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Abstract. The Newton-Raphson method, which is based on the Taylor series expansion,
and which uses the tangent stiffness matrix, has been extensively used to solve nonlinear
problems. This traditional method, especially for the large-scale, is time consuming.
Consequently, iterative algorithms cannot be effective for analyzing the process. In the
incremental-iterative analysis of elastic nonlinear structures, great saving in computation
can be achieved if distinction is made between the predictor and corrector phases. This
paper shows how a simple assumption can improve the computational efficiency of the
nonlinear analysis of structures. It is shown that very high computational efficiency may
be obtained by assuming the pursuit of each Degree Of Freedom (DOF) by a quadratic
curve. Through examples, it is demonstrated how this efficiency significantly decreases
the computing time of analysis compared with time taken to deploy the Newton-Raphson,
modified Newton-Raphson and Conjugate Gradient (CG) methods.

© 2013 Sharif University of Technology. All rights reserved.

1. Introduction

The stability analysis of nonlinear structures includes
the solution of large systems of nomnlinear algebraic
equations for varying values of a control parameter,
which is, in most cases, associated with load ampli-
tude. In structural mechanics, this problem is usually
referred to as that of tracing the equilibrium path of
the system. The numerical method constitutes one of
the most important aspects in the nonlinear analysis
of structures. For deployment of the Newton-Raphson
method, the displacement control methods, the per-
turbation method, the self-correcting incremental pro-
cedure and the incremental stiffness procedure, the
initial value approach is the commonly used solution
for nonlinear problems. Papadrakakis and Gantes [1]
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investigated a method to shorten the time taken to
deploy Newton methods in nonlinear problems.

For three decades now, nonlinear elastic and
inelastic analysis of frame structures has been a subject
of considerable research. Kassimali [2] presented a
numerical procedure for large deformation analysis of
elastic-plastic plane frames. Tabatabaei and Saffari [3]
studied large strain analysis of planar frames using
a normal flow algorithm. Oran and Kassimali [4]
investigated the large deformations for the nonlinear
analysis of plane frames under static and dynamic
loads. Tabatabaei et al. [5] applied the Newton-
Raphson iterative algorithm along the normal flow path
in nonlinear static analysis of frames. Hsiao and Hou [6]
suggested a simple formulation for nonlinear analysis of
elastic frames. Wen and Rahimzadeh [7] used a finite
element method in nonlinear analysis of elastic frames.

Saffari et al. [8] introduced a new algorithm for
nonlinear analysis of space trusses that can reduce the
number of iterations and computing time. Thai and
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Kim [9] presented the large-deflection inelastic analysis
of space truss structures, including consideration of
both geometric and material non-linearities. Greco
et al. [10] proposed a new geometric non-linear
formulation for space truss analysis that uses nodal
positions rather than nodal displacements. Kwas-
niewski [11] suggested the complete equilibrium paths
for several Mises trusses. Saffari and Mansouri [12]
applied a new algorithm for nonlinear analysis of
trusses. Pourazarm et al. [13] proposed a numerical
algorithm for nonlinear analysis of frames, using the
unit displacement method in generating a reduced
stiffness matrix of the structure. Recently, Saffari et
al. [14] proposed a fast methodology for elasto-plastic
analysis of frames using the homotopy perturbation
concept. A method for large deformation elastic-
plastic analysis of space frames was undertaken by
Abbasnia and Kassimali [15,16], and inelastic post-
buckling analysis of truss structures by the dynamic
relaxation method has been investigated by Ramesh
and Krishnamoorthy [17].

In this study, the effect of large displacements
is considered. A quadratic function between forces
and deformations is applied in order to enhance speed
of convergence and to minimize the cycles required
for calculating equilibrium of nodes. Hence, at the
beginning of each load step, using force and given
deformations, a parabolic curve is passed from three
points. The deformations for the next step are ap-
proximated using this curve. This process, using the
Newton-Raphson method, can be continued until the
convergence criterion is satisfied.

In this paper, two categories of structure are
considered: planar frames and space trusses. This
approach is designed to emphasize computational load
control, rather than to offer improvements (e.g. it
ignores the inability of the Newton-Raphson method in
passing limit points) to the Newton-Raphson approach
per se. However, these problems can be overcome using
a form of other methods [8].

2. System equilibrium equation

Consider an arbitrarily framed structure loaded at
the nodes only, and let x denote symbolically the
corresponding deformed configuration. The equations
of equilibrium of the system can be written as:

{f(x)} = {P}, (1)

in which {f(z)} is the resultant of the nodal internal
forces and {P} represents the external nodal forces.
The member force deformation relationships denote
that {f} is a highly nonlinear function of {z}.

In the special case of a plane frame, the end forces
in the global coordinates are represented by a set of

relations as follows [2]:

{F} = [BH{SY, (2)

where [B] is transformation matrix:

-n —-n mL
m m nL'
1 L 0 0
Bl=% 1, » —mr| (3)
-m —-m —nlL'
0 L 0
with:
m = cos q, n = sina. (4)

In Eqgs. (3) and (4), L’ and « refer to the length and
orientation, respectively, of the chord of the element in
its deformed configurations, as shown in Figure 1. A
procedure for obtaining L', m, n has been published
in [2] and is not repeated herein. In Eq. (2):

M,
($y=4 My, (5)
Q

denote the local member end forces as shown in
Figure 2 [2].

Figure 1. Member forces and deformations in global
coordinates.
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Figure 2. Member forces and deformations in local
coordinates.
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Figure 3. Initial and current configuration for typical
truss member.

For a space truss element (Figure 3) the relation-
ship between the end forces of the member in global
and local coordinates is [18]:

{F} = {B}Q. (6)

Here, @ is the local internal axial force of the truss
member, and {B} is the transformation matrix:

in which [, m and n are the cosine directors of the
element axis.

A detailed discussion for obtaining I, m, n and @
is provided in [18].

2.1. Material nonlinearity analysis
2.1.1. Truss element
The accuracy of the inelastic response of structures
depends on the accuracy of the member’s load-
displacement relationship used in the analysis. A num-
ber of models have been introduced in the literature
to predict the nonlinear behavior of space trusses. In
this study, a stress-strain relationship proposed by Hill
et al. [19] is adopted to predict the inelastic post-
buckling behavior of trusses. The force-strain curve
(@ — u/L) is assumed applicable for steel material
both in tension and compression states and is shown
in Figure 4.

The curve can be expressed by the following
relations:

S| F -
Y

Qy

Figure 4. Proposed solution scheme.

- For tensile members:

AE f
Q=11 uw for |u| < u, ()
AF, for |u| > uy

where L is length of element, A is cross-sectional
area, I is modulus of elasticity, F, denotes yield
stress and u, is Fy,.L/E.

- For compressive members:

A.E

==
Q= for u < e,
Qi+ (Qer — Q)).elm(XatXa/u! [ L)u’ /L] (©)
for u > u.,
Here:

Qer = EI/L*.

I is weak axis moment of inertia. (; is the
asymptotic lower stress limit and is defined as
@ = r.Q.. The corresponding critical buckling
displacement is u., = Q...L/(A.E), while u’ is
defined as v = uw — wu.,. Parameters X; and X,
are constants, depending on the slenderness ratio of
the compressive members.

It should be noted that when a member is in a
compression state and u > u., the tangent modulus,
Ey, has to be used instead of E. The tangent modulus
is obtained as:

1 ; ,
E =-— Z(Q” _ Ql).e[*(xﬁxﬂ/“ /L)u' /L]

(Xl +%X2\/UI/L) (10)

It can be seen that if the loading path reaches point A,
the member behavior follows the relations in Eq. (8).
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2.1.2. Frame element

A-perfectly plastic material associated with the plastic
hinge concept is used in this study to consider the
material non-linearity effect. In an elastic perfectly-
plastic material, the effects of strain hardening are
disregarded. It further implies that once the yield
moment M, is reached, the material yields and cannot
withstand further stress.

It is of note that yield moment is commonly
defined by a yield criterion. A variety of yield cri-
teria definitions have been introduced in structural
engineering. In this paper, the AISC-LRFD 2005 [20]
criterion, considering bending moment and axial force
interaction, is used for steel elements. This criterion
and its corresponding descriptive relation are shown
below:

2Q.
fo

9 (e 4 o) =
+ Mpew + Mpey 1
r 19 < 0.2

(11)

|

Q.
Q‘ MCI MC!/ J—
Q. T (M; + Mpcy> =1

for \QQ\ > 0.2,

©|oo

in which M, = ¢,ZF,, M, represents reduced plas-
tic moment capacity in the presence of axial force
(Qc = ¢.Qn); where ¢, and ¢, are bending and axial
resistance factors, respectively; F}, denotes yield stress,
and Z stands for plastic modulus.

3. Nonlinear dynamic analysis

The method of analysis used in the present study is
briefly reviewed herein. Detailed derivation of the
method can be found in [18].

3.1. Egquations of motion
Among time integration methods, the Newmark
method is the most extensively use in nonlinear dy-
namic analysis of structures because of its accuracy and
stability. Therefore, the Newmark method is adopted
here to solve the nonlinear equation of motions of struc-
tures. The Newton-Raphson iteration is performed at
each time step to dissipate any unbalanced forces.
The incremental equation of motion of a structure
can be expressed as:

[M]{AZ} + [C]{Az} + [r]{Ax} = {AP},  (12)

in which {AP} indicates load increments, {AZ}, {Az}
and {Az} represent increments of accelerations, ve-
locities and displacements, respectively, and [M], [C]
and [7] are the mass, damping, and tangent stiffness
matrices, respectively.

With the adoption of the average acceleration
method of the Newmark family (5 = 0.25,y = 0.5),

incremental acceleration and velocity at the first itera-
tion of each time step can be expressed as:

(A%} = oo {An) - T i) —2(5),  (13)

(A} = %{M} —oa). (14)

Substituting Eqgs. (13) and (14) into Eq. (12), the
incremental displacement can be given by:

[F{Az} = {AP}, (15)

in which [F] and {AP} are the effective stiffness matrix
and incrementally effective load vector, respectively,
given by:

4 2

7 = 55 IM]+ €]+ 1), (16)

(0P} ={ar) + (g [M1+2C1) (@)

+2[M] {Z:} . (17)

At the first iteration of each time step, the total
displacement, velocity, and acceleration at time ¢ + At
is updated according to the incremental displacement
vector {Az} as:

(2001} = (o} + {Ac), (18)
. . 2

{#ig1} = —{&:} + Az {Ax}, (19)

fEin) =~ (8 - (B0 + 5 (A0} (20)

For the second and subsequent iterations of each time
step, the structural system is solved, subject to the
effect of the unbalanced load {AQ}, as:

[F1{AAz} = {AQ}, (21)
where the unbalanced load {AQ} is determined based
on the total external load {P}, inertial force, damping
force, and updated internal force {f}, as follows:

{AQ} = {Pipa} — [M]{&is1} — [CHEiga } = {f}

(22)
When the convergence criterion is satisfied, the struc-
tural response is updated for the next time step as:

{Az"} = {Ad"} + {AAx}, (23)
{win} = {zi} + {Ad1 ), (24)
B} = — {ii} + o (a1} (25)

4 4 .

{Zip} = —A{ai} - At {#:} + N {AzFHL} 0 (26)
The details of the method for the application of the
Newmark method and the Newton-Raphson iteration
are as follows [21]:
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Step 1. Predictor phase:

I. Form the effective stiffness matrix [7];
II. Form the effective force vector {AP};
III. Solve for {Az} using Eq. (15).

Step 2. Corrector phase (force recovery):

I. Update structural configuration and motion;

II. Update the member force.

Step 3. Convergence:

I. Compute the unbalanced load;

II. Check convergence: If the convergence exists,
update structural configuration and motion at time
t + At and go to the next time step. Otherwise,
apply the unbalanced load on the structure system
and go to Step 1.

4. Nonlinear analysis algorithms

In this section, three methods and a new approach for
nonlinear analysis of structures are described.

4.1. Newton-Raphson method

The Newton-Raphson method offers one of the popular
iterative methods for solving nonlinear equations. Via
this method, an approximate solution is estimated, and
then an unknown value is added as a corrector value
to improve the initial solution. Using Taylor series,
the system of nonlinear equations can be changed to
linear form, and by solving this linear system, it is
possible to achieve the corrector value and an improved
solution. This process is continued until an acceptable
approximation is obtained [22].

4.2. Modified Newton-Raphson method

For the conventional Newton-Raphson method, the
tangent stiffness is reformed every iteration and, for the
modified Newton-Raphson method, it is only reformed
in the first iteration. The conventional Newton-
Raphson method normally takes fewer iterations for
convergence, but the computing time for each iteration
in the modified Newton-Raphson method is shorter.
This is significant because the solution and formation
of the tangent stiffness matrix is a time-consuming
process.

4.3. Conjugate Gradient (CG) method

The problem of solving nonlinear equations by the CG
method may be viewed as a problem of minimizing
a twice continuously differentiable nonquadratic func-
tion. Papadrakakis and Gantes [1] presented some
procedures to truncate the Newton-Raphson method.
The truncated Newton method is defined by the pre-
conditioned CG to compute the search direction, and

the details of this method can be found in the afore-
mentioned reference.

4.4. Quadratic path as an initial guess

The incremental-iterative methods may be the most
popular solution methods used in nonlinear analysis. In
the linear incremental method, load-deflection behavior
is approximated as piecewise linear, which produces
unbalanced forces between externally applied loads and
internal nodal loads. The presence of these unbalanced
forces violates the equilibrium of the structure. If
the unbalanced forces are not eliminated or reduced
to a certain acceptable level, the calculated load-
displacement relation will drift away from the true
behavior of the structure. An iteration procedure may
be used to eliminate these unbalanced forces in each
incremental step. It is, therefore, necessary to use an
incremental-iterative solution method to obtain more
accurate results.

In the incremental-iterative analysis of elastic
nonlinear structures, great saving in computation can
be achieved if distinction is made between the predictor
and corrector phases. The predictor relates to the
solution of structural displacements for given load
increments, which affects only the number of iterations.
For the sake of the iterations, the equations used in the
predictor need not be exact, but should be accurate
enough not to mislead the direction of iterations. To
approximate a curve, one naturally thinks of using
a series of segments. The smaller the size for these
segments, the closer the approximation will be, but the
heavier the computational effort required.

In this paper, it is assumed that each DOF
of displacements follows from a quadratic function,
independently. As an initial approximation, this as-
sumption is used at the beginning of load stepping.
Therefore, there is no need to construct the tangent
stiffness matrix at the beginning of each load step
and so, the analytical computing time will be re-
duced. Furthermore, a more accurate approximation
may be obtained by using a quadratic function as a
rapidly converging iterative method. In the proposed
technique, and like the modified Newton-Raphson
method, the tangent stiffness is reformed at only the
first iteration. The procedure can be summarized as
follows.

The total external nodal load on a structure, at
each loading step {F;}, can be calculated by production
of a total load ratio at each step, A;, and a given ref-
erence load {P.r} (in the case of proportional loading,
the total external load vector can be obtained by simple
scaling of a reference load vector) is applied through a
series of load increments {AP}. Mathematically, this
is stated as:

{Pi} = Al Pret} = Z AP. (27)



1600 I. Mansouri and H. Saffari/Scientia Iranica, Transactions A: Civil Engineering 20 (2013) 1595-1604

The approximate displacements vector at the (z + 1)th
step, {d"T1}, can be estimated as (i > 3):

{d} = p{d'}, (28)
where:
it
= 7 29
1 i (29)

Here, dj- is a scalar which represents the displacement
of the jth DOF of the structures at converged step i,
and d@l is the estimated displacement of that DOF
at the (¢ + 1)th step and kth iteration, which can be
calculated as follows:

)\H»l 2

i _ T .

diyt = ([A7Hd})" { X o (30)
1.0

in which matrix [A] is:

(A=2)7 A2 10
[4] = (Aiflgz Xto10], (31)
(A7) A1.0

and:
i—2
o
d;

and the superscript T represents transposition.

A program implementing the two-point algorithm
has been written in MATLAB and representative
results are provided. Material nonlinearity is not
presently included in the algorithm. The graphical
representation of this process is shown in Figure 5.
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Figure 5. Proposed solution scheme.

5. Numerical examples

Four numerical examples were solved in a microcom-
puter environment so that the efficiency of the proposed
procedure used together with the Newton-Raphson
and modified Newton-Raphson methods in nonlinear
behavior of planar frames could be compared. The
computer program was developed based on the proce-
dure described in this paper. All examples have been
solved with a 32 bit Pentium 2.00 GHz processor (2
CPUs). For the solution of nonlinear equations, a new
iterative method is adopted and the iterative process
will stop when the convergence criteria are satisfied.
The convergence criterion, based on displacement, used
herein, is given by:

(33)

where e is the error tolerance. All the numerical
examples presented here use a tolerance of 1073, It
should be noted that the computing time is for twenty
analyses in all examples.

5.1. Example 1
Figure 6 shows a two-bay, six-storey frame subjected to
distributed gravity and lateral loads with its associated

o (T LT T T TTI T amason
IPE240 § § A
p OO
o JITTTTTTT T T TTT
g 14.4P % =
, JOTTTTTAT | 5
AN nawwwwsy Bawenees I
o T T
Y

4—-6m —bi(— 6m —p
|

Figure 6. Two-bay six-storey frame.
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Figure 7. Load-displacement curve for two-bay six-storey
frame.

data [22]. The elastic modulus for all members E is
20500 kN/cm?. It is assumed that P = 102.2 kN
and AX = 0.02. In this example d; is 61. The
developed method here is applied to plane frames in
which elastic-perfectly plastic behavior is assumed for
structural material, while conventional plastic hinges of
zero length are used to model the plasticity effect. The
path of load-deformation curves is shown in Figure 7.
To compare the performance of the proposed method,
the results of analyses are summarized in Tables 1
and 2.

5.2. Example 2

The star truss, shown in Figure 8, having 24 elements
and 13 nodes with pin supports at the outer nodes, is
taken from [18], which provides a good opportunity to
evaluate the efficiency of the method discussed here.
The cross-section area, modulus of elasticity and mass
per unit length for all members are A = 6.45 c¢cm?,
E = 6.9 MPa and m = 690 N.5? /cm?, respectively. A

P
|
L L L

+—rt————r————t+——»
45.462 64.520 64.520 45.462
T

Figure 8. Star dome truss, dimensions are given in cm.

p(t)
A

ta I

Figure 9. Dynamic forcing function (tq = 0.01 Sec).

dynamic forcing function considered for this structure
is shown in Figure 9.

Figure 10 shows the load-displacement curve ob-
tained by applying the method developed during the
present study.

Table 1. Corresponding displacements (mm) obtained by current and other methods in Example 1.

Modified

CG method Quad. path

Newton-Raphson

Load (kN) Newton-Raphson
16.35 61.84
34.75 145.13
77.26 399.09
105.16 681.85

145.13
399.09
681.85

61.84 61.83 61.84
144.28 146.21
399.41 400.00
682.07 681.77

Table 2. Computing time of 20 times analysis for two-bay six-storey frame (sec).

Modified

Newton-Raphson

CG method Quad. path

Newton-Raphson

292.22

198.72

99.01 77.55
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Figure 10. Load-deflection curve for Example 2.

The results show that the computing time used
in deploying the classic Newton-Raphson approach is
more than that used by applying our method. The
results are presented in Tables 3 and 4.

5.3. Example 3
The circular dome truss taken from Thai and Kim [9]
is shown in Figure 11. This structure is subjected
to a vertical load at the apex and has 168 elements
with 73 nodes, with a total of 147 degrees-of-freedom.
The out-of-plane motion has been constrained with pin
supports added to each end of the truss. The cross-
sectional area, A, is equal to 50.431 cm? for all the
members. Also, the following parameters are assumed
for this dome: E = 2.04 x 10* kN/cm?, P = 820 kN
and A\ = 0.024.

For this truss, d; can be given as 117. The
proposed algorithm is applied to two cases of elastic and

P, A(117th DOF)

66.9|
116
135

181 T194.9 T 204.1 580 !

Figure 11. Circular dome truss; dimensions are given in
cm.

Inelastic Post-Buckling (IPB) analyses of this truss.
Figure 12 shows the variation of vertical displacement
with the load P. Tables 5 and 6 document the
performance of the methods.

5.4. Example 4

This truss, shown in Figure 13, with 264 elements
and 97 nodes, with pin supports at the outer nodes,
gives a possibility of comparison with results in the

Table 3. Corresponding displacements (cm) obtained by current and other methods in Example 2.

Load (kN) Newton-Raphson Modified CG method Quad. path
Newton-Raphson
3.55 2.28 2.28 2.30 2.28
10.67 8.44 8.45 8.43 8.45
15.58 19.60 19.59 19.62 19.61

Table 4. Computing time of 20 times analysis for Example 2 (sec).

Modified

Newton-Raphson

CG method Quad. path

Newton-Raphson

44.03 26.48

19.37 15.92

Table 5. Corresponding displacements (cm) obtained by current and other methods in Example 3.

Load (kN) Newton-Raphson Modified CG method Quad. path
Newton-Raphson
149.46 0.49 0.49 0.49 0.49
400.0 1.42 1.42 1.40 1.41
600.0 2.48 2.48 2.47 2.47
750.0 3.66 3.66 3.65 3.65




I. Mansouri and H. Saffari/Scientia Iranica, Transactions A: Civil Engineering 20 (2013) 1595-1604 1603

Table 6. Computing time of 20 times analysis for circular dome truss (sec).

Newton-Raphson Modified CG method Quad. path
Newton-Raphson
93.71 71.25 37.44 24.07

Table 7. Corresponding displacements (cm) obtained by current and other methods in Example 4.

Load (kN) Newton-Raphson Modified CG method Quad. path
Newton-Raphson
5.46 0.89 0.89 0.90 0.89
17.65 3.41 3.42 3.42 3.43
27.11 7.96 7.96 7.97 7.93
900 Table 8. Computing time of 20 times analysis for
sood | 11;;;56[1113] _ Schewdeler’s truss (sec).
700- Newt Modified
6004 ewton- Newton- CG method Quad. path
P Raphson
= 5001 Raphson
) 4
& 4004 121.29 87.35 54.28 26.34
3004
35
2004
1004 304 reensasaeas
254
0 T v T T T
0 1 2 3 4 5 6 2 204
Displacement (cm) 2 o — —
Q154 =
Figure 12. Load-displacement curve for circular dome
truss. 104 ——— Elastic analysis
5 — — IPB analysis
....... Ref. [10]
0 T T T
5 10 15 20

Vertical displacement of center node (cm)

Figure 14. Load-displacement curve for Schewdeler’s
dome truss.

literature [10]. The axial stiffness for all members is
EA = 640 x 10® kN. The external loading was equip-
ment loading, which consists of P = 30 kN at the crown
node and AX = 0.033. For this structure, d; is 291.
The load-displacement curve for this structure
is shown in Figure 14. Tables 7 and 8 documents
the comparison between results obtained using the
Newton-Raphson and the newly introduced method.

6. Conclusions

The implementation of a simple and effective method

P|A (291th DOF) has been discussed. The use of the quadratic function
between load and deflections as the initial guess at the
—_— beginning of each load step allows easy implementation
RAEE of large displacement analysis. In other words, in
e ) .
the proposed technique, the quadratic curve plays the

Figure 13. Schewdeler’s dome truss; dimensions are predictor role. The deformations for the next step are
given in cm. approximated using this curve. In this method, there is
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no need to construct the tangent stiffness matrix at the
beginning of each load step and, so, the computing time
of analysis will be reduced. A numerical procedure was
written into a computer program. The results reveal
that deployment of the quadratic path offers high ac-
curacy and can be an efficient technique for geometrical
and material nonlinearity analysis of structures which
are otherwise inconveniently time-consuming.
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