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Abstract. Theories of the rotational kinematic hardening model are introduced in detail.
This model is used to predict soil behaviors under large stress reversals by incorporating
the rotation and intersection of isotropic hardening yield surfaces in principal stress space.
During the monotonic loading, the model behaves the same as isotropic hardening model,
but once stress reversals occurs, new kinematic yield surfaces will generate, then these yield
surfaces evolve (e.g. rotate, shrink, expand, vanish etc.) obeying the rotational kinematic
hardening rule in the process of loading. A general plasticity formula of rotated yield
surface or plastic potential surface in the principal stress space is given in this research,
which is the basis of the rotational kinematic hardening model. It is also a very integral part
to design logical procedures to determine the load mode of soil element during surfaces'
evolution. New logical procedures developed by this paper have been successfully used
within the framework of Lade-Kim model; test results and model predictions showed a
good consistency in stress reversal triaxial tests, using loose Santa Monica beach sand.
Source codes of logical procedures to implement the rotational kinematic hardening model
within the framework of Lade-Kim model are provided at the end of this paper to give
readers a further understanding.

c 2013 Sharif University of Technology. All rights reserved.

1. Introduction

A reasonable prediction of soil deformation under
various types of loading is of increasing importance
for practical problems in engineering. Many models
were developed in the past years under the conventional
theory of plasticity (e.g. [1-5]). These models could give
satisfying description of soil behaviors under monotonic
loading, however, they are incapable of predicting
large stress reversal and cyclic loading, which attracts
great attention in earthquake engineering and o�shore
structure [6,7]. With the rapid development of design
requirements, structures that su�er from large stress
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reversal or cyclic loading should be analyzed using new
theories.

Conventional plasticity theory assumed that the
domain enclosed by the yield surface is totally elastic,
thus only elastic deformation could occur within the
yield surface during stress reversals. Plastic deforma-
tion would not be generated during the unloading and
loading process until the stress penetrates the current
yield surface. However, many test results indicated
that large stress reversals in particle materials [8,9]
or metals [10] all results in plastic deformation (e.g.
in the process of unloading and reloading, a stress-
strain curve with a closed hysteresis loop will form).
Currently, it is a tendency to extend plasticity theory
to reect this part of plastic deformation within the
yield surface.
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Dafalias and Popov [11-13] �rst introduced the
two surfaces model for complex loading of metals,
and Dafalias [14,15] generalized it to the framework
of \bounding surface model" for any materials. In
the meantime, Hashiguchi et al. [16-25] proposed the
concept of \subloading". Both the \subloading" model
and \bounding surface" model are two surface models
with the outer yield surface called \normal yield sur-
face" or \bounding surface", the inner surface called
\subloading surface" or \loading surface". The di�er-
ences of these two models are that di�erent methods are
used to get plastic modulus of the current stress point.
In the bounding surface model, plastic deforms at any
interior points of the bounding surface, where plastic
modulus is obtained by interpolation from the \image
point", according to the geometric distance in the stress
space, proper \mapping rule"(e.g. radical mapping
rule) should be prede�ned to map the current stress
point to the \image point" on the bounding surface,
while in the \subloading surface" model, the plastic
modulus of the current stress point is obtained using
the consistency condition of the \subloading surface".
In recent years, \bounding surface" or \subloading
surface" concept was used to improve the existing
models by many scholars. Andrianopoulos et al. [26]
incorporated the critical state soil mechanics with the
bounding surface model to simulate earthquake soil
liquefaction. Suebsuk et al. [27] improved Structured
Cam Clay (SCC) model with concept of bounding
surface for overconsolidated structured clays. Nakai
and Hinokio [28] expanded the tij-clay model with
the concept of subloading surface concept to reect
the density or con�ning pressure on deformation and
strength of the soil. Yao et al. [29] applied the concept
of subloading surface to a so-called \UH" model to
describe the overconsolidated behaviors of soil; this
model was also used to simulate soil behaviors under
cyclic loading. Pedroso and Farias [30] extended the
Barcelona Basic Model (BBM) for unsaturated soil
under cyclic loading with the concept of subloading. In
two surfaces model, evolution rules of the outer surface
or inner surface during loading were also suggested by
the pioneers.

In recent years, increasing experiments showed
that rotation of the yield surface predicted more accu-
rately than the translation of the yield surface in stress
reversals [31,32]. Hashiguchi and Chen [22] introduced
rotational hardening of yield surface for description of
soils' anisotropy. Yao et al. [33] proposed a dynamic
\UH" model in which rotational hardening rule was
also introduced to reect stress-induced anisotropy.
Lade and Inel [31] pointed that two surface models
or multi-surface models must follow the tangency con-
dition such that surfaces can not intersect each other
during evolution. For noncircular yield surfaces, this
may lead to numerical di�culties when encountered

tangency condition. However, simple conic surfaces
did not conform to the experimentally observed shape
of the yield surface. Other surface evolution laws or
\mapping rule" may introduce new model parameters,
which may increase di�culty and cost in practical
application. To overcome such problems, Lade and
Inel [31,32] and Lade et al. [34] proposed the rotational
kinematic hardening model to predict soil behaviors
under large stress reversals. In rotational kinematic
hardening model, yield surfaces are formed by intersec-
tion of isotropic hardening surface with new generated
surface; therefore, no tangency condition is needed.
Simple evolution rules are also adopted so that no new
parameter is added. This model may be a stepping
stone towards describing behavior under cyclic loading.
Therefore, further studies are needed.

This paper deduced the general plasticity formula
of a rotated isotropic yield surface in principal stress
space, which was the foundation of the rotational
kinematic hardening model. Load mode of rotational
kinematic model is more complex than in conventional
elastoplastic model; therefore, special logical proce-
dures are necessary in determining the load mode of the
soil element. New logical procedures designed by this
research were successfully used within the framework
of Lade-Kim model [35-37]. Model predictions and
tests results during large stress reversals have good
consistency. Source codes of Lade-Kim model, as
well as the performing steps of rotational kinematic
hardening, are listed at the end of this paper to
help the readers in further understanding of rotational
kinematic hardening model.

2. General plasticity formula of kinematic
hardening model

2.1. Transformation relation between normal
principal stress and rotated principal
stress

In the rotational kinematic hardening model, new
rotated kinematic surface will be generated after a
stress reversal, with its pseudo-hydrostatic axis passing
through the stress reversal point, and then the direction
of kinematic yield surface is determined. Note that
the shape of kinematic yield surface is also the same
as isotropic yield surface. The stress reversal point is
de�ned as the tip of the new kinematic yield surface;
in this way, size of the rotated kinematic yield surface
is determined. Therefore, all information about the
rotated kinematic yield surface is known.

Directions of the new kinematic yield surfaces
were depicted in Figure 1. Rotational degrees of
freedom were shown as angles corresponding to in-
plane, out-of-plane and axial rotations. From the
evolution rule of kinematic yield surface [34], the
pseudo-hydrostatic axis will always rotate towards the
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Figure 1. Rotation angles of kinematic yield surface in
principal stress space.

hydrostatic axis; thus, the out-of-plane angle will
always be zero. Lade et al. [34] pointed that kinematic
surface would be free to rotate about its axis, this
additional axial rotation should be taken into account;
however. This may introduce complexity and numer-
ical di�culties of this model. Simply, it is suggested
to �x the kinematic surface against rotation about its
own axis.

In accordance with the above discussion, the
rotated principal stress could be expressed by principal
stress in normal principal stress space as follows, where
rotated principal stress is indicated by a star:24��1��2

��3

35 =

24 n2
1(1� cos�) + cos�

n1n2(1� cos�)� n3 sin�
n1n3(1� cos�) + n2 sin�

n1n2(1� cos�) + n3 sin�
n2

2(1� cos�) + cos�
n2n3(1� cos�)� n1 sin�

n1n3(1� cos�)� n2 sin�
n2n3(1� cos�) + n1 sin�
n2

3(1� cos�) + cos�

3524�1
�2
�3

35 ; (1)

where � is positive if anti clockwise, �1, �2, �3 are
principal stress in normal stress space; ��1 , ��2 , ��3 are
principal stress in rotated stress space, and:

�n = (n1; n2; n3) =
�A � �B

k�Ak k�Bk sin�AB

=
(�3B��2B ; �1B��3B ; �2B��1B)p

(�3B��2B)2 + (�1B��3B)2+(�2B��1B)2
;
(2)

is the unit normal vector of the plane in which kine-
matic surface rotate; �iB(i = 1; 2; 3) is the principal
stress of point B. Eq. (1) can be simply expressed as
follows:
��i = Tij�j ; (i; j = 1; 2; 3): (3)

Here, use Einstein convention of summation over re-
peated indices, and:

T =

24 n2
1(1� cos�) + cos�

n1n2(1� cos�)� n3 sin�
n1n3(1� cos�) + n2 sin�

n1n2(1� cos�) + n3 sin�
n2

2(1� cos�) + cos�
n2n3(1� cos�)� n1 sin�

n1n3(1� cos�)� n2 sin�
n2n3(1� cos�) + n1 sin�
n2

3(1� cos�) + cos�

35 ; (4)

is the transform matrix.

2.2. General plasticity formula of rotated yield
surface in principal stress space

Yield surface formula of the rotational kinematic hard-
ening model could be generally written as:

F (I1; I2; I3) = f(H); (5)

or:

F (�1; �2; �3) = f(H); (6)

where I1, I2, I3 are invariants of the stress tensor �ij ,
which can be de�ned by:

I1 = �x + �y + �z; (7)

I2 =�xy�yx + �yz�zy + �xz�zx

� (�x�y + �y�z + �z�x); (8)

I3 =�x�y�z + �xy�yz�zx + �yx�zy�xz

� (�x�yz�zy + �y�zx�xz + �z�xy�yx): (9)

In Eqs. (5) and (6), function f is the hardening rule
with its parameter H, which usually relates to plastic
strain.

In the rotated principal stress space, formula of
the yield surface is the same as before with the stress
values transformed into the rotated stress; thus, yield
surface can be expressed as below:

F (I�1 ; I�2 ; I�3 ) = f(H); (10)

or:

F (��1 ; ��2 ; ��3) = f(H); (11)

where I�1 , I�2 , I�3 and ��1 , ��2 , ��3 are invariants and
principal stress in the rotated principal stress space,
which can be calculated from Eqs. (1) to (4).
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In numerical simulation, elastoplastic matrix is
necessary; here the formula of the exibility matrix are
given directly.

[Cep] = [De]�1 +
�@F
@�

� �@G
@�

�T
A

; (12)

where De is the elastic matrix; @F@� is the normal vector
of the yield surface; @G

@� is the normal vector of the
potential surface; and A is related to hardening rule
which is written as:

A = F 0
�
@H
@"p

�T �@G
@�

�
; (13)

where F 0 is the derivative of the F .
If the isotropic hardening yield surface is rotated,

then its normal vector is:
@F
@�

=
@F (��1 ; ��2 ; ��3)

@�
=
@F (��1 ; ��2 ; ��3)

@��1
@��1
@�

+
@F (��1 ; ��2 ; ��3)

@��2
@��2
@�

+
@F (��1 ; ��2 ; ��3)

@��3
@��3
@�

:
(14)

From Eq. (4), Eq. (14) becomes:

@F
@�

=T1j
@F (��1 ; ��2 ; ��3)

@��1
@�j
@�

+ T2j
@F (��1 ; ��2 ; ��3)

@��2
@�j
@�

+ T3j
@F (��1 ; ��2 ; ��3)

@��3
@�j
@�

: (15)

Here, use Einstein convention of summation over re-
peated indices.

In the principal stress space, � = [�1; �2; �3]T ,
thus @�1

@� = [1; 0; 0]T ,@�2
@� = [0; 1; 0]T , @�3

@� = [0; 0; 1]T ,
however, in numerical calculation components of stress
are often used, i.e. � = [�x; �y; �z; �xy; �yz; �zx]T ,
therefore, it will be more complex to obtain the @�i

@� .
Here, the relation of the principal stress and stress

components is introduced. Recall that the principal
stresses are the three roots of the following equation:

�3 � I1�2 � I2� � I3 = 0;

I1 = �x + �y + �z; (16)

where:

I2 =�xy�yx + �yz�zy + �xz�zx

� (�x�y + �y�z + �z�x);

I3 =�x�y�z + �xy�yz�zx + �yx�zy�xz

� (�x�yz�zy + �y�zx�xz + �z�xy�yx):

Three roots of Eq. (16) indicates the relationship of
principal stress and stress components in a explicit
formula. According to the \root formula" of Eq. (16):

�1 = 2
q

J2
3 cos � + I1

3

�2 = 2
q

J2
3 cos(� � 2

3�) + I1
3

�3 = 2
q

J2
3 cos(� + 2

3�) + I1
3

9>>>>>>>=>>>>>>>;
; (17a)

where:

cos 3� =
3
p

3
2

J3

J
3
2
2

; (17b)

J2 = sxsy + sysz + szsx � �2
xy � �2

yz � �2
zx; (17c)

J3 =sxsysz + 2�xy�yz�zx � sx�2
yz

� sy�2
zx � sz�2

xy: (17d)

Therefore:

@�1

@�
=� 2

r
J2

3
sin �

@�
@�

+ cos �
1p
3J2

@J2

@�

+
1
3
@I1
@�

; (17e)

@I1
@�

=
�
1 1 1 0 0 0

�T ; (17f)

and:

@J2

@�
= � �sx sy sz 2sxy 2syz 2szx

�T ; (17g)

@J3

@�
=
�
sysz � s2

yz � J2
3 szsx � s2

zx � J2
3

sxsy � s2
xy � J2

3 2(szxsyz � szsxy)

2(sxyszx � sxsyz) 2(syzsxy � syszx)
�T ;
(17h)

@�
@�

= �
p

3
2
J

3
2
2
@J3
@� � 3

2J3J
1
2
2
@J2
@�

J3
2

s
1�

�
3
p

3J3

2J
3
2
2

�2
; (17i)

where sij is the deviatoric part of stress tensor.
Substituting Eqs. (17f) to (17i) into Eq. (17e),

stress gradients of �1 is obtained; similarly, derivatives
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of the other two principal stresses are:

@�2

@�
=� 2

r
J2

3
sin
�
� � 2

3
�
�
@�
@�

+ cos
�
� � 2

3
�
�

1p
3J2

@J2

@�
+

1
3
@I1
@�

; (17j)

@�3

@�
=� 2

r
J2

3
sin
�
� +

2
3
�
�
@�
@�

+ cos
�
� +

2
3
�
�

1p
3J2

@J2

@�
+

1
3
@I1
@�

: (17k)

The normal vector of potential surface @G
@� can be

obtained from Eqs. (14) to (17) with plastic potential
function G substituting for F . Hardening rule of
the rotated kinematic yield surface Eq. (13) will be
discussed in the next section.

2.3. Brief description of Lade-Kim model
The above-mentioned general plasticity formula could
be used within the framework of any constitutive
model. This paper adopted the Lade-Kim model [35-
37] as an example. The following derivations are nec-
essary for us before discussing its kinematic hardening.
The total strain increments are divided into elastic and
plastic component such that:

d"ij = d"eij + d"pij : (18)

The strain increments are calculated separately; the
elastic strains by Hooke's law and the plastic strain by
the plasticity theory.

Elastic behavior
Elastic modulus is expressed in the following form, and
the Poisson's ratio � is assumed to be constant:

E = M:pa
�
�3

pa

��
; (19)

in which pa is atmospheric pressure, �3 is the third
principal stress, M and � are material parameters.

Yield surface and stress level
The yield surface describes the contours of equal total
plastic work; the total plastic work serves as the
hardening parameter. The isotropic yield function is
de�ned as:

F =
�
 1
I3
1
I3
� I2

1
I2

� �
I1
pa

�h
eq; (20)

in which:

q =
�:S

1� (1� �):S
: (21)

Stress level S is de�ned as:

S =
1
�1

�
I3
1
I3
� 27

� �
I1
pa

�m
: (22)

Hardening rule is de�ned as:

F =
�

1
D

� 1
�
�
Wp

pa

� 1
�

; (23)

in which:

D =
c

(27 1 + 3)�
; (24)

� =
p
h
; (25)

 1 = 0:00155:m�1:27; (26)

where h, �, c, p, m, �1 are material parameters.
The shape of the yield surfaces are depicted in

the triaxial plane and � plane in Figure 2. Material
parameters are obtained from the tests of Loose Santa
Monica beach sand.

Figure 2. Yield surfaces shown in principal stress space: (a) Yield surface in triaxial plane; and (b) yield surface in �
plane (I1 = 500 kPa).
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Plastic potential surface
The direction of the plastic strain increment is deter-
mined by plastic potential surface. In the Lade-Kim
model, non-associated ow rule is adopted and the
plastic potential function is di�erent from the yield
function. Plastic potential function is de�ned as:

G =
�
 1
I3
1
I3
� I2

1
I2

+  2

� �
I1
pa

��
; (27)

in which  2 and � are material parameters. The shape
of the yield surface is depicted in the triaxial plane and
� plane in Figure 3.

Elastoplastic matrix of the Lade-Kim model
General formula of elastoplastic matrix is given in
Eq. (12) in which normal vector of yield surface, F ,
and plastic potential surface, G, will be given in this
section:

@G
@�

=
�
@G
@�x

;
@G
@�y

;
@G
@�z

;
@G
@�xy

;
@G
@�yz

�T
; (28a)

@G
@�x

=
�
I1
pa

�� "
G1 �  1I3

1
I2
3

(�y�z � �2
yz)

� I2
1
I2
2

(�z + �y)

#
; (28b)

@G
@�y

=
�
I1
pa

�� "
G1 �  1

I3
1
I2
3

(�x�z � �2
zx)

� I2
1
I2
2

(�x + �z)

#
; (28c)

@G
@�z

=
�
I1
pa

�� "
G1 �  1

I3
1
I2
3

(�x�y � �2
xy)

� I2
1
I2
2

(�x + �y)

#
; (28d)

@G
@�xy

=
�
I1
pa

���
2�xy

I2
1
I2
2
�2 1

I3
1
I2
3

(�yz�zx��z�xy)
�
;
(28e)

@G
@�yz

=
�
I1
pa

���
2�yz

I2
1
I2
2
�2 1

I3
1
I2
3

(�xy�zx � �x�yz)
�
;

(28f)

@G
@�zx

=
�
I1
pa

���
2�zx

I2
1
I2
2
�2 1

I3
1
I2
3

(�xy�yz��y�zx)
�
;
(28g)

in which G1 =  1(�+ 3) I
2
1
I3 � (�+ 2) I1I2 + �

I1 2.

@F
@�

=
�
@F
@�x

;
@F
@�y

;
@F
@�z

;
@F
@�xy

;
@F
@�yz

�T
; (29a)

@F
@�x

=eq
�
I1
pa

�h "
G2 � I2

1
I2
2

(�y + �z)

�  1
I3
1
I2
3

(�y�z � �2
yz)

#
+
�
 1
I3
1
I3
� I2

1
I2

� �
I1
pa

�h @eq
@�x

; (29b)

Figure 3. Plastic potential surfaces shown in principal stress space: (a) Plastic potential surface in triaxial plane; and (b)
plastic potential surface in � plane (I1 = 500 kPa).
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@F
@�y

=eq
�
I1
pa

�h "
G2 � I2

1
I2
2

(�x + �z)

�  1
I3
1
I2
3

(�x�z � �2
zx)

#
+
�
 1
I3
1
I3
� I2

1
I2

� �
I1
pa

�h @eq
@�y

; (29c)

@F
@�z

=eq
�
I1
pa

�h "
G2 � I2

1
I2
2

(�x + �y)

�  1
I3
1
I2
3

(�x�y � �2
xy)

#
+
�
 1
I3
1
I3
� I2

1
I2

� �
I1
pa

�h @eq
@�z

; (29d)

@F
@�xy

=eq
�
I1
pa

�h �
2
I2
1
I2
2
�xy�2

 1I3
1

I2
3

(�yz�zx � �z�xy)
�

+
�
 1
I3
1
I3
� I2

1
I2

� �
I1
pa

�h @eq

@�xy
; (29e)

@F
@�yz

=eq
�
I1
pa

�h �
2
I2
1
I2
2
�yz�2

 1I3
1

I2
3

(�xy�zx � �x�yz)
�

+
�
 1
I3
1
I3
� I2

1
I2

� �
I1
pa

�h @eq

@�yz
; (29f)

@F
@�zx

=eq
�
I1
pa

�h �
2
I2
1
I2
2
�zx�2

 1I3
1

I2
3

(�xy�yz � �y�zx)
�

+
�
 1
I3
1
I3
� I2

1
I2

� �
I1
pa

�h @eq

@�xz
; (29g)

in which:

G2 =  1
I2
1
I3

(h+ 3)� I1
I2

(2 + h); (29h)

@eq

@�x
=eq

�
(1� (1� �)S)2

�
I1
pa

�m( m
I1�1

�
I3
1
I3
� 27

�
+

3I2
1

�1I3
� I3

1
I2
3�1

(�y�z � �2
yz)

)
; (29i)

@eq

@�y
=eq

�
(1� (1� �)S)2

�
I1
pa

�m( m
�1I1

�
I3
1
I3
� 27

�
+

3I2
1

�1I3
� I3

1
I2
3�1

(�x�z � �2
zx

)
; (29j)

@eq

@�z
=eq

�
(1� (1� �)S)2

�
I1
pa

�m( m
�1I1

�
I3
1
I3
� 27

�
+

3I2
1

�1I3
� I3

1
I2
3�1

(�x�y � �2
xy)

)
; (29k)

@eq

@�xy
=eq

�
(1� (1� �)S)2

�
I1
pa

�m
�
� I3

1
I2
3�1

(2�yz�zx � 2�z�xy)
�
; (29l)

@eq

@�yz
=eq

�
(1� (1� �)S)2

�
I1
pa

�m
�
� I3

1
I2
3�1

(2�xy�zx � 2�x�yz)
�
; (29m)

@eq

@�zx
=eq

�
(1� (1� �)S)2

�
I1
pa

�m
�
� I3

1
I2
3�1

(2�xy�yz � 2�y�zx)
�
: (29n)

In the Lade-Kim model, plastic work is used as hard-
ening parameter, then Eq. (13) becomes:

A =
1
�

[Dpa]� 1
�W

1��
�

p f�gT
�
@G
@�

�
: (30)

Thus, elastoplastic matrix could be obtained, whereWp
is the plastic work.

3. Evolution rules of the yield surfaces and
plastic potential surfaces

3.1. Generation of the new kinematic yield
surface and its evolution rule

Under the primary monotonic loading, only the
isotropic hardening yield surface is valid. Once any
stress reversal leads to unloading within the yield
surface, a new kinematic surface would generate with
its tip at the stress reversal point. In this manner,
the original kinematic yield surface forms. The space
enclosed both by the isotropic yield surface and the
kinematic surface is totally elastic. Any stress reversals
reaching the kinematic yield surface will activate the
kinematic yield surface, and plastic strain will occur.
The kinematic yield surface evolution law obeys two
constraints:

1. Kinematic surface tip moves towards tip of the
isotropic hardening surface on a straight [31,32] or
parabolic [34] line.

2. The current stress state must be on the kinematic
yield surface.
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Figure 4. Generation and evolution of the kinematic
yield surface during the �rst time stress reversal in triaxial
plane.

As shown in Figure 4, in a new kinematic yield
surface generated with its pseudo-hydraulic axis OB,
point B is the stress reversal point. Surface tip moves
along BA towards point A. When the current stress is
at point C, then kinematic yield surface rotates with
its tip point D, which was sketched in Figure 4 with
dashed line. Using Eqs. (1)-(2), principal stress in
the normal stress space can be converted into rotated
principal stress and angle � is de�ned as:

cos� =
�A:�D

k�Ak : k�Dk ; (31)

where �A and �D are stress vector of points A and D
in principal stress space, e.g. �A = [�1A; �2A; �3A]T .

If the current stress continues in a �xed direction
and �nally reaches the isotropic yield surface, then the
isotropic yield surface is activated, and the kinematic
yield surface merges into the isotropic yield surface;
all past history e�ects due to kinematic hardening are
wiped out.

Note that the location of the kinematic yield
surface is not decided by hardening rule, but by the
two constraints mentioned above. Assume that point
D moves on the straight line AB, then coordinates of
point D can be shown as:24�1D

�2D
�3D

35 =

24�1B
�2B
�3B

35+ �

24�1B � �1A
�2B � �2A
�3B � �3A

35 ; (32)

where � is a multiplier within [0,1]. Points D and C
are on the same yield surface (dashed line in Figure 4),
thus in the rotated principal stress space:

F (��1C ; ��2C ; ��3C) = F (��1D; ��2D; ��3D): (33)

Recall that ��C can be expressed by �A, �B , �C and
cos� according to Eqs. (1)-(2); in turn, cos� can be
expressed by �, �A, �B according to Eqs. (31)-(32).
Similarly, ��D can be expressed by �A, �B and �
according to Eqs. (1), (2), (31) and (32). Thus Eq. (33)
becomes:

F (�A;�B ;�C ; �) = F (�A;�B ; �): (34)

Eq. (34) forms the governing equation de�ning the
motion of the kinematic yield surface; at any load
step, the only unknown is �, which can be determined
numerically by several iterations.

3.2. Generation and elimination of the
kinematic yield surface during multiple
times of stress reversals

In the above section, generation and evolution of the
kinematic yield surface during the �rst time stress
reversal was discussed. In Figure 4, if another stress
reversal occurs at point C, then new kinematic yield
surface will generate with OC as its pseudo-hydrostatic
axis, and the current kinematic yield surface (dashed
line in Figure 4) becomes the \Memory surface",
as shown in Figure 5. The kinematic yield surface
generated at the �rst time was forgotten. It means
that in the process of yield surface evolution, yield
surface tip �rst moves on line CD towards point
D until the stress reaches \memory surface". Once
the current stress point reaches \memory surface",
then the current kinematic yield surface merges into
the \memory surface", and \Memory surface" will be
activated. After that, \memory surface" tip moves on
line DA towards point A. Governing equation of yield
surface motion was the same as Eq. (34), except that
trace of kinematic yield surface tip changed from path
AB to bilinear C �D �A.

If a new stress reversal occurs at point E, again
in Figure 5, then another new kinematic yield surface
will be created with its pseudo-hydrostatic axis OE, as
shown in Figure 6. In this �gure the current kinematic
surface is now recorded as the new memory surface.
It is easy to follow the same logic like the initial
stress reversal that kinematic yield surface tip moves
on multi-segment line E � F � D � A, i.e. �rstly,
the yield surface tip moves on line EF , and when
the stress reaches the new memory surface, the new

Figure 5. Generation and evolution of the kinematic yield
surface during the second stress reversal in triaxial plane.
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Figure 6. Generation and evolution of the kinematic yield
surface during the third stress reversal in triaxial plane.

memory surface is activated, then the kinematic yield
surface tip again moves on bilinear F � D � A just
like in Figure 5. However, in this manner, during
large number of stress reversals, a large number of
memory surfaces will be recorded. This leads to more
complexity of this model. Lade et al. [31,32] indicated
that \Experimental observations show that soil tends
to forget previous yielding mechanisms after su�cient
yielding is activated by the latest surface; it was found
to be appropriate to remember only one surface prior
to the current kinematic surface, this surface will be
referred to as memory surface", therefore, in Figure 6,
once the stress reverses at point E, the kinematic
yield surface prior to the current yield surface is
recorded as memory surface; the old memory surface is
eliminated so that it has no e�ect on the soils behaviors.
Therefore, the kinematic yield surface tip moves on
the bilinear E � F � A instead of E � F � D � A.
Memory surface concept was also used by Wang et
al. [8] and Wang [38] in their bounding surface model
when de�ning the mapping rule.

With the concept of the memory mechanism,
at most three surfaces (i.e. isotropic yield surface,
memory surface and kinematic yield surface) are to be
recorded. New stress reversals results in forming new
kinematic yield surface and memory surface, eliminat-
ing the old memory surface. In this process, position of
the kinematic yield surface is determined according to
Eq. (34) with stress points A, B and C which refer
to isotropic yield surface tip (for three surfaces) or
memory surface tip (for two surfaces), stress reversal
point and current stress point, separately.

3.3. Evolution of the plastic potential and the
hardening rule

Directions of the plastic strain are determined by
plastic potential surface, if the soils obey the associated
ow rule, yield and potential surface are consistent, so
that their evolution rules are the same. When a non-
associated ow rule is adopted, yield surface and plastic
potential surface are separated. Lade and Inel [31]

assumed that the plastic potential surface is always
attached to the kinematic yield surface, and moves
along and expands or shrinks with yield surface. This
assumption was in accordance with the experimentally
observed behavior by Lade and Boonyachut [39]. Under
this assumption, the rotation angles of the plastic
potential are the same as that of kinematic yield
surface.

Hardening rule of the yield surface is assumed to
be universally valid for both isotropic and kinematic
hardening. If the plastic work is as the hardening index,
for any load step, the increment of the plastic work is
determined by the slope of the work hardening curve:

�Wp =
�F

F 0(Wp)
; (35)

where F is the yield surface in Eq. (11), �F is the
increment of F in the process of evolution that can be
obtained from evolution rule of kinematic yield surface
and F 0(Wp) is the derivation of F (Wp).

When Lade-Kim model is applied with the rota-
tional kinematic yield concept, Eq. (34) becomes:�

 1
I3�
1C
I�3C
� I2�

1C
I�2C

� �
I�1C
pa

�h
eq� = (27 1 + 3)

�
I1D
pa

�h
;

(36)

where point C is the current stress point and point
D is the kinematic yield surface tip; values in rotated
principal stress space are indicated by star.

Hardening rule of Eq. (13) becomes:

�Wp =
�F�h

1
Dpa

i 1
�
W

1
��1
p

: (37)

4. Logical procedures of model implement

4.1. Logical procedures design
According to the discussion in Section 3, we know
that kinematic hardening model is more complex than
conventional elastoplastic model in determining the
load mode of soil state. A proper logical procedures
design is especially important in model implement.
This paper designs the new logical procedures as shown
in Figure 7, in which NF is the current number of yield
surfaces, M is used to indicate the state of soil element
at the previous load step (e.g. if soil element yield
M = 1 otherwise M = 0), (fmax)i is the maximum
history stress of yield surface i in the corresponding
stress space.

4.2. Veri�cation
Rotational kinematic hardening model within the
framework of Lade-Kim model was validated with test
results of Loose Santa Monica beach sand. Source
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Figure 7. Flowchart of implement of the kinematic hardening model.

Figure 8. Comparison of test results and model prediction of Loose Santa Monica beach sand during stress reversals
(�3 = 117:7 kPa).

codes of rotational kinematic hardening model in tri-
axial state (written in Fortran 95) were listed in the
Appendix. Comparisons of measured and predicted
stress-strain curves were shown in Figure 8. Material
properties for Loose Santa Monica beach sand are
shown in Table 1.

According to Figure 8 the predictions of rotational

kinematic hardening model matched the test results
well. In Figure 8(a), a closed hysteresis loop can
be modeled during loading and unloading, which was
consistent with the test phenomena. In Figures 8(b)
and (c), there are two and three stress reversals, sepa-
rately; model predicts match the experiment behavior
with good accuracy. Logical procedures developed by

Table 1. Material properties for Loose Santa Monica beach sand.

Material parameter M � � a m �1 C p  2 � h �

Value 600 0.27 0.26 0.00 0.107 32.6 2.04e-4 1.51 -3.65 2.10 0.60 0.79
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this paper have been successfully used in implementing
the kinematic hardening model, obeying the evolution
rules of yield surfaces.

5. Conclusions

In this research, a rotational kinematic hardening
model has been studied in detail; this model is used
to simulate large stress reversals of soil, which is
also a fundamental research for soil dynamics. This
model simulates the stress reversals by rotating and
intersecting of the isotropic hardening yield surface,
therefore, no additional model parameter is introduced.
On the other hand, this model does not need to obey
the tangency conditions, thus it can be widely used.

The main conclusions of the research are as
follows:
1. A general plasticity formula of rotated isotropic

hardening model in principal stress space was given,
that can be generally used in rotational kinematic
yield surface.

2. Evolution rule of the yield surface and plastic
potential surface were elaborated. This includes,
generation of the new kinematic yield surface and
memory surface, rotation of the kinematic yield
surface, determination of the surface's location in
the process of loading, activation or elimination of
the memory surface, etc. It is assumed that the
plastic potential surface is always attached to yield
surface.

3. New logical steps to determine loading mode of
soil were designed and source codes were listed
in the Appendix. These logical procedures were
successfully used within the framework of the Lade-
Kim; tests data of the soils that experienced stress
reversal were compared with the model predictions.
Model predictions match the test results with good
accuracy.
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Appendix

Source codes of rotational kinematic hardening
model in triaxial test state
For the limitation of the publi-cation, here is the
list of the main part of the program readers can get
the full program at URL: http://blog.sina.com.cn/s/
blog a94cb93e0101c4lz.html

Notations
1. Subroutines:
LadeKim Calculate plastic matrix of rotational

kinematic hardening within framework
of Lade-Kim model

JUDGE Determinate which yield surface yields
or stress reversal occurs

PRO Generate new kinematic yield surface,
once the stress reversal occurs

PFLOW Calculate the normal vector of yield
surface or potential surface in a general
formulation

LOCATION Specify the location of the kinematic
yield surface during loading according
to evolution rule

ROHDEN Hardening of the kinematic yield
surface

ZREAL Internal function to �nd the solution of
function F

F Function that describes the evolution
rule

2. Arrays:
PEAK(*) Surface tip of the kinematic yield

surface in normal principal stress space
AGL(*) Cosine of the rotation angle of each

yield surface
PLW(*) Plastic work for each yield surface
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TP(*,*) Stress point de�ned the movement of
the kinematic yield surface

STS(*) Total stress of each load step
ZZS(*) Principal stress of each load step
FAX(*) Maximum stress in loading history
TURP(*,*) Surface tip of the kinematic yield

surface in rotated principal stress space
STL(*) Stress components of the last load step
CP(*,*) Plastic matrix
TT(*,*) Matrix to transform the current stress

to rotated principal stress
DM(*,*) Elastoplastic matrix
FA(*) Normal vector of yield surface
GA(*) Normal vector of potential surface
3. Note that when call the internal function ZREAL,

proper guess value should be given.

SUBROUTINE LadeKim (STS, ZZS, STS0, ZZS0,
WP, & WP0, JP, DM, CP, FAX, TURP, MEM, TP,
PLW, AGL, MES, NF, STL, PEAK, IP)
USE IMSL
COMMON/GROUP4/CTR(13, 1)
DIMENSION STS(8), STS0(8), ZZS0(3), ZZS(3)
DIMENSION GA(6), FA(6), CP(6, 6), CM(6, 6)
DIMENSION DM(6, 6), FAX(5)
DIMENSION TT(3, 3), TURP(6, 3), MEM(6)
DIMENSION TP(6, 20), PLW(3), AGL(3), STL(6),
PEAK(6)
AA=0.0
PA=100.
MES=0
DO I=1, 6
DO J=1, 6
CP(I, J)=0.0
ENDDO
ENDDO

S1=ZZS0(1)+ZZS0(2)+ZZS0(3)
S2=-(ZZS0(1)*ZZS0(2)+ZZS0(2)*ZZS0(3)

+ZZS0(1)*ZZS0(3))
S3=ZZS0(1)*ZZS0(2)*ZZS0(3)
SX=-STS0(1)
SY=-STS0(2)
SZ=-STS0(3)
PSA1=0.00155*CTR(6, 1)**(-1.27)
RP=CTR(11, 1)/CTR(12, 1)
DS=CTR(10, 1)/((27.0*PSA1+3.0)**RP)
DO ID=1, NF
COSA=AGL(ID)

CALL JUDGE (STS , ZZS0, STS0, PS, CP, FAX, GA,
COSA, ID, MES, TURP, JP, PEAK)
IF(MES.NE.0) THEN

DO I=MES+1, 3
FAX(I)=0.1

PLW(I)=1.0e-2
AGL(I)=1.0
TP(1, I-1)=0.0
TP(2, I-1)=0.0
TP(3, I-1)=0.0
TURP(1, I-1)=0.0
TURP(2, I-1)=0.0
TURP(3, I-1)=0.0
NF=MES
ENDDO
ENDIF
IF(MES.NE.0) EXIT
ENDDO
IF(MES.NE.0.AND.JP.EQ.2) THEN
MEM(1)=MES
ENDIF
IF(MES.EQ.0.AND.JP.EQ.2) THEN
IF(MEM(1).EQ.1) THEN
IID=MEM(1)
TP(1, IID)=STL(1)
TP(2, IID)=STL(2)
TP(3, IID)=STL(3)
CALL PRO(SX, SY, SZ, FAX, IID, COSA, PLW)
AGL(IID+1)=COSA
NF=NF+1
ELSEIF(MEM(1).EQ.2) THEN
IID=MEM(1)
TP(1, IID-1)=PEAK(1)
TP(2, IID-1)=PEAK(2)
TP(3, IID-1)=PEAK(3)
TP(1, IID)=STL(1)
TP(2, IID)=STL(2)
TP(3, IID)=STL(3)
CALL PRO(SX, SY, SZ, FAX, IID, COSA, PLW)
AGL(IID+1)=COSA
NF=NF+1
ELSEIF(MEM(1).EQ.3) THEN
FAX(2)=FAX(3)
PLW(2)=PLW(3)
AGL(2)=AGL(3)
TP(1, 1)=PEAK(1)
TP(2, 1)=PEAK(2)
TP(3, 1)=PEAK(3)
TP(1, 2)=STL(1)
TP(2, 2)=STL(2)
TP(3, 2)=STL(3)
PLW(3)=0.01
IID=MEM(1)
FAX(3)=0.1
CALL PRO(SX, SY, SZ, FAX, IID, COSA, PLW)
AGL(3)=COSA
NF=NF+1
ENDIF
ENDIF
IF(MES.EQ.0.AND.JP.EQ.2) THEN
MEM(1)=0
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ENDIF
IF(MES.EQ.0) GOTO 200
IF(MES.EQ.1) THEN
COSA=AGL(1)
CALL PFLOW (STS, ZZS0, STS0, PS, CP,
FAX, GA, COSA, MES, PEAK, f2)
DO I=1, 6
AA=AA-STS0(I)*GA(I)
ENDDO
AA=AA*1.0/RP*(1.0/DS/PA)**(1.0/RP)
*WP0**(1.0/RP-1.0)
ELSE

CALL LOCATION (STS, ZZS, STS0, ZZS0, & CP,
FAX, TURP, MEM, TP, PLW, MES, COSA, AGL, JP,
PEAK, IP)
IF(JP.EQ.2) AGL(MES)=COSA
CALL PFLOW (STS, ZZS0, STS0, PS, CP, FAX, GA,
COSA, MES, PEAK, f2)

DO I=1, 6
AA=AA-STS0(I)*GA(I)
ENDDO
CALL ROHDEN(PLW, AA, STS, ZZS0, STS0,
PS, CP, FAX, GA, COSA, MES, JP, f2)
ENDIF
DO I=1, 6
DO J=1, 6
CP(I, J)=CP(I, J)/AA
ENDDO
ENDDO

200 CONTINUE
WRITE(16, *) AA
CM=.I.DM
DO I=1, 6

DO J=1, 6
CM(I, J)=CM(I, J)+CP(I, J)
ENDDO
ENDDO
DM=.I.CM

END
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