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Abstract. Settlement of �ne-grained soils is often governed by a consolidation process
which involves quite large strains. The classic, one-dimensional consolidation formula
is based on the small strain theory, although it is still practically useful. Since strains
are relatively large during the consolidation process, the overall behavior of the medium
is geometrically nonlinear. In this paper, a coupled consolidation analysis was carried
out to predict the consolidation settlement of ground beneath an embankment, as a case
study, representing the feasibility of large strain consolidation analysis. A two-dimensional,
updated Lagrangian, large deformation, �nite element formulation was employed to
simultaneously solve the transient 
ow and the deformation equations which constitute
the coupled consolidation equations. It was followed by the development of a code
in the MATLAB environment to solve the required equations, with further application
to a case study in Iran. In addition, analyses were performed by one-dimensional
conventional methods and compared with the results obtained by the �nite element
procedure. Predictions made by large deformation �nite element analysis, in comparison
to those obtained based on small strain assumptions and conventional methods, appeared
to be more accurate, although the required computational e�ort was much higher, owing
to frequent recomputation of the sti�ness matrix.
c
 2013 Sharif University of Technology. All rights reserved.

1. Introduction

The theory of consolidation, dating back to the
renowned, one-dimensional consolidation theory of
Terzaghi (1943) [1], has been subjected to several
changes and considerable developments. The consol-
idation process refers to the entire process of time-
dependent deformation of soil due to drainage and
gradual dissipation of excess pore water pressure.
Therefore, the transient 
ow and deformation equa-
tions are both necessary to formulate the consolidation
process [1-3]. In the original theory, there are several
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simplifying assumptions, which can only be satis�ed
under particular conditions and in very rare problems.
Among many, the strains were assumed to be small,
and the compressibility and hydraulic conductivity
were combined into a unique and constant coe�cient,
known as the coe�cient of consolidation. There are two
common forms of (uncoupled) consolidation equation;
the �rst, derived by Terzaghi (1943), is [1]:

@U
@t

= Cv
@2U
@z2 : (1)

In this equation, U is the excess pore water pressure, t
is the time, z is a measure of distance (often vertical)
and Cv is the coe�cient of consolidation (often in a
vertical direction). This equation is analogous to the



1162 M. Veiskarami/Scientia Iranica, Transactions A: Civil Engineering 20 (2013) 1161{1174

heat transfer equation and can be extended to two or
three dimensions, as follows, assuming the coe�cient
of consolidation is constant in all directions:

@U
@t

= Cvr2U: (2)

The second common form, in terms of strain, was
suggested by Mikasa (1963), as follows [4]:

@"z
@t

= Cv
@2"z
@z2 ; (3)

where "z is the linear strain in the vertical direction.
It can be seen that both equations are similar in form,
possessing the coe�cient of consolidation, de�ned as
follows:

Cv =
k

mv
w
: (4)

In this equation, k is the coe�cient of hydraulic
conductivity, 
w is the unit weight of pore 
uid (often
water) and mv is the volume compressibility coe�cient
of the soil skeleton.

There may have been several questions regard-
ing the validity of such assumptions, motivating the
authors to develop the theory of consolidation. For
example, assuming a constant parameter, mv, for
the entire range of applied loads, may be somehow
unrealistic, regarding the nonlinear response of �ne
soils to the applied loads. It works almost well only
in the range of small strains and light loads. For
heavy loads, it can no longer be regarded as a true
assumption, leading to less accurate predictions.

Known to the author, several attempts have
been made in the development of the consolidation
theory to consider the nonlinearity of the consolidation
settlement by taking several assumptions into account.
Among many, Gibson et al. (1967) and Gibson et
al. (1981) developed the theory of �nite strain, one-
dimensional consolidation for thin (in 1967) and thick
(in 1981) layers of soft soil [5,6]. It was a very
successful attempt since it did not rely upon small
strains and other restrictive assumptions. However,
it requires complicated laboratory test results to �nd
proper relations between soil mechanical parameters
(such as hydraulic conductivity, etc.) based on primary
ones (like void ratio and pressure). The derived
di�erential equation is also highly nonlinear. Huerta
and Rodriguez (1992) presented a �nite di�erence
based numerical scheme to solve this equation by
assuming the excess pore water pressure to be the
dependent variable [7]. They �rst cast the equation in
a non-dimensional form and then constituted a fully
implicit �nite di�erence nonlinear matrix equation,
which showed a relatively rapid and stable conver-
gence.

Applications of the �nite element method in solv-
ing one and multi dimensional consolidation equations
are many. For example, Desai and Johnson (1972)
compared two �nite element methods for the one-
dimensional consolidation equation [8]. Johnson (1978)
presented a coupled �nite element method to solve
the 
ow and small strain deformation equations [9].
He proved that a solution existed for an elasto-plastic
constitutive model, and presented the �nite element
formulation of the equation. Duncan and Schaefer
(1988) applied the �nite element method to analyze
the consolidation of embankments with the Cam Clay
constitutive model [10]. Borja et al. (1998) em-
ployed hypo-elasticity and developed an elasto-plastic
consolidation analysis by a nonlinear �nite element
method [11]. Their attempt was very important
since it presents the e�ect of geometrical nonlinearity
on the results. Kelln et al. (2009) applied the
�nite element method in consolidation analysis of a
soft estuarine soil by implementation of an elastic-
viscoplastic model [12]. In 2010, Huang and Gri�ths
presented a �nite element method for both coupled
and uncoupled one-dimensional consolidation analysis
of a multilayer soil [13]. Very recently, Samimi and
Pak (2012) presented a fully coupled three-dimensional
analysis of porous continua containing solid parti-
cles and pore 
uids with the element free Galerkin
method [14].

The nonlinear behavior of soil during the consol-
idation process has been generally accepted in these
attempts, and the source of nonlinearity is often at-
tributed to the nonlinear behavior of the material. In
contrast, relatively little attention has been paid to the
nonlinear behavior, due to the geometrical nonlinearity
originated from large deformations. In fact, there
are two sources for a nonlinear response in deforming
bodies, i.e. material nonlinearity and geometrical
nonlinearity [15,16]. Material nonlinearity can be taken
into account by relatively complicated elasto-plastic
soil models (as in the consolidation analysis, amongst
a few found in the literature, the important works of
Borja and Alarc�on in 1995 and Borja et al. in 1998,
or, more recently, Kelln et al. (2009) [11,12,17] should
be mentioned), whereas geometrical nonlinearity must
be tackled by the theory of �nite strain. In this
paper, the consolidation process has been analyzed
by both small and large strain formulations. The
pore 
uid 
ow equation, along with the deformation
equations, has been coupled in a �nite element code by
the updated Lagrangian large deformation formulation.
First, the theoretical requirements and equations have
been represented. Then, the developed �nite element
code is applied to a case study, where a medium
clay stratum underlain by a sti� to hard clay is
subjected to preloading under the pressure of a massive
embankment.
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2. Behind the theory

As stated earlier, the one-dimensional consolidation
equations of Terzaghi (1943) [1] or Mikasa (1963) [4],
which are equivalent, have been developed for certain
and partly idealized soil conditions. Moreover, these
equations were derived for the case of one-dimensional
deformation of the soil. In two or three dimensions,
however, there are several complexities in �nding a
solution to these equations, in particular, in complex
domains and under general initial conditions. These
equations, in fact, can be classi�ed into standard
partial di�erential equations in mathematical physics,
with known solutions in the simple domain, in which
they are subjected to standard initial and boundary
conditions. The �nite element method has been found
to be a powerful technique for solving the consoli-
dation equation, in particular for cases with certain
di�culties, like multilayer soils, non-homogeneous soils
and for two and three dimensional problems. In
multidimensional problems, the coupled consolidation
equations comprise a set of pore 
uid 
ow equations
which governs the 
ow of pore 
uid passing through the
soil body and the deformation equation. The system
of equations governs the simultaneous deformation of
the consolidating body, while the drainage of the pore

uid takes place and the space initially occupied by
the pore 
uid is replaced by solid particles. During
this process, if strains are assumed to be small, the
stress-strain behavior of the solid phase, i.e. the soil
skeleton, can be regarded as linear. Therefore, the load-
displacement behavior of the material will be linear
as well. However, for a relatively large deformation,
which is the case in settlement analysis, in spite of
a possible linear stress-strain relationship, which is
practically assumed, based on standard laboratory
tests, by simply taking a constant parameter, mv,
the load-deformation response is not linear. Such
nonlinearity, known as geometrical nonlinearity, can
be regarded as a source of nonlinear response. This
latter can be taken into account in the consolidation
analysis, where soil properties obtained by routine and
standard laboratory tests are su�cient to perform a
more accurate analysis. In the next part, application
of geometrical nonlinearity and further assumptions are
presented. This scheme seems to be convenient, since
it depends solely on conventional (standard) laboratory
soil tests and not on more sophisticated elasto-plastic
soil models. Although the change in soil permeability
and deformability during the consolidation process
is important, requiring a more precise consideration
of the chosen constitutive law, as both permeability
and deformability decrease over the course of the
consolidation process, their ratios may be subject to an
insigni�cant change. They can be, therefore, assumed
to remain constant, and the nonlinear response to be

related only to geometrical (large strain) nonlinear-
ity.

3. Coupled consolidation with large strain
analysis

All required governing equations to be solved in a cou-
pled transient 
ow-deformation analysis are presented
here. These equations can be found in more detail in
advanced texts (e.g. [15-21]). It is worth mentioning
that in all equations, the following notations are
used, which are used by Reddy (2004) [19]. In an
incremental procedure, it is assumed that a deforming
body, initially at C0 con�guration, deforms from C1
con�guration to C2 con�guration, and an increment
of deformation between these two last con�gurations
takes place. In all quantities, a left subscript is used
to denote the con�guration, with respect to which, the
quantity is measured, whereas a left superscript refers
to the con�guration in which the quantity has already
occurred. Between two successive con�gurations, C1
and C2, the left superscript may be skipped over,
indicating an increment of the quantity under consid-
eration. Other notations are standard notations used
in tensor algebra and continuum mechanics [15,19,21].

The �rst required equation in time-dependent
consolidation is the static equilibrium equation:

r:� + b =
@�ji
@xj

+ bi = 0; (5)

where � is the matrix of Cauchy stresses, b is the vector
of body and/or inertial forces, �ji;j are components
of partial derivatives of the stress tensor, �ij , and bi
are components of body and/or inertial forces. The
continuity (
ow) equation, assuming Darcy's law to be
valid, is as follows:

k

w
r2U +Q = mv

@U
@t
: (6)

In this equation, k is the soil permeability coe�cient,

w is the unit weight of the pore 
uid, Q represents
a sink or a source for the pore 
uid dissipation or
generation, and other terms were de�ned earlier.

In small deformation analysis, stresses are related
to the strains through a general constitutive law:

� = D : e; (7)

�ij = Dijklekl: (8)

In this equation, D (or Dijkl) is the fourth-order
constitutive tensor and e (or ekl) is the Cauchy strain
tensor. The Cauchy (in�nitesimal) strain tensor is
de�ned as:

ekl =
1
2

�
@uk
@xl

+
@ul
@xk

�
; (9)
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where uk and ul are components of displacements
in k and l directions, respectively. In an updated
Lagrangian analysis, a constitutive equation of the
following form will be required:

1Sij = 1Dijkl
2
1"kl; (10)

where 1Sij is the updated Kirchho� stress increment
tensor, 1Dijkl is the constitutive tensor and 1"kl is
the updated Green-Lagrange strain increment tensor.
It is conventional to adopt a constant incremental
constitutive tensor (i.e. assuming 0Dijkl = 1Dijkl)
in di�erent con�gurations in an updated (and even
total) Lagrangian formulation [19]. In the updated
Lagrangian formulation, the following relationships
and approximations are used:

1
1"kl =

1
2

�
@ 1

0uk
@ 1xl

+
@ 1

0ul
@ 1xk

� @ 1
0um

@ 1xk
@ 1

0um
@ 1xl

�
; (11)

2
1"kl =

1
2

�
@uk
@ 1xl

+
@ul
@ 1xk

+
@um
@ 1xk

@um
@ 1xl

�
=

1
2

(1ekl + 1�kl) ; (12)

1ekl =
1
2

�
@uk
@ 1xl

+
@ul
@ 1xk

�
; (13)

1�kl =
1
2

�
@um
@ 1xk

@um
@ 1xl

�
; (14)

2
1Sij = 1�ij + 1Sij ; (15)

1
1Sij = 1�ij ; (16)

1�ij = 1Dijkl
1
1"kl; (17)

1Sij = 1Dijkl
2
1"kl � 1Dijkl1ekl: (18)

In these equations, 1
1"kl is the Almansi-Hamel strain

tensor (also known as the Euler strain tensor) which
appears naturally in the updated Lagrangian formula-
tion, 2

1"kl is the updated Green-Lagrange strain tensor,
1
0uk are components of displacement, which occur at
C1 con�guration, measured in C0 con�guration, 1xl are
coordinates of the system in C1 con�guration, 1ekl is
the linear part of the strain increment tensor, 1�kl is
the nonlinear part of the strain increment tensor, 2

1Sij
are components of the updated Kirchho� stress tensor,
1�ij are components of the Cauchy stress tensor in C1
con�guration and 1Sij are components of the updated
Kirchho� stress tensor increment. It is remarkable that
the latter simpli�cation (resulting in a symmetric term
in computation of the sti�ness matrix) is valid only if
the incremental deformations (and hence, strains) are
reasonably small. Having known all these quantities,

the principle of virtual work can now be applied to
�nd the required �nite element formulation of the
deformation problem:

�Wint = �Wext; (19)

where, �Wint is the internal virtual energy increment
and �Wext is the external virtual work increment, which
are de�ned as follows:

�Wint =
Z

1V

2
1Sij�

2
1"ijdV; (20)

�Wext = � 2
1R =

Z
1A

2
1ti�uidA+

Z
1V

2
1bi�uidV: (21)

In these equations, 2
1ti are components of the traction

forces and 2
1bi are components of body forces. By

equating the external virtual work increment with
the internal virtual energy increment and after some
manipulations and substitution of the abovementioned
equations, the weak form of the governing equation
required for the updated Lagrangian �nite element
formulation will be found as follows:Z

1V
1Dijkl 1ekl� 1eijdV +

Z
1V

1�ij� 1�ijdV

= �2
1R�

Z
1V

1�ij� 1eijdV: (22)

Finally, by applying the lemma of calculus of variations,
the system equations of the updated Lagrangian �nite
element formulation are as follows [19]:

(KL + KNL)�u = 2
1F� 1

1F; (23)

where KL and KNL are contributing parts of the sti�-
ness matrix, �u is the nodal displacement increment
vector (de�ned between two successive steps), and 2

1F
and 1

1F are vectors of nodal forces in two successive
steps. These quantities are de�ned as follows:

KL =
Z

0V
BT

LDBLdV; (24)

KNL =
Z

1V
BT

NL
1�BNLdV; (25)

2
1F =

Z
1V

�T2
1bdV +

Z
1A

�T2
1tdA; (26)

1
1F =

Z
1V

BT
L

1�dV: (27)

In these equations, � is the matrix containing the
element interpolation functions, b is the vector of body
and/or inertial forces, 1� is the matrix of the Cauchy
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stresses, 1� is the vector containing the stress compo-
nents and t is the vector of surface tractions (note that
the under bar sign denotes a vector quantity). The
other quantities are presented in Appendix A of this
paper.

Now, by dividing the total stress into the e�ective
stress and the pore water pressure, the abovementioned
equation can be cast into the following one required for
the consolidation analysis:

(KL + KNL)�u + L�UN = 2
1F� 1

1F: (28)

The additional term, i.e. L�UN, is responsible for
the excess pore water pressure developed through the
element, and L is the coupling matrix giving rise to
the nodal forces due to the excess pore water pressure
build up, de�ned as follows:

L =
Z

1V
BT

Lm�dV; (29)

where m =
�
1 1 0

�T for two-dimensional problems
and � is a vector containing the element interpolation
function.

In addition to the deformation formulation, the
transient 
ow problem required for the coupled analysis
can be formulated by the �nite element procedure.
Substitution of Darcy's law and applying the Galerkin
�nite element method results in the following equation:

�H�t+ LT�u = q�t; (30)

where H is the element conductance matrix, q is
the nodal 
ow vector and �t is the time increment.
The element conductance matrix can be computed as
follows:

H =
1

w

Z
1V

(r�)TRr�dV: (31)

In this equation, R is the matrix of the element
conductivity coe�cients de�ned (in two dimensional
problems) as follows:

R =
�
kx 0
0 ky

�
: (32)

Eventually, the coupled consolidation equation can be
found by a combination of the deformation and 
ow
equations:�

K L
LT ���tH

� �
�u

�UN

�
=
�
0 0
0 ��tH

� � 1u
1UN

�
+

24 2
1F� 1

1F

�t(1q + ��1q)

35 :
(33)

This is the �nal form of the �nite element equation
of the coupled consolidation problem by the updated
Lagrangian large deformation formulation. The co-
e�cient, �, takes values ranging from 0 to 1. For
a fully implicit integration, this value is set equal
to 1. There are restrictions on the time step in
the marching procedure in solving the system of the
coupled equations in order to arrive at a stable solution.
For example, � cannot take values less than 0.5 [22].
A similar approach can be used to formulate the
coupled consolidation problem with the small strain
assumption, where the element sti�ness matrix and the
coupled matrix are not updated during each displace-
ment increment.

The �nite element formulation developed so far
has been implemented in the MATLAB environment
and used for the rest of this study. Through all
analyses, the following assumptions were made:

i) The same interpolation functions have been used
in computing sti�ness, coupling and conductance
matrices.

ii) The initial distribution of the excess pore water
pressure is computed by assuming a Poisson ratio
equal to 0.49, but this ratio was taken equal to
0.35 for the rest of the computations.

iii) The constitutive tensor was assumed to be the
same for both small strain and large strain analy-
ses.

4. Case study: A preloaded area in the
northern Iran

As stated earlier, the nonlinear behavior of soil, when
subjected to external loads leading to a consolidation
process, can be captured in a more realistic way when
a large deformation analysis is carried out. A case
study is presented here, in which, the large deformation
theory has been employed to predict the settlements
due to a staged preloading. In order to prepare a site
to support heavy loads of large storage tanks, it was
preloaded for a rather long time. The site was located
in north-eastern Iran, part of the Urea and Ammonia
Unit Plant of the Golestan Petrochemical Company,
and the soil pro�le mainly consisted of rather uniform
and lightly overconsolidated soft to medium clay and
silt down to 28 m to 32 m deep, where a relatively
sti� to hard clay existed. The area under study was
roughly between 32 m to 40 m wide and 75 m to
90 m long. The geotechnical consultant performed a
series of consolidation tests, as well as other standard
laboratory and �eld tests, to characterize the soil
pro�le. Table 1 presents a summary of the required
geotechnical properties obtained by site investigations
and laboratory tests.
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Table 1. A summary of the subsoil properties.

Properties Range Assumed (averaged) values

Depth (m) 0-30 -
Classi�cation CL/ML -
Moisture content (%) 20-26 23
Dry unit weight (kN/m3) 15.2-16.9 16.0
Void ratio (%) 0.57-0.74 0.6
Liquid limit (%) 27-31 29
Plasticity index (%) 9-14 12
Volume compressibility, mv (m2/kN) 6.5e-5 to 2.0e-4 1.1e-4 (average of 7 tests)
Compression index (Cc) 0.056-0.171 0.103 (average of 7 tests)
Swelling/recompression index (Cs) 0.007-0.034 0.011 (average of 7 tests)
OCR 1.09-1.25 1.16
Uncon�ned compressive strength (kPa) 25-50 38 kPa

Figure 1. Preloading program: (a) A side view of the preloaded area (still under construction); (b) a closer view from the
east side; and (c) a schematic view of the reference bar.

Preloading was performed by the staged construc-
tion of an embankment with a total height of 8.0 m
above ground level. The unit weight of the material
was roughly around 15 kN/m3 and the entire process
of the embankment took 22 days. Measurements were
carefully taken by installation of a reference mark (a
vertical rod installed over the ground surface before the
preloading started) in the centre of the embankment
area. Recordings were made at the end of each
working day, with respect to some stable reference
point installed on stable ground far from the deforming
area, by survey cameras. Figure 1 shows the almost
�nished embankment. In the same �gure, a schematic
view of the installed rod(s) is depicted with their
elevations, with respect to the reference ground level.

Analyses were made �rst to calibrate the model
for laboratory tests and, then, to compute the long
term settlement of the soil beneath the �ll. Calibra-
tions were performed to �nd the model parameters,
based on the laboratory consolidation test, �rst, by
assuming the parameters to be those obtained by the
tests and, then, to re�ne the model parameters in

such a way as to show the best consistency with
experimental data. In view of results directly obtained
by experimental data, the modulus of elasticity, as
one of the important parameters required for the
estimation of the consolidation settlement, was �rst
assumed to be equal to the average value obtained
directly (roughly around 7300 kPa, during the course of
signi�cant pressure for the analysis, i.e. between 0 and
500 kPa). However, after making a few analyses, i.e. by
changing the modulus of elasticity and comparing the
obtained results, the calibrated modulus of elasticity
was reasonably found to be 6400 kPa and to be
compatible with the averaged load-displacement curve
of all consolidation tests. A proper choice for this
parameter was found to be very important in the
deformation analysis. It was found to be slightly
di�erent from the average modulus of elasticity directly
found by test data. Figure 2 shows the results, obtained
both experimentally (from consolidation tests) and
numerically, to �nd the model parameters for the rest
of the study. It can be seen that, except for one test,
almost all results obtained experimentally obey the
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Figure 2. Laboratory consolidation test results along
with predictions made by the model.

same trend. Calibration was made in order to capture
the trend of the average of all test results, i.e. the
bold line in the �gure. It is noticeable that the vertical
strain, shown on the vertical axis, is, in fact, nothing
but simply the ratio of the vertical displacement to the
height of the sample at the end of each test. Figure 3
shows the dissipation of the excess pore water pressure
in a consolidation test under 320 kPa pressure. Results
are plotted for elapsed times of 4 hours, 8 hours and
16 hours. The �nal deformed shape of the model

Figure 3. Excess pore water pressure dissipation after (a)
4 hours, (b) 8 hours, and (c) 16 hours along with (d) the
deformed mesh at the end of the consolidation test (scaled
up 5 times; units are in kPa).

is also presented in the same �gure. Eventually, in
Figure 4, the isochrones of excess pore water pressure
distribution along a sample of the soil in the consol-
idation test, under 320 kPa pressure, are presented.
These isochrones were obtained both analytically, by
the closed form solution of the consolidation equation
evaluated at four points in the sample, and numerically,
by the developed code. Isochrones were computed at
2 hour intervals, normalized to the initial excess pore
water pressure, which was equal to 320 kPa, uniformly
distributed throughout the sample height.

Further analyses were made to simulate the staged
construction loading during the preloading process. It
is remarkable that the signi�cant di�erence between
these two methods is the computational time. In
the small strain analysis, the sti�ness matrix is once
computed and assembled. However, in the large strain
analysis, it should be recomputed at each increment,
which results in a quite longer computation. The time
e�ciency can be increased by reducing the number
of elements in the model, i.e. based on the required
precision, an optimum number of elements can be used,
which di�ers from problem to problem. To optimize
computational e�ort, a total number of 38 loading
steps were taken, i.e. displacements were computed at
every two days from the start of the loading. A total
number of 48 sub-increments were used to accurately
model dissipation of the excess pore water pressure
during each loading step. It should be noted that for
a smaller load increment, i.e. larger number of loading
steps, computational e�ort was found to be relatively
longer, while the change in the results was slight and
insigni�cant.

Figure 5 shows an outline of the model, the
geometry of the problem and boundary conditions. Us-
ing a standard boundary condition for such problems,

Figure 4. Excess pore water pressure isochrones for a
typical consolidation test performed under 320 kPa
pressure.
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Figure 5. Geometry and boundary conditions of the
model.

the lateral displacements at right and left sides were
restrained. Moreover, the bottom of the model was
completely restrained against both vertical and lateral
displacements. The boundary conditions for transient

uid 
ow consist of no 
ow boundaries at vertical sides
and in the bottom of the model, whereas the uppermost
boundary was assumed to be held at zero excess pore
water pressure (free 
ow boundary).

Figures 6-9 show the model predictions for elapsed
times of 8 days (embankment height equal to 2 m), 18
days (embankment height equal to 6 m), 22 days (end of
embankment construction) and 60 days (approaching
an almost steady state), respectively. In these �gures,
distribution of the excess pore water pressure, along

with the deformed mesh (scaled up 5 times) and
velocity �elds, is presented. In Figure 10, predicted
and measured settlements are plotted. Moreover, the
predicted consolidation settlement, computed by the
small strain analysis, is plotted on the same graph. It
is evident that predictions made by the large strain
analysis comply better with measured data, i.e. the
trend and �nal amount of settlement have been better
captured.

5. Numerical technique and conventional
methods

Methods based on conventional formula have been also
widely applied in many projects. Such methods require
only the direct use of the results obtained by standard
laboratory tests, such as mv and the unit weight,
and no further interpretation of the test results, as
well as indirect parameters, is required. When the
surcharge pressure spreads over a reasonably wide area,
assuming a one-dimensional deformation is not too far
from real behavior. However, where the loaded area
is quite �nite in comparison to the thickness of the
consolidating layer, such methods should be subjected
to some corrections, since direct use of laboratory
consolidation tests is not satisfactory. In addition,
lateral deformations cannot be ignored. Therefore, the

Figure 6. Predicted and measured consolidation settlement after 8 days: (a) Distribution of the excess pore water
pressure; (b) height-time-settlement graph; (c) deformed mesh; and (d) displacement increments (velocity) �eld (scaled up
5 times).
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Figure 7. Predicted and measured consolidation settlement after 18 days: (a) Distribution of the excess pore water
pressure; (b) height-time-settlement graph; (c) deformed mesh; and (d) displacement increments (velocity) �eld.

Figure 8. Predicted and measured consolidation settlement after 22 days: (a) Distribution of the excess pore water
pressure; (b) height-time-settlement graph; (c) deformed mesh; and (d) displacement increments (velocity) �eld.
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Figure 9. Predicted and measured consolidation settlement after 60 days: (a) Distribution of the excess pore water
pressure; (b) height-time-settlement graph; (c) deformed mesh; and (d) displacement increments (velocity) �eld.

Figure 10. Predicted and measured consolidation
settlement after 75 days.

test condition (zero lateral strain) and the site con-
dition (non-zero lateral displacements) will no longer
be consistent and, hence, development of excess pore
water pressure cannot be directly related to the change
in vertical stress only [23,24]. Numerical techniques
based on the �nite element method, can be always
regarded as more precise methods to the same problem,
i.e. the analysis of 
ow, in conjunction with the
associated deformation due to the drainage of water,
causes volume change in two or three dimensions, since:

i) They consider the two (or three) dimensional water

ow;

ii) They consider the lateral deformations.

Although fully 3D methods are often more precise,
2D methods, in particular cases where the physics of
the problems allows for plane strain or axi-symmetric
simpli�cations (as in the current study), are precise
enough as well.

As a simple alternative, it is also possible to
consider such inconsistency by the application of a
correction factor, suggested by Skempton and Bjerrum
(1957) [25]. The Skempton-Bjerrum method expresses
the consolidation settlement due to excess pore water
pressure build up in the soil mass by the following
equations:

Sc = �Soedc ; (34)

Soedc =
Z z1+h

z1
mv��zdz; (35)

where Sc is the consolidation settlement, Soedc is the
consolidation settlement based on the laboratory test
results, ��z is the e�ective vertical stress increment,
� is a correction factor depending on the geometry of
the loaded area, and the excess pore water pressure
coe�cient, A, responsible for the development of the



M. Veiskarami/Scientia Iranica, Transactions A: Civil Engineering 20 (2013) 1161{1174 1171

Figure 11. Geometry and stress de�nitions in
consolidation analysis with conventional method.

excess pore water pressure in a consolidation process,
z1 is the depth of the consolidating layer and h is the
thickness of the consolidating layer. These parameters
are shown in Figure 11.

Theoretically, the correction factor, �, is de�ned
as follows:

� = A(1�A)�; (36)

� =

R z1+h
z1 ��3dzR z1+h
z1

��1dz
: (37)

In these equations, h is the thickness of the con-
solidating layer, ��3 and ��1 are changes in the
minor and major e�ective principal stresses due to
application of the surcharge pressure, respectively. A
careful calculation of the settlement was also made
to compare the results obtained by the �nite element
procedure and the conventional method. One of the
most accurate approaches is to divide the soil layer
into several sublayers. Then, the change in both
vertical and lateral stresses can be found by expressions
developed for uniformly distributed load and ramp
loads (linearly increasing), which are represented in
Appendix B.

By making use of 30 sublayers, each 1.0 m thick,
and application of the Skempton-Bjerrum method,
the total amount of settlement was approximated for
di�erent values of mv. Results were then compared to
those obtained by the �nite element method and shown
in a comparative way in Table 2. It is evident that the
values computed by the conventional approach are all
overestimated, although the Skempton-Bjerrum correc-
tion makes the results much more logical. Although
it requires a number of further analyses for di�erent
situations, it can be concluded that predictions based
on conventional methods (one-dimensional analysis)
may often lead to an overestimation of settlement.
In contrast, the numerical techniques give better ap-
proximations due to better computation of the stress
and strain �eld in a more complete two (or three)
dimensional analysis. Moreover, it is evident from

the results that predictions based on small and large
strain assumptions di�er only about 30%. Although
this di�erence is not insigni�cant, the use of the large
strain analysis seems to be more conservative, as it
slightly overestimates the amount of �nal consolidation
settlement. Therefore, if the computational e�ort
is not a matter of concern, the large strain �nite
element formulation, which can be easily calibrated
with standard experimental data, and its independence
of a complicated elasto-plastic soil model, sounds
to be practically more reliable for this important
project.

In the same table, the computational times are
also presented for both small and large strain analyses.
It is remarkable that the computational times corre-
spond to two successive computational steps, i.e. a
complete round of sti�ness matrix computation and its
global assemblage. At �rst sight, it can be observed
that there is an insigni�cant di�erence (around 5%)
between these two methods. Although, as the mesh
size increases, this di�erence may be added up and
accumulated, causing larger computational time e�ort
for large rather than small strain analysis, use of
multi-core high-speed processors can well cover this
de�ciency.

6. Conclusions

Prediction of the consolidation settlement of clay has
been found to be a challenging task regarding the
nonlinear behavior of soil when it is subjected to
applied loads. This nonlinearity can be originated from
the elasto-plastic behavior of clay after it reaches the
yield surface, i.e. it passes the limits corresponding to
the over-consolidation pressure. However, the consoli-
dation equation of Terzaghi (1943) has been practically
accepted, since it does not depend on any assumptions
based on plasticity theory. It simply assumes that the
soil obeys an elastic behavior based on small strain
theory, de�ned over the range of the applied load.
Then, the 
ow and deformation equations are combined
to form the uncoupled consolidation equation. Under
some special conditions, i.e. in projects of higher
importance, when only the consolidation test results
are available, this theory may be insu�cient to give rise
to proper predictions. In such cases, a coupled analysis
may provide better results. However, there is another
very important source of nonlinear response to applied
loads, which cannot be considered by either of these
methods. Nonlinearity, owing to large deformations,
will not be well captured by the methods based on small
strain theory. Therefore, in cases where only standard
laboratory test results are available, a better estimate
of the consolidation settlement can be achieved by
making use of the large deformation analysis. The
updated Lagrangian large deformation formulation was
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Table 2. Estimated amount of settlement by di�erent methods.

Method in settlement
computation

Coe�cient of volume
compressibility, mv

Computational
time*

(sec.)
Remarks

Minimum
6.5e-5

Maximum
2.0e-4

Average
1.1e-5

Consolidation settlement, Soedc 0.34 0.98 0.54 -
Corrected consolidation settlement,
Sc (Skepmton-Bjerrum method)

0.24 0.71 0.39 -

Small strain �nite element analysis 0.17 0.17 0.17 7.3280
Mesh size: 16�50=800 nodes,
Sti�ness matrix: 1600�1600

Large strain �nite element analysis 0.23 0.23 0.23 7.7180
Mesh size: 16�50=800 nodes,
Sti�ness matrix: 1600�1600

Measured value 0.21 0.21 0.21 -
* System (hardware) properties: CPU Intelr (Pentiumr) at 3.42GHz, Ram DDRII 2.00GB,
HDD: 34.5GB available space on the drive, Software: Windows XP, MATLAB 2011b.

employed, along with 
ow equations, to solve the
coupled consolidation equations.

A case study in Iran was investigated and the
consolidation settlement was computed using di�erent
methods comprising the �nite element techniques and
conventional approaches. Some simplifying assump-
tions were made and model calibrations were performed
based on standard laboratory consolidation tests. Re-
sults indicated that better results will be obtained
if the geometrical nonlinearity is taken into account.
Although the results based on the small strain analysis
showed smaller settlements in comparison to measured
data, due to the complexity and even nonlinearity of
the system of equations, they cannot be generalized.
Finally, application of the conventional method was
found to result in an overestimation of the settlement,
even in cases where the minimum value of the volume
compressibility index was assumed. As a conclusion,
where only the standard laboratory test results are
available, and in absence of a nonlinear elasto-plastic
constitutive model, the large deformation �nite element
formulation, calibrated for standard laboratory test
results, can estimate both the amount and rate of
the consolidation settlement with reasonably good
accuracy. Therefore, there are two advantages:

i) The large strain analyses can be calibrated with
standard laboratory test results (independency to
complicated elasto-plastic models, since it does not
involve material nonlinearity);

ii) Results obtained by the large strain analysis are
often more reliable, as the small strain analysis
may underestimate the amount of consolidation
settlement, which may be unsafe in practice.

Acknowledgement

The database of this research project was provided
by the Department of Structural and Civil Engineer-
ing at the Hampa Energy Engineering and Design
Company (HEDCO), Shiraz, Iran, with which the
author cooperated in many projects during 2009 and
2010. The author especially appreciates the signi�cant
assistance given by all contributors from that company,
in particular Mr. Hassan Sedighi, department head,
as well as the managing director, deputies, and all
respected personnel.

References

1. Terzaghi, K., Theoretical Soil Mechanics, John-Wiley
and Sons Inc., NY (1943).

2. Biot, M.A. \General theory of three dimensional con-
solidation", J. App. Phys., 12, pp. 155-164 (1941).

3. Biot, M.A. \Theory of elasticity and consolidation for
a porous anisotropic solid", J. App. Phys., 26(2), pp.
182-185 (1955).

4. Mikasa, M. \The consolidation of soft clay - a new
consolidation theory and its application", Kajima
Institution, Tokyo (1963). (In Japanese).

5. Gibson, R.G., England, G.L. and Hussey, M.J.L. \The
theory of one-dimensional consolidation of saturated
clays", G�eotechnique, 17(3), pp. 261-273 (1967).

6. Gibson, R.G., Schi�man, R.L. and Cargill, K.W. \The
theory of one-dimensional consolidation of saturated
clays II. Finite nonlinear consolidation of thick homo-
geneous clays", Can. Geotech. J., (18), pp. 280-293
(1981).

7. Huerta, A. and Rodriguez, A. \Numerical analysis of
nonlinear large strain consolidation and �lling", Com-
puters and Structures, 44(1-2), pp. 357-365 (1992).



M. Veiskarami/Scientia Iranica, Transactions A: Civil Engineering 20 (2013) 1161{1174 1173

8. Desai, C.S. and Johnson, L.D. \Evaluation of two
�nite element formulations for one-dimensional con-
solidation", Computers and Structures, 2, pp. 469-486
(1972).

9. Johnson, C. \A �nite element method for consolidation
of clay", Comp. Meth. Appl. Mech. Eng., 16, pp. 178-
184 (1978).

10. Duncan, J.M. and Schaefer, V.R. \Finite element anal-
ysis of embankments", Computers and Geotechnics,
6(2), pp. 77-93 (1988).

11. Borja, R.I., Tamagntm, C. and Alarc�on, E. \Elasto-
plastic consolidation at �nite strain. Part 2: Finite
element implementation and numerical examples",
Comp. Meth. Appl. Mech. Eng., 159, pp. 103-122
(1998).

12. Kelln, C., Sharma, J., Hughes, D. and Graham,
J. \Finite element analysis of an embankment on a
soft estuarine deposit using an elastic-viscoplastic soil
model", Can. Geotech. J., 46(3), pp. 357-368 (2009).

13. Huang, J. and Gri�ths, D.V. \One-dimensional con-
solidation theories for layered soil and coupled and
uncoupled solutions by the �nite-element method",
G�eotechnique, 60(9), pp. 709-713 (2010).

14. Samimi, S. and Pak, A. \Three-dimensional simu-
lation of fully coupled hydro-mechanical behavior of
saturated porous media using Element Free Galerkin
(EFG) method", Computers and Geotechnics, 46, pp.
75-83 (2012).

15. Bathe, K.-J., Finite Element Procedures, Prentice-
Hall, New Delhi, India (1996).

16. Bonet, J. and Wood, R.D., Nonlinear Continuum
Mechanics for Finite Element Analysis, Cambridge
University Press (1997).

17. Borja, R.I. and Alarc�on, E. \A mathematical frame-
work for �nite strain elastoplastic consolidation. Part
1: Balance laws, variational formulation, and lineariza-
tion", Comp. Meth. Appl. Mech. Eng., 122, pp. 145-
171 (1995).

18. Potts, D.M. and Zdrakovic, L., Finite Element Anal-
ysis in Geotechnical Engineering: Theory, Thomas
Telford, London, UK (1999).

19. Reddy, J.N., An Introduction to Nonlinear Finite
Element Analysis, Oxford University Press, Oxford,
UK (2004).

20. Zienkiewicz, O.C. and Taylor, R.L., The Finite Ele-
ment Method for Solid and Structural Mechanics, 5th
Ed., Elsevier (2005).

21. Itskov, M., Tensor Algebra and Tensor Analysis for
Engineers with Applications to Continuum Mechanics,
2nd Ed., Springer (2009).

22. Booker, J.R. and Small, J.C. \An investigation of the
stability of the numerical solutions of Biot's equations
of consolidation", Int. J. Solids Struct., 11(7-8), pp.
907-917 (1975).

23. Craig, R.F., Soil Mechanics, 4th Ed., Chapman and
Hall (1987).

24. Holtz, R.D. and Kovacs, W.D., An Introduction to
Geotechnical Engineering, Prentice Hall (1981).

25. Skempton, A.W. and Bjerrum, L. \A contribution
to the settlement analysis of foundations on clay",
G�eotechnique, 7(4), pp. 168-178 (1957).

Appendix A

Required equations for the updated Lagrangian
�nite element formulation
The following equations are used in the updated La-
grangian large deformation �nite element formulation
for two-dimensional problems found in advanced texts
([15,19] among others):

BL =

2666664
@�1
@x 0 � � � 0

0 @�1
@y � � � @�n

@y

@�1
@y

@�1
@x � � � @�n

@x

3777775 ; (A.1)

BNL =

26666666664

@�1
@x 0 � � � 0

@�1
@y 0 � � � 0

0 @�1
@x � � � @�n

@x

0 @�1
@y � � � @�n

@y

37777777775
; (A.2)

1� =

2664
1�xx 1�xy 0 0
1�xy 1�yy 0 0

0 0 1�xx 1�xy
0 0 1�xy 1�yy

3775 ; (A.3)

1� =

241�xx
1�yy
1�xy

35 ; (A.4)

1� = D1
1"; (A.5)

1
1"=

24 1
1"xx
1
1"yy
21

1"xy

35=
26666666664
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@ux
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�

37777777775
:
(A.6)

Appendix B

Conventional consolidation settlement
computation
The required equations for the horizontal and vertical
stress changes in depth are as follows. Parameters
are shown in Figure B1 (redrawn based on Craig,
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Figure B1. Parameters involved in vertical and lateral stress change due to: (a) uniformly distributed load, (b) ramp
load, and (c) discretization of the consolidating layer in conventional approach.

1987 [23]).

For uniformly distributed load:

��x =
q
�

[�� sin� cos(�+ 2�)]; (B.1)

��z =
q
�

[�+ sin� cos(�+ 2�)]; (B.2)

For ramp (linearly increasing) load:

��x =
q
�

�
x
B
�� z

B
ln
R2

1
R2

2
+ 0:5 sin 2�

�
; (B.3)

��z =
q
�

h x
B
�� 0:5 sin 2�

i
: (B.4)

The increments of the settlement in each layer and
the �nal settlement were approximated, numerically,
as follows:

Soedc =
Z z2+h

z1
mv��zdz �=

nX
i=1

mv��zi�zi: (B.5)

It is remarkable that ��x and ��z reduce to ��3 and
��1, respectively, along the centerline of the loaded
area (if it is symmetric).
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