if a preferred

ow direction is anticipated, it may be advantageous to
connect a node to its diagonal neighboring node and/or
disconnect it from its certain neighboring node(s).

A typical square diagonal pore network model (S-
DPNM), shown in Figure 4, is considered as a PNM
with \better" node connectivity. In this model, any
interior node is connected to 8 surrounding nodes.

The 
ow equation for a typical interior node (i),
shown in Figure 5(a), may be written as:0@ 8X

j=1

Cij

1Ahi �
8X
j=1

Cijhj = 0: (14)

The assumption of homogeneity and isotropy drops
coe�cients Cij out of the above equation. Noticing
that diagonal pipe lengths (Lij , j = even) are

p
2

times the lengths of horizontal or vertical pipes (Lij ,
j = odd), Eq. (14) takes the form of:�

4 + 4
1p
2

�
hi � X

j=odd

hj � X
j=even

1p
2
hj = 0: (15)

The computational stencil for Eq. (15) is shown in
Figure 5(b):
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Figure 4. A typical square diagonal pore network model
(S-DPNM).

Figure 5. (a) A typical interior node for the S-DPNM.
(b) Computational stencil for the given node.

2.4. Boundary nodes
Two typical boundary nodes (conditions) are consid-
ered here:

1. A boundary of prescribed head;
2. An impermeable boundary (no 
ux).

2.4.1. Prescribed head
This speci�es solution values (heads) at the boundary
nodes. Application of Eq. (13) is meaningless for these
nodes and, therefore, no pipe is needed to connect
them. However, pipes are needed to connect the
boundary nodes to their adjacent interior nodes. This
boundary condition may be written as h(0; y) = �
(Figure 6). Applying Eq. (13) to node i yields:

4hi � h1 � h2 � h3 � h4 = 0;

4hi � h1 � h2 � h4 = �; (16)

which applies to all interior nodes adjacent to the
prescribed head (left) boundary.

Figure 6. A PNM with speci�ed head nodes at left and
impermeable boundary at bottom.

2.4.2. Impermeable boundary
This implies that there is no 
ow normal to the
boundary and may be written as @h

@n = 0, where n
is a direction normal to the impermeable boundary.
Such nodes may be connected to both interior and
adjacent boundary nodes through pipes in a pattern
that guarantees no 
ow into or out of the domain
(Figure 6). In such patterns, any 
ow from interior
to boundary nodes would have to bend 90 degrees and

ow along the boundary pipe.

For equally spaced nodes connected by pipes with
equal cross sectional areas, applying Eq. (11) to a
typical boundary node (j) yields:

3hj � h1 � h2 � h3 = 0: (17)

Eq. (17) is used for every node lying on the imper-
meable boundary, and is the same as forward FD
formulation for this boundary condition.

Since central FD is more accurate than forward
FD in numerical methods [20], numerical modi�cation
may be applied to improve the accuracy of imperme-
able boundary computations in PNMs. To incorporate
the accuracy improvement hydraulically, pipe patterns
for the boundary nodes may be modi�ed by introducing
imaginary nodes below the impermeable boundary
(node 4 in Figure 7). Assuming that 
ow in the
imaginary pipe, 4j, is the same as the 
ow in pipe 2j,
but in the opposite direction, no total vertical 
ow at
node j is dictated. This assumption may be written as:

Qj2 =Qj4!Cj2(h2�hj)=Cj4(h4�hj)!h4 =h2:
(18)

By replacing h2 for h4, Eq. (13) yields:

4hi � h1 � 2h2 � h3 = 0: (19)
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Figure 7. SPNM modi�cation by introducing imaginary
node (node 4) located 4y beyond the impermeable
boundary.

It is worth noting that the above equation is the same
as the central di�erence form for no 
ux boundaries.

A typical boundary node (i) of an S-DPNM with
an impermeable boundary condition at the bottom
edge is shown in Figure 8(a).

For pipes with equal cross sectional areas, apply-
ing Eq. (15) to node i yields:�

3 + 2
1p
2

�
hi � X

j=odd

hj � X
j=even

1p
2
hj = 0: (20)

The computational stencil for this equation is shown in
Figure 8(b).

The procedure of introducing imaginary
nodes/pipes to improve numerical computations may
also be done for an S-DPNM in the same manner
as SPNM (Figure 9(a)). The no 
ow boundary
condition may be implied by assuming that the

ow in corresponding real and imaginary pipes
counterbalance one another. In other words:

Qi6 = Qi2 ! h6 = h2;

Figure 8. (a) A typical boundary node (i) of an S-DPNM
with an impermeable boundary condition at the bottom.
(b) Computational stencil for the given node.

Figure 9. (a) Imaginary nodes/pipes to imply no 
ow
condition at a typical boundary node (i) for an S-DPNM.
(b) Computational stencil of the given node.

Qi7 = Qi3 ! h7 = h3;

Qi8 = Qi4 ! h8 = h4: (21)

Using the above results, Eq. (14) may be written as;�
4 + 4

1p
2

�
hi � h1 � 2h3 � h5 � 2p

2
h2

� 2p
2
h4 = 0; (22)

whose computational stencil is shown in Figure 9(b).

2.5. General formulation
An advantageous feature of the proposed PNMs is
that any number of nodes may be placed at arbitrary
locations in the domain connected to other nodes via
pipes with any arbitrary pattern. This unstructured
node/pipe pattern may be utilized to:

1. Best mimic any anticipated preferred 
ow direction
in the domain;

2. Get more detailed solutions at regions of interest;
3. Better accommodate irregular boundaries.

The general form of Eq. (11) for any typical node (i)
surrounded by n nodes (Figure 10(a)) may be written
as:0@ nX

j=1

Cij

1Ahi �
nX
j=1

Cijhj = 0: (23)

Assigning equal diameters to all connecting pipes
results in an isotropic homogenous domain. Eq. (23)
reduces to:0@ nX

j=1

1
Lij

1Ahi �
nX
j=1

1
Lij

hj = 0: (24)

The computational stencil of the above equation for an
Unstructured PNM (UPNM) is shown in Figure 10(b).
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Figure 10. (a) A typical node surrounded by n nodes in
an Unstructured PNM (UPNM). (b) Computational
stencil of a general UPNM.

By writing Eq. (24) for all unknown nodes of
the domain, the algebraic form of the 
ow equation
becomes:

[K]fhg = ffg; (25)

where f is the in
uence of boundary conditions on the
domain.

3. Example problems

In order to illustrate the capabilities of the proposed
models, three examples are solved. In the �rst example,
steady saturated 
ow in an isotropic square domain
(L � L) is considered (Figure 11). The dimension,
L, may be divided into 2, 4 (shown in the �gure),
8, 16, 32 and 64 sections. The boundaries, x = 0,
x = L and y = L, are subjected to the Dirichlet
boundary conditions of h = 0, h = 0 and h =
sin(�xL ), respectively. The boundary y = 0 is of
a Neumann type, i.e. @h

@y = 0. This example is
solved by four models of SPNM, S-DPNM, SPNMi,
and S-DPNMi, and the results are compared with
analytical (h = 1

cosh(�) sin
��x
L

�
cosh

��y
L

�
), as well as

Figure 11. A typical L� L saturated porous media
domain considered as the �rst example.

linear FE and FD solutions. It is worth noting that the
numerical formulation of equations for SPNMi and FD
are identical and, hence, only FD results are reported.

Since all pipes have the same length, all Cijs drop
out of Eqs. (13) and (17) for SPNM, and one may write
these equations for a typical interior node (e.g., node
8) and boundary node (e.g., node 10) as:

4h8 � h3 � h7 � h9 � h13 = 0; (26)

3h10 � h5 � h9 � h15 = 0: (27)

Writing Eqs. (26) and (27) for all interior and boundary
nodes, respectively, a set of n linear equations is
obtained.

In order to solve this example by S-DPNM,
Eqs. (15) and (20) may be written for a typical interior
node (e.g., node 8) and boundary node (e.g., node 10)
as:�

4 + 4
1p
2

�
h8 � h3 � h7 � h9 � h13 � 1p

2
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� 1p
2
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2
h14 = 0: (29)

The solution for the example is obtained by applying
these equations to relevant nodes.

The example may be solved by S-DPNMi by
writing Eqs. (15) and (22) for interior and boundary
nodes, respectively:�

4 + 4
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2

�
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2
h2
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2
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2
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(30)�
4 + 4
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2

�
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2
h4

� 2p
2
h14 = 0: (31)

Head values are computed by the three proposed
models, as well as FD and FE, and results are compared
with the analytical solution for all nodes. Percent
Relative Error (PRE), de�ned as [20]:����hanalytical � hmodel

hanalytical

����� 100;
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Table 1. PREs obtained at the center of domain (node 13) by di�erent methods.

No. of
Grids

PREs at the center of domain; x = y = 0:5L
FD FE SPNM S-DPNM S-DPNMi

2� 2 31.995 40.389 25.995 30.023 29.312
4� 4 8.459 8.951 5.868 7.635 6.728
8� 8 2.156 2.187 0.808 2.221 1.653

16� 16 0.542 0.544 0.172 0.717 0.412
32� 32 0.136 0.136 0.235 0.260 0.103
64� 64 0.034 0.034 0.156 0.105 0.026

Table 2. Average PREs for all nodes obtained by di�erent methods.

No. of
Grids

Averaged PREs for all nodes
FD FE SPNM S-DPNM S-DPNMi

2� 2 48.797 51.498 15.688 45.123 38.681
4� 4 10.490 10.738 6.571 12.408 8.108
8� 8 2.407 2.424 3.099 3.882 1.834

16� 16 0.573 0.574 1.736 1.396 0.435
32� 32 0.139 0.140 0.952 0.567 0.106
64� 64 0.034 0.034 0.474 0.239 0.026

Table 3. max. and min. values of PREs obtained by di�erent methods.

No. of
Grids

Max. values of PREs over the entire domain Min. value of PREs over the entire domain
FD FE SPNM S-DPNM S-DPNMi FD FE SPNM S-DPNM S-DPNMi

2� 2 65.599 62.607 25.995 60.223 48.050 31.995 40.389 5.381 30.023 29.312
4� 4 16.144 16.032 14.323 24.278 12.156 3.995 4.432 2.570 3.468 3.310
8� 8 4.025 4.019 12.636 10.292 3.045 0.510 0.527 0.114 0.429 0.397

16� 16 1.006 1.005 7.940 4.623 0.761 0.064 0.065 0.009 0.056 0.049
32� 32 0.251 0.251 4.416 2.172 0.190 0.008 0.008 0.001 0.008 0.006
64� 64 0.063 0.063 2.325 1.000 0.048 0.001 0.001 0.000 0.001 0.001

is computed as an accuracy index for the comparison
of results. PREs for head values at the center of the
domain (node 13), as a typical node, are reported in Ta-
ble 1 for di�erent grid sizes. As shown in the table, the
general trend is that the error reduces as the number
of grids increases for all methods. PRE results for the
three models are of the same order or for certain grid
sizes smaller, than FD and FE results. In particular,
S-DPNMi always shows smaller PREs compared to FD
and FE. Quantitatively, results show improvements in
PREs of 8% compared to FD, and 27% compared to
FE for a 2 � 2 grid. These improvements approach
24% compared to both methods for grids of 16 � 16
and higher. Apparently, by introduction of imaginary
nodes for the treatment of Neumann type boundaries,
much better results may be achieved.

To compare the accuracy of the three models with
FD and FE over the entire domain, 1) averaged PREs

for all nodes, 2) maximum and minimum PREs, and
3) percentage of nodes with PREs less than that of FD
and FE are reported in Tables 2, 3 and 4, respectively.
Contour plots of head and velocity vectors are also
shown in Figure 12. As shown, plots from all methods
are very comparable to the analytical plot. Comparing
SPNM vs. S-DPNM in Tables 3 and 4, one may
conclude that for fair discretizations, adding diagonal
pipes would improve average PREs by lowering their
range [min-max]. Apparently, diagonal pipes improve
the results by facilitating the spread of information
across the domain. Hydraulically speaking, taking into
account the diagonal pipes helps better capture the
randomness of the pore connections, and results in
more accurate 
uxes [21]. Introduction of imaginary
nodes (S-DPNMi) further improves the averaged PREs
and lowers the PREs [min�max] range. Compared to
FD and FE, S-DPNMi not only yields better minimum
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Table 4. Percent nodes having PREs less than FD and FE using the three proposed models.

Grids Percent nodes with PREs less than FD Percent nodes with PREs less than FE
SPNM S-DPNM S-DPNMi SPNM S-DPNM S-DPNMi

2� 2 100 100 100 100 100 100
4� 4 100 50 100 100 50 100
8� 8 75 37.5 100 75 37.5 100

16� 16 56.25 25 100 56.25 25 100
32� 32 40.63 6.25 100 40.63 6.25 100
64� 64 23.44 0 100 23.44 0 100

Figure 12. Contour plots of head and velocity vectors using di�erent models.

and maximum PREs, but also lowers the averaged
PREs by �24%. This superiority for S-DPNMi holds
for all grid sizes at all nodes (Table 4).

The fact that in S-DPNMi (unlike FD), diagonal
nodes are also considered, increases correlation of the
node to its surrounding nodes; something that has
apparently caused S-DPNMi to be more accurate than
FD. On the other hand, the relations of the node to
its surrounding nodes in S-DPNMi are not identical
(unlike FE) and depend on the length of bonds.
As shown in Figure 6, nodes that are closer to the
considered node play a more signi�cant role than those
furher away. It seems that this engineered correlation
of a node to its surroundings has made S-DPNM more
accurate than FE.

The second example considers a steady saturated
groundwater 
ow in a triangular domain, shown in
Figure 13. The right boundary is subjected to the
Dirichlet condition of h = sin(�y2L ), where top and
vertices boundaries are impermeable.

Triangular meshes are used to solve this example
by FE (Figure 14). However, the given pattern yields
identical results for FD and FE. On the other hand,
as in the previous example, results for FD and SPNMi
would also be the same.

The procedure of solving this example is the
same as the previous one, except for the impermeable
vertices boundary. Application of SPNM, S-DPNM
and S-DPNMi models to a typical node on the vertices
boundary (e.g. node 7) yields:



1670 P. Monajemi and Gh. Rakhshandehroo/Scientia Iranica, Transactions A: Civil Engineering 20 (2013) 1662{1675

Figure 13. The L� L triangular domain considered in
the second example.

Figure 14. Triangular meshes used to solve the second
example by FE.

2h7 � (h5 + h8) = 0; (32)�
2 + 3

1p
2

�
h7 � (h5 + h8)

� 1p
2

(h4 + h6 + h9) = 0; (33)�
4 + 4

1p
2

�
h7 � (2h5 + 2h8)

� 1p
2

(h4 + 2h6 + h9) = 0: (34)

By comparing head values obtained by all models with
the analytical solution given in the Appendix, PREs
for all nodes are calculated. PREs of a typical node
(node 7) and the averaged PREs of the entire domain
are reported in Tables 5 and 6, respectively. As
shown in the tables, the general trend is that the

Table 5. PREs obtained at node 7 by di�erent methods.

No. of
Grids

PREs at node 7(x = y = 0:5L)
FD SPNM S-DPNM S-DPNMi

2� 2 4.522 7.791 1.365 3.502
4� 4 1.174 3.663 0.394 0.896
8� 8 0.296 1.779 0.455 0.225

16� 16 0.074 0.878 0.293 0.056
32� 32 0.019 0.436 0.163 0.019
64� 64 0.005 0.218 0.086 0.008

Table 6. Averaged PREs for all nodes obtained by
di�erent methods.

No. of
Grids

Averaged PREs for all nodes
FD SPNM S-DPNM S-DPNMi

2� 2 5.609 10.972 0.874 4.057
4� 4 1.184 4.501 0.879 0.894
8� 8 0.262 1.944 0.578 0.199

16� 16 0.061 0.890 0.315 0.046
32� 32 0.015 0.424 0.163 0.011
64� 64 0.004 0.207 0.082 0.003

error reduces as the number of grids increases for all
methods. Comparing SPNM vs. S-DPNM in Tables 5
and 6, one may conclude that adding diagonal pipes,
which results in correlating a node to more of its
surrounding nodes, would improve the results. As in
the �rst example, S-DPNMi (introduction of imaginary
nodes) always shows smaller PREs compared to FD.
Quantitatively, results show improvements in averaged
PREs of � 25% compared to FD for all numbers of
grids in S-DPNMi.

Maximum and minimum PREs and percentage
of nodes with PREs less than that of FD are also
reported in Tables 7, and 8, respectively. As expected,
applying the S-DPNMi model yields more accurate
results for each and every node with a narrower range
of [min�max].

The third example, 2-D potential 
ow around
a cylinder (Figure 15(a)), is too cumbersome to be
solved by FD because it cannot easily model boundaries
with geometric irregularities. Therefore, the example
is solved by FE, and results are compared with UPNM
and UPNMi models. The cylinder, as well as bottom
and top boundaries, are impermeable, and the left and
right boundaries have head values of 20 (m) and 0 (m),
respectively. Symmetry exists about the horizontal and
vertical centre lines, therefore, only a quadrant of the
domain (enclosing 5 unknown nodes) is used as the
computational domain (Figure 15(b)).

It should be noted that the computational pro-
cedure for UPNM and UPNMi models is much easier
than FE because it does not require tedious calculation
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Table 7. max. and min. values of PREs obtained by di�erent methods.

No. of
Grids

Max. values of PREs over the entire domain Min. values of PREs over the entire domain
FD SPNM S-DPNM S-DPNMi FD SPNM S-DPNM S-DPNMi

2� 2 7.086 13.210 1.365 4.447 4.522 7.791 0.029 3.502
4� 4 1.830 6.597 1.614 1.311 0.590 1.542 0.004 0.455
8� 8 0.461 3.252 1.095 0.344 0.074 0.305 0.047 0.056

16� 16 0.116 1.650 0.619 0.087 0.009 0.066 0.018 0.007
32� 32 0.029 0.833 0.329 0.022 0.001 0.015 0.005 0.001
64� 64 0.007 0.419 0.170 0.009 0.000 0.004 0.001 0.000

of coe�cient matrices for each element and their sub-
sequent assemblage. To show the procedure of solving
this example by UPNM, Eq. (24) is applied to a typical
node (node 2):

Table 8. Percent nodes having PREs less than FD using
the three proposed models.

Grids

Percent nodes with PREs less
than FD

SPNM S-DPNM S-DPNMi
2� 2 0 75 100
4� 4 0 2 100
8� 8 0 0 100

16� 16 0 0 100
32� 32 0 0 100
64� 64 0 0 100

Figure 15. (a) Potential 
ow around a cylinder. (b)
Discretized quadrant (shaded area in Figure 12(a)) as the
computational domain.

1:09h2 � 0:09ha � 0:09hb � 0:25h1 � 0:23h3

� 0:2h4 � 0:23h5 = 0; (35)

where head coe�cients (reciprocal pipe lengths con-
necting to node 2) are obtained from Table 9. Applying
Eq. (24) to other nodes and replacing ha, hb, hc and
hd by their known values, one would get a system
of 5 linear equations with 5 unknowns. Application
of UPNMi requires some amendment to impermeable
boundary node formulations. As an example, to treat
node 5, two imaginary pipes 52i and 53i should be
introduced to counterbalance the 
ow in pipes 52
and 53. A computational stencil for node 5 is shown in
Figure 16.

Head values for all 5 nodes are obtained using
UPNM, UPNMi, and linear FE. Comparing the heads
with the analytical solution, PREs are calculated and
reported in Table 10. The analytical solution may be
found as [21]:

h = Ur
�

1 +
a2

r2

�
cos �;

where h is the head, a is the radius of the cylinder,
r and � are coordinates of any point in the domain,
and U is the uniform stream velocity. As shown, using
UPNM yields smaller PREs compared to FE for most
nodes. As expected, application of imaginary nodes
(UPNMi) further improves the results, as evidenced by
much smaller PREs than FE for all nodes. Averaged

Table 9. Lengths of pipes connecting to node 2 and head
coe�cients for that node.

Pipe Lij (m) 1
Lij

( 1
m)

nP
j=1

1
Lij

( 1
m)

2a 10.77 0.09
2b 10.77 0.09
21 4.00 0.25
23 4.43 0.23
24 5.00 0.20
25 4.33 0.23 1.09
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Figure 16. Computational stencil for node 5 using
UPNMi.

Table 10. PREs obtained by UPNM, UPNMi and FE for
all �ve nodes and their average.

Nodes PREs
FE UPNM UPNMi

1 11.004 7.687 6.344
2 28.962 6.133 3.693
3 14.086 4.229 2.443
4 18.994 4.870 1.600
5 5.238 7.754 4.092

Averaged
PREs

15.657 6.135 3.634

PREs for UPNM and UPNMi are 0.4 and 0.23 of
PREs for FE. It may be concluded that computational
procedures for UPNM and UPNMi models are not
only much easier than FE, but also yield much more
accurate results.

4. Conclusion

The Square Pore Network Model (SPNM) was intro-
duced, investigated and used to solve steady saturated

ow in porous media. By applying the continu-
ity equation and using the Hagen-Poiseuille law, a
discretized form of the 
ow equation was derived.
Modi�cations for the model were done by 1) increasing
node connectivity (Square Diagonal PNM; S-DPNM)
in order to have a better spread of information across
the domain, and 2) introducing imaginary nodes and
pipes (S-DPNMi) to model impermeable boundaries.
Furthermore, an Unstructured Pore Network Model
(UPNM), as a generalized formulation for unstructured
discretization of the domain, was given and the e�ects
of introducing imaginary nodes and pipes in the model
were also explored (UPNMi). Applying SPNM, S-
DPNM, and S-DPNMi to the �rst and second examples
yielded average Percent Relative Errors (PREs) that

were comparable to those of FD and FE for the �rst
two models and smaller for the third. It was concluded
that modi�cation in handling impermeable boundaries
by the introduction of imaginary nodes and pipes
and by increasing node connectivity would improve
results considerably. In fact, improvements in PREs
of 8% compared to FD and 27% compared to FE
for a 2 � 2 grid were achieved for the �rst example.
These improvements approached 24% compared to
both methods for grids of 16 � 16 and higher. This
improvement was �25% for all numbers of grids in
the second example. In the third example, which
was too cumbersome to be solved by �nite di�er-
ence, UPNM and UPNMi application resulted in the
average PREs of 0.4 and 0.23 of PREs obtained by
FE, respectively. As before, modi�cation in handling
impermeable boundaries improved the results of the
unstructured model. It was concluded that using
PNM as a numerical tool to solve steady saturated

ow in porous media not only simpli�es the modeling
formulation compared to FD and FE, but also may
yield more accurate results. Applicability of the models
is limited to Partial Di�erential Equations (PDEs)
having spatial derivatives of the form r2

u; steady
saturated groundwater 
ow being one of them. Luckily,
spatial derivatives in many PDEs in engineering and
science problems, such as wave, heat, Laplace, Poisson,
and Helmholtz equations, are of this form.
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Appendix

To solve the second example analytically. the Laplace
equation was solved for the given boundaries in an L�L
square domain, shown in Figure A.1(a). The solution
was found using the separation of variables technique:

h =
1

cosh
� �
L

� cosh
��x

2L

�
sin
��y

2L

�
: (A.1)

By rotating the domain around diagonal AB, as shown
in Figure A.1(b), one would get the solution using the
above equation by replacing y with x, and x with L�y:

h =
1

cosh
� �
L

� cosh
�
�(L� y)

2L

�
sin
��x

2L

�
: (A.2)

Using the superposition principle, the solution of
the Laplace equation for the domain shown in Fig-
ure A.1(c) is found as:

h =
1

cosh
� �

2L

��cosh
��x

2L

�
sin
��y

2L

�
+ sin

��x
2L

�
cosh

�
�(L� y)

2L

��
: (A.3)

It will be shown mathematically that Eq. (A.3) has no

ux across the diagonal AB. In other words, Eq. (A.3)
is shown to be the solution of the triangular domain
in the second example. Consider an L translation for
y, and a 45� rotation for the X � Y coordinate system
(Figure A.2). Then, Eq. (A.3) in the X�Y coordinate
system would be:

h =
1

cosh
� �

2L

��cosh
�
�X
2L

�
sin
�
�(L+ Y )

2L

�
+ sin

�
�X
2L

�
cosh

�
�Y
2L

��
: (A.4)

To �nd the solution in the � � � system, the 45�
rotational matrix is used:�

X
Y

�
=
�
cos(45) sin(45)
sin(45) cos(45)

��
�
�

�
: (A.5)
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Figure A.1. (a) An L� L square domain. (b) Rotated around diagonal AB. (c) Superposition of (a) and (b).

Inserting the above transformation into Eq. (A.4)
yields:

h =
1

cosh
� �

2L

�(
cosh

 
�

2L

 p
2

2
� +
p

2
2
�

!!
sin

 
�

2L

 
L�

p
2

2
� +
p

2
2
�

!!
+ sin

 
�

2L

 p
2

2
� +
p

2
2
�

!!
cosh

 
�

2L

 
�
p

2
2
� +
p

2
2
�

!!)
: (A.6)

Di�erentiating the above equation with respect to �,
and setting �=0 results in:

@h
@�

����
�=0

=
�

2L

p
2

2 cosh
� �

2L

�
(

sinh

 p
2�

4L
�

!
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�
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p
2

2
�

!!
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 p
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4L
�

!
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�
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L�

p
2

2
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!!
+ cos

 p
2�

4L
�
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cosh

 p
2�

4L
�

!
� sin

 p
2�

4L
�

!
sinh

 p
2�

4L
�

!)
;

(A.7)

which simpli�es into:

Figure A.2. Di�erent coordination for the considered
problem.
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(A.8)

By expanding:

sin

 
�

2L

 
1�
p

2
2
�

!!
;

and:
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cos

 
�

2L

 
1�
p

2
2
�

!!
;

the arguments in the two brackets in Eq. (A.8) turn
into zero, resulting @h

@� = 0.
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