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Abstract. This paper presents a new generalization of the standard homotopy analysis
approach towards solving nonlinear oscillators equations with rational terms. By using
this method, analytical approximations to the frequency of these oscillators and periodic
solutions are calculated. Excellent agreement of the approximate frequencies and periodic
solutions with exact ones is demonstrated and discussed. It is shown that this method is
very simple, e�ective and convenient for solving nonlinear oscillator problems with rational
terms.
c
 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Many engineering oscillatory systems are governed
by nonlinear di�erential equations [1-3]. In general,
such problems are not acquiescent to exact treatment.
Also, it is not easy to solve such nonlinear di�erential
equations, especially analytically. In recent years,
many new solution methodologies [4-21] for nonlinear
oscillators problems have been developed. These non-
linear oscillator problems arise in the application of the
dynamics of a particle moving in cubic potential, ship
dynamics, oscillations of one dimensional structural
systems with initial curvature and oscillation of the
human eardrum.

In 1990s, Liao [22,23] proposed a general an-
alytical method for nonlinear problems, namely the
Homotopy Analysis Method (HAM), which stems from
the basic ideas of homotopy in topology. This tech-
nique has lucratively been applied in the past few
years to several nonlinear problems, such as nonlinear
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oscillators with discontinuities [24-26], boundary layer

ow [27], heat transfer [28], delayed di�erential equa-
tion [29], chaotic dynamical systems [30] and fractional
di�usion equations [31].

The purpose of this paper is to propose a gener-
alization of the standard homotopy analysis method to
nonlinear oscillators with rational terms. It is shown
how one can control the convergence of approximate
solutions and make a fast convergence by applying
the present method. Also, it is revealed that the
approximate solutions given by the proposed method
are more accurate than the solution given by the
standard Homotopy Analysis Method (HAM).

2. Oscillators with rational terms and
generalization of standard HAM

In order to clarify this method, it is possible to consider
the nonlinear di�erential equation:

x00(t) + �x(t) +
x2n+1(t)

1 + �x2(t)
= 0; (1)

which corresponds to a set of nonlinear oscillators with
rational terms where x(t) is an unknown real function
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and � and � are known parameters. Moreover, the
initial conditions for solving Eq. (1) are:

x(0) = A; x0(0) = 0: (2)

Now, Eq. (1) can be written in the form:

x00(t)+�x(t)+�x00(t)x2(t)+��x3(t)+x2n+1(t)=0:
(3)

To solve Eq. (3) by the generalization of standard
HAM, a new independent variable, � = !t, is intro-
duced. Substituting � = !t and x(t) = X(�) in Eqs. (3)
and (2), we have:

!2X 00(�) + �X(�) + �!2X 00(�)X2(�) + ��X3(�)

+X2n+1(�) = 0; (4)

X(0) = A; X 0(0) = 0; (5)

where prime denotes the derivative with respect to � .
The nonlinear oscillators with rational terms are

periodic motions with the frequency as !. Thus, X can
be expressed by a set of base functions, such as:

fej(�)jj = 1; 2; 3; � � � g = fcos(j�)jj = 1; 2; 3; � � � g;
so that:

X(�) =
1X
j=0

dj cos(j�); (6)

where dj , j = 1; 2; � � � are the coe�cients.
Let !0 and X0(�) denote the initial approxima-

tions of ! and X(�), respectively. Considering the rule
of solution expression Eq. (6) and initial conditions,
it is obvious that the initial guess of solutions can be
described as:

X0(�) = A cos(�): (7)

Under the rule of the solution expression denoted by
Eq. (6), it is obvious one should choose the auxiliary
linear operator:

 L[X(�); !0] = !2
0 [X 00(�) +X(�)]; (8)

with the property:

 L[C1 sin(�) + C2 cos(�)] = 0; (9)

where C1 and C2 are constants. From Eq. (4), we de�ne
a nonlinear operator:

N [X(�); !; �; �] = !2X 00(�) + �X(�)

+ �!2X 00(�)X2(�) + ��X3(�) +X2n+1(�): (10)

By means of the homotopy technique, we construct a
general zero-order deformation equation as follows:

(1�A(q; c)) L[�(� ; q)�X0(�)]

= ~H1(�)qN [�(� ; q);
(q); �; �]; (11)

where:

A(q; c) = (1� c)
1X
j=1

cj�1qj ;

jcj < 1; A(1; c) = 1; A(0; c) = 0: (12)

When the parameter, q, increases from 0 to 1, the
solution, �(� ; q), varies from X0(�) to X(�), so does
the 
(q) from !0 to !. If this continuous variation is
smooth enough, the Maclaurin's series, with respect to
q, can be constructed for �(� ; q) and 
(q) as follows:

�(� ; q) = X0(�) +
1X
m=1

Xmqm;


(q) = !0 +
1X
m=1

!mqm; (13)

where:

Xm(�) =
1
m!

@m�(� ; q)
@qm

jq=0;

!m =
1
m!

@m
(q)
@qm

jq=0: (14)

Assume that the auxiliary parameters, ~ and c, are
chosen where the power series de�ned in Eq. (13) are
convergent at q = 1. Then, we have the series solutions:

X(�) = X0(�) +
1X
m=1

Xm;

! = !0 +
1X
m=1

!m: (15)

For the sake of simplicity, we introduce the following
vectors

�!
Xm = fX0; X1; � � � ; Xmg;
�!!m = f!0; !1; � � � ; !mg: (16)

By di�erentiating the zeroth-order deformation equa-
tion m times with respect to q, then dividing the
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equation by m! and setting q = 0, the mth-order
deformation equation is formulated as follows:

 L[Xm(�)�
m�1X
k=1

(1� c)cm�k�1Xk(�)]

= ~H1(�)Rm(
�!
Xm�1;�!!m); m � 1; (17)

Xm(0) = 0; X 0m(0) = 0; (18)

where:

Rm
��!
Xm�1;�!!m

�
=
m�1X
j=0

X 00m�1�j
jX
i=0

!i!j�i

+ �Xm�1 + �
m�1X
j=0

 jX
i=0

X 00i
j�iX
s=0

!s!j�i�s
!

�
m�1�jX
k=0

XkXm�1�j�k + ��
m�1X
j=0

Xj

�
m�1�jX
k=0

XkXm�1�j�k +
m�1X
j1=0

Xm�1�j1

�
j1X
j2=0

Xj1�j2 � � �
j2n�1X
j2n=0

Xj2n�1�j2nXj2n ;

m � 1: (19)

Under the rule of the solution expression denoted
by Eq. (6), the auxiliary function, H1(�), can be
chosen as H1(�) = 1. It should be emphasized that
Rm(
�!
Xm�1;�!!m) is a function of Xi and !i, where

i = 0; 1; � � � ;m� 1.
Furthermore, Rm(

�!
Xm�1;�!!m) can be expressed

by:

Rm(
�!
Xm�1;�!!m)=

 (m)X
k=0

cm;k(!m�1) cos((2k + 1)�):
(20)

Under the rule of the solution expression, the solution
Xm(�) of Eq. (17) should not contain the constant term
and the so-called secular term, � cos(�). To avoid the
secular term, Rm(

�!
Xm�1, �!!m) should not contain the

constant term and the term cos(�), which leads to the
additional algebraic equation for determining !m�1:

cm;0(!m�1) = 0: (21)

Therefore, the general solution of Eq. (17) reads:

Xm(�) =
m�1X
k=1

(1� c)cm�k�1Xk(�)

+
~
!2

0

 (m)X
k=1

cm;k(!m�1)
(1� (2k + 1)2)

cos((2k + 1)�)

+ C1 sin(�) + C2 cos(�); m � 1; (22)

where C1 and C2 are two constants. Using the rule
of the solution expression denoted by Eq. (6), we have
C1 = 0, and C2 can be determined by:

Xm(0) = Xm(�); m = 1; 2; � � � ; (23)

which ensure the amplitude equal to A.
Thus, the Nth order approximation can be given

by:

XN (�) � X0(�) +
NX
j=0

Xj(�);

e! � !0 +
NX
j=0

!j : (24)

We can derive the following remark instantly.

Remark 1: The value c = 0 reduces the present
method to the standard HAM.

3. Numerical examples and discussion

The success of this homotopy lies in the fact that
this technique provides a convenient way to increase
the convergence region of the series solution. The
A(q; c) introduces a second auxiliary parameter into
the zero-order deformation equation and proposes a
generalization of the homotopy analysis method. The
new auxiliary parameter adds a new dimension to the
convergence region. The convergence the of series
solution depends upon ~ and c. Thus, we need only
to focus on properly choosing parameters ~ and c, so
that the series solution be convergent.

For given � and �, the periodic solution, with the
known amplitude A and the corresponding unknown
frequency !, can be determined by the semi-analytic
technique mentioned above.

Note that the series solutions contain two un-
known convergence-control parameters, which can be
determined by the following procedure.

We �rst calculate the Averaged Residual Error
(ARE) using the following formula:

EnN (~; c) =
1

n+ 1

nX
j=0

(N [XN (�j); e!; �; �])2; (25)
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where:

�j =
j
n
; i = 0; 2; � � � ; n: (26)

The best values of ~ and c are given by two nonlinear
algebraic equations:

@EnN
@~ = 0;

@EnN
@c

= 0: (27)

In this section, the presented technique in Section 2 is
applied to solve the nonlinear oscillators with rational
terms. For all examples, we choose N = 5 and n = 20.

3.1. Example 1
The governing non-dimensional equation of motion for
the �nite extensibility of the oscillator is [18]:

x00(t) +
x(t)

1� x2(t)
= 0; x(0) = A; (A < 1);

x0(0) = 0; (28)

with the exact frequency:

!ex =
2�

4
R A

0
dxp

[ln(1�x2)�ln(1�A2)]

: (29)

In view of Eq. (19), we can construct the following
equation:

Rm
��!
Xm�1;�!!m

�
=
m�1X
j=0

X 00m�1�j
jX
i=0

!i!j�i

�
m�1X
j=0

 jX
i=0

X 00i
j�iX
s=0

!s!j�i�s
!m�1�jX

k=0

XkXm�1�j�k

+Xm�1; m � 1:
(30)

Thus, for the �rst-order approximation, R1(X0; !0)
leads to:

R1(X0; !0) =
�
�A!2

0 +A+
3
4
A3!2

0

�
cos(�)

+
1
4
A3!2

0 cos(3�): (31)

Therefore, Eq. (31) gives:

!0 =
2p

4� 3A2
: (32)

For m = 2, we have:

!1 = �5~
32

A4
p

4� 3A2

(16� 24A2 + 9A4)
: (33)

Also, for m = 3, we have Eq. (34) shown in Box I. For
a given value of A, we �nd the \optimal" values of ~
and c by solving the algebraic equations, dE

20
5

d~ = 0 and
dE20

5
dc = 0. In the particular cases:

(a) When A = 0:1, we obtained the following \opti-
mal" values:

~ = �0:5618; c = �0:1168; (35)

which give the corresponding minimum, ARE
E20

5 = 3:6922E � 16.
The approximate frequency in the case ~ =

�0:5618 and c = �0:1168 is e! = 1:003773204
and, therefore, the absolute error between the
approximate and the exact frequency is 8:9662E�
9. The absolute error function with N = 5 has
been plotted for ~ = �0:6811 and c = �0:1101 in
Figure 1.

(b) When A = 0:5, we obtain the following expres-
sions:

~ = �1:1641; c = 7:5484E � 3;

E20
5 = 4:2279E � 14: (36)

The approximate frequency in the case ~ =
�1:1641 and c = 7:5484E � 3 is e! = 1:111347529,

Figure 1. The absolute error with ~ = �0:5618 and
c = �0:1168 for A = 0:1 (Example 1).

!2 = (881~A4�1920A2+1920cA2�3328~A2�2560c+2560~+2560)~A4

4096(27A6�108A4+144A2�64)(4�3A2)� 1
2

: (34)

Box I.
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and, therefore, the absolute error between the
approximate and the exact frequency is 1:6197E�
8. Figure 2 shows the error between the exact
solution and the approximate solution for ~ =
�1:1641 and c = 7:5484E � 3.

(c) When A = 0:9, we obtain the following results:

~ = �1:7303; c = 2:7808E � 2;

E20
5 = 1:5816E � 4: (37)

The approximate frequency in the case ~ =
�1:7303 and c = 2:7808E � 2 is e! = 1:716266773,
and, therefore, the absolute error between the
approximate and the exact frequency is 8:9812E�
4. Figure 3 shows the error between the exact
solution and the approximate solution for ~ =
�1:7303 and c = 2:7808E � 2.

Figure 2. The absolute error with ~ = �1:1641 and
c = 7:5484E � 3 for A = 0:5 (Example 1).

Figure 3. The absolute error with ~ = �1:7303 and
c = 2:7808E � 2 for A = 0:9 (Example 1).

3.2. Example 2
The governing non-dimensional equation of motion for
the the Du�ng-harmonic oscillator is [3]:

x00(t)+
x3(t)

1 + x2(t)
=0; x(0)=A; x0(0)=0;

(38)

with the exact frequency:

!ex =
2�

4
R A

0
dxp

(A2�x2)+[ln(1+x2)�ln(1+A2)]

: (39)

Proceeding in a similar manner, we have:

Rm
��!
Xm�1;�!!m

�
=
m�1X
j=0

X 00m�1�j
jX
i=0

!i!j�i

�
m�1X
j=0

 jX
i=0

X 00i
j�iX
s=0

!s!j�i�s
!m�1�jX

k=0

XkXm�1�j�k

+
m�1X
j1=0

Xm�1�j1
j1X
j2=0

Xj1�j2Xj2 ; m � 1:
(40)

Thus, for the �rst-order approximation, R1(X0; !0)
leads to:

R1(X0; !0) =
�
�A!2

0 � 3
4
A3!2

0 +
3
4
A3
�

cos(�)

+
�

1
4
A3 � 1

4
A3!2

0

�
cos(3�): (41)

Therefore, Eq. (41) gives:

!0 =
3Ap

12 + 9A2
: (42)

For m = 2, we have:

!1 =
~
12
A(1 + 2A2)

p
12 + 9A2

16 + 24A2 + 9A4 : (43)

Also, for m = 3, we have Eq. (44) shown in Box II.
We consider di�erent values of A and we compare our
results with exact results. We obtain the \optimal"
values of ~ and c by solving the algebraic equations,
dE20

5
d~ = 0 and dE20

5
dc = 0. In the particular cases:

(a) For A = 1, we obtain the following expressions:

~ = �0:6811; c = �0:1101;

E20
5 = 4:3477E � 10: (45)

The approximate frequency in the case ~ =
�0:6811 and c = �0:1101 is e! = 0:6367925650,
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!2 = (60A6~+264A4~+144A4�144A4c+302A2~+264A2�264cA2+95~�96c+96)~A
288(64+144A2+108A4+27A6)(12+9A2)� 1

2
: (44)

Box II.

and, therefore, the absolute error between the
approximate and the exact frequency is 0.

For ~ 6= 0 and c = 0, we obtained the
following \optimal" value:

~ = �0:6280; (46)

which gives the corresponding minimum, ARE
E20

5 = 8:2847E � 9. The approximate frequency
in the case ~ = �0:6280 and c = 0 is e! =
0:6370742655, and, therefore, the absolute error
between the approximate and the exact frequency
is 4:4237E � 4.

The absolute error function with N = 5 has
been plotted for ~ = �0:6811 and c = �0:1101 in
Figure 4.

(b) When A = 5, we obtain the following results:

~ = �3:8386E � 2; c = �0:2783;

E20
5 = 2:2359E � 4: (47)

The approximate frequency in the case ~ =
�3:8386E � 2 and c = �0:2783 is e! =
0:9693656739, and, therefore, the absolute error
between the approximate and the exact frequency
is 2:4714E � 3.

For ~ 6= 0 and c = 0, the optimal convergence
occurs at ~ = �5:1936E � 1 and has an ARE of
E20

8 = 3:6572E�4. The approximate frequency in
this case is e! = 0:9692835042, and therefore, the

Figure 4. The absolute error with ~ = �0:6811 and
c = �0:1101 for A = 1 (Example 2).

absolute error between the approximate and the
exact frequency is 2:5865E � 4.

Figure 5 shows the error between the exact
solution and the approximate solution for ~ =
�3:8386E � 2 and c = �0:2783.

(c) When A = 20, we obtain the following expressions:

~ = �2:5288E � 3; c = �0:2971;

E20
5 = 1:2055E � 2: (48)

The approximate frequency in the case ~ =
�2:5288E � 3 and c = �0:2971 is e! =
0:9979759610, and therefore, the absolute error
between the approximate and the exact frequency
is 3:5815E � 4.

In case of c = 0, the corresponding ARE E20
5

has the minimum 1:44839E � 2 at the \optimal"
value ~ = �3:4336E � 3 and the approximate
frequency in the case ~ = �3:4336E� 3 and c = 0
is e! = :9979697311. Therefore, the absolute error
between the approximate and the exact frequency
is 3:6791E � 4. Figure 6 shows the error between
the exact solution and the approximate solution
for ~ = �2:5288E � 3 and c = �0:2971.

4. Concluding remarks

In this work, approximate analytical expressions for the
solution and the period of nonlinear oscillators with
rational elastic terms are obtained by means of a newly

Figure 5. The absolute error with ~ = �3:8386E � 2 and
c = �0:2783 for A = 5 (Example 2).
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Figure 6. The absolute error with ~ = �2:5288E � 3,
c = �0:2971 for A = 20 (Example 2).

developed method, namely, generalization of standard
HAM. Numerical comparisons presented con�rm the
accuracy of the present method for these nonlinear
oscillators. In this method we control the convergence
using two unknown convergence-control parameters ~
and c which are optimally determined. Because of
its accuracy, simplicity and reliability, it is believed
that the present method can be further generalized for
various nonlinear oscillators.
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