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Abstract. Performance of an optimization heuristic highly depends on the method it
employs to represent and decompose the search space. A class of optimization methods,
including swarm intelligence, utilizes a special way of decomposing the search space via
speci�ed direction states. The present work expands the idea, providing a stochastic
directional state search with tuned thresholds for selecting every direction state. The
proposed meta-heuristic is then utilized for the problem of structural weight minimization
in building frames under lateral and gravitational loading using a �nite element analyzer.
Treating a number of examples from the literature, the e�ciency and e�ectiveness of the
proposed method are shown to be superior to some other meta-heuristics, including an
improved particle swarm optimizer.
c
 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Structural optimization is a class of problems dealing
with numerous design variables, con�ned due to a
variety of code-speci�c constraints. As a benchmark
problem, discrete sizing optimization has been ad-
dressed by many investigators up to date.

The search space of structural optimization is
usually discrete and non-convex, with a narrow feasible
region, due to many limiting constraints. Hence, e�-
cient and diverse approaches are required in this �eld.
The class of traditional mathematical programming,
MP [1], used to be applied to this �eld, providing
a rapid local search, but its gradient-based nature
is not suited to discrete spaces. Additionally, the
performance of MP algorithms highly depends on the
assumption of the initial starting point. Meta-heuristic
algorithms, on the other hand, are more generalized
and suitable for such discrete problems compared to
MP techniques. They can provide e�ective solutions in
the neighbourhood of the global optimum, via practical
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time, by extensive sampling of the design space, with
no need for gradient information. Consequently, meta-
heuristic applications have received considerable atten-
tion in the �eld of optimal structural design during
recent decades [2,3]. Some of the interesting classes
include evolutionary and genetic algorithms [4], ant
colony optimization [5], harmony search [6], particle
swarm optimization [7-10], big bang-big crunch [11],
charged system search [12], colonial competition [13]
and �re
y algorithm [14].

Every meta-heuristic uses its special way of rep-
resenting the search space, and aims to provide proper
balance between intensi�cation and diversi�cation. Ge-
netic algorithms alter coded genotypes resulting in
diverse jumps in the phenotype space. Ant colony
agents move through vertices on characteristic graphs
of the discrete problem. Particle swarm optimization,
PSO, uses vector-sum representation and a movement
strategy among the search space, which has been shown
to be e�ective in many engineering design problems [8-
10].

The present work utilizes such a decomposition
of search space in a di�erent manner to provide an
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e�cient algorithm called Stochastic Directional Search,
SDS. Its basics are �rst reviewed in the following sec-
tions. Then, it is utilized for structural design problem
formulation and applied to a number of examples for
sizing building frame members. The e�ectiveness and
e�ciency of SDS is �nally compared with PSO via
discussion on the results of the treated examples.

2. Basic components of pabticle swarm
optimization

Swarm intelligence is assigned to a class of algorithms
inspired by bird 
ocks or �sh schools, providing a smart
social behavior by the group action of simple individual
agents. Simulation of such an action for numerical
problems was introduced as particle swarm optimiza-
tion by Kennedy and Eberhart in 1995 [7]. Since then,
several variants of PSO have been successfully applied
to engineering optimization problems [15-20].

Any particle movement in PSO is analogous to
the variation of a current design vector to another.
Such a design variation is performed via summation
of three vectors, each one oriented towards a direction
term denoted as a state [21]. The �rst vector directs
in the same way as the previous movement and is thus
called the inertia term. The second, called the cognitive
term, models a simple memory for each particle to
move towards its best experienced position up to the
current iteration. The third one is a social term,
directed toward the global best-so-far solution already
found by the entire swarm. The standard PSO is thus
formulated by the following relations:

Xk+1
i = Xk

i + V k+1
i ; (1)

V k+1
i = c1V ki + rc2(P ki �Xk

i ) + rc3(Bk �Xk
i ): (2)

For the arti�cial unit time interval, the velocity term,
V +1
i k, in Eq. (1), denotes how the position of the ith

particle (the corresponding design vector) is changed,
moving into new position, Xk+1

i , in the next iteration,
k+1. The velocity, V k+1

i , in every next step is a vector-
sum of the 3 terms in Eq. (2). Bk is the global best
position found by the entire swarm, while P ki denotes
the best position of every ith particle up to now. r is
a uniformly random scalar between -1 and 1.

In an improved PSO variant, Eq. (2) is modi�ed,
adding the direction of a randomly generated design
vector, Rki , as the 4th term in the following relation:

V k+1
i =c1V ki + rc2(P ki �Xk

i ) + rc3(Bk �Xk
i )

+ rc4(Rki �Xk
i ): (3)

In Eqs. (2) and (3), c1; c2; c3 and c4 stand for the
inertial, cognitive, social and random vector coe�cients
that con�ne movement size towards the corresponding
directions during any iteration of the algorithm.

3. The proposed stochastic directional search

In an iteration of PSO, the velocity of a particle is not
necessarily parallel to any of the terms in Eq. (3), but
is a vector sum of such randomly scaled vectors.

Here, a new algorithm is proposed, called the
Stochastic Directional Search, SDS. According to SDS
strategy, a move-step in any search iteration is oriented
towards only one of the candidate states, i.e. inertial,
cognitive, social or random directions, as depicted
in Figure 1. The �nal path of every particle will
be the vector-sum of such terms, but in consequent
iterations. As a result, SDS allows explicit tuning of
the probability threshold of any such state, in order
to provide the desired balance between diversi�cation
and intensi�cation by the algorithm. A roulette wheel
procedure is employed for such a probability-based
state selection.

4. Structural problem formulation

In order to reduce constructional cost, total structural
weight is minimized under regulations of the Load and
Resistant Factor Design method, due to the AISC-
LRFD code [22]. The optimization problem is thus
formulated, regarding the strength and serviceability
constraints, as:

Minimize

Wt = �:
MX
i=1

Ai:Li: (4)

Subject to:���� �k�all ����� 1 � 0; (5)

���� didalli
����� 1 � 0; (6)

Figure 1. Candidate states for the ith particle in
directional search and a sample movement vector.
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���� Pu'cPn

����
i
+
����s Mu

'bMn

����
i
� 1 � 0; (7)

s =

(
8
9 if

��� Pu
'cPn

��� > 0:2

1 otherwize
; (8)

hk+1;i
c

hk;ic
� 1 � 0; (9)

bk;ig
bk;ic
� 1 � 0; (10)

for : i = 1; :::; number of elements;

j = 1; :::; number of DOFs;

k = 1; :::; number of stories;

where � stands for the material density, Li and Ai de-
note length and cross-sectional area of the ith member,
so that W t is the total structural weight. �k stands
for the kth story drift divided by its height, and �all
denotes the corresponding allowable drift ratio. bkc and
hkc are the width and height of the column's W-section
in the kth story, respectively, where bkg denotes the
corresponding girder 
ange width. Pu and Pn are the
applied column axial force and its nominal capacity,
and 'c is the corresponding resistant factor. Similarly,
Mu stands for the applied moment, while Mn and 'b
denote the nominal 
exural strength and its resistant
factor of the ith member, respectively.

A 
y-back strategy is applied for the last two
constraints. For the others, a penalty function [23] is
employed using the following relation:

Fitness = �W � (1 +Kp �X
l

Cl)� ; (11)

where Cl is the positive violation of the lth constraint
and is taken 0 for non-violated constraints. Kp denotes
the corresponding penalty factor and � is a prescribed
amplifying coe�cient.

5. Numerical examples

Three benchmark examples are selected from the lit-
erature [24-30] in order to evaluate performance of
the proposed method. The AISC W-section list is
considered as the discrete set for sizing the steel frame
elements. In all the optimization examples, 30 particles
are employed, with coe�cients c2; c3 and c4 taken as 2,
where c1 is linearly decreased from 0.9 to 0.4. In this
study, the values of Kp and � are taken to be 1 and 3,
respectively.

For the sake of true comparison, the initial ran-
domly generated population of particles by the PSO

algorithm is saved in the memory and identically used
as the initial population of the SDS algorithm. Con-
sequently, �nal �tness improvements are comparable
between the algorithms as a measure of e�ectiveness.
The probability thresholds are tuned after a number
of trial runs as 2, 43, 54 and 1 percent for the
inertial, cognitive, social and random direction states,
respectively.

5.1. Ten-story one-bay frame
The 10-story frame in this example consists of 9
symmetric member groups under gravitational and
lateral loading, as depicted in Figure 2 [30]. A list
of W12 and W14, including 66 standard sections, are
considered assignable to the columns, meanwhile all
267 standard W-sections can be chosen for the girders.
Therefore, the search space cardinality in this example
is 2675 � 665; that is of order 1021.

Maximum displacement (which occurs at the roof
level) is restricted to 4.9 in, and allowable inter-story
drift is 0.6 in for the 1st story and 0.48 in for the
others.

The elastic modulus and yielding strength of
constructional steel are taken as 29000 ksi and 36 ksi,

Figure 2. One-bay ten-story frame, member groups and
the appllied loading.
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Table 1. Comparison of optimal results by di�erent methods for the 1-bay 10-story frame.

Optimal cross-sections

Element
group

GA
Pezeshk

et al. [24]

ACO
Camp et al.

[26]

HS
Degertekin

[25]

IACO
Kaveh and

Talatahari [27]

TALBO
Togan
[28]

PSO
Present

work

SDS
Present

work
1 W14�233 W14�233 W14�211 W14�233 W14�233 W14�176 W14�159
2 W14�176 W14�176 W14�176 W14�176 W14�176 W12�170 W14�120
3 W14�159 W14�145 W14�145 W14�145 W14�145 W12�106 W14�120
4 W14�99 W14�99 W14�90 W14�90 W14�99 W12�87 W14�90
5 W12�79 W12�65 W14�61 W12�65 W12�65 W12�58 W12�58
6 W33�118 W30�108 W33�118 W33�118 W30�108 W36�150 W40�149
7 W30�90 W30�90 W30�99 W30�90 W30�90 W36�170 W33�118
8 W27�84 W27�84 W24�76 W24�76 W27�84 W24�94 W27�84
9 W24�55 W21�44 W18�46 W14�30 W21�44 W21�93 W21�44

Weight (lb) 65136 62610 61864 61820 61813 69762 60120

respectively. The e�ective length factors of a frame
member, from typical nodes A to B, are taken to be
1 for out-of-plane motion and computed according to
the following relations [31] for the in-plane motion of
the frame:

k =

s
1:6GAGB + 4(GA +GB) + 7:5

GA +GB
; (12)

G =
P EIc

lcP EIg
lg

; (13)

where Ic, Ig are moment of inertia for the column and
girder connected to the joint (A or B) and lc, Ig are the
corresponding member unbraced lengths, respectively.
The unbraced length of any girder is taken as 1/5 of its
total length.

The global best �tness achieved up to any it-
eration is saved and announced as the elitist �tness.
The �tness history of such elitist solutions among
all the search iterations is thus plotted in Figure 3
for both PSO and SDS. It is declared that, starting
from the same initial point, the SDS results stand
higher than the PSO. Additionally, SDS has more
rapid convergence to the best solution than PSO. As
declared in this example, the elitist �tness of PSO has
remained constant for a number of �nal iterations, so
it has become trapped in the local optima. In order to
verify the SDS capability in over-passing local optima,
it has been compared to the best results reported in
the literature. According to Table 1, SDS can obtain
the best structural weight of 60120 lb better than the
least reported weight 61813 lb among PSO, Genetic
Algorithm [24], Harmony Search [25], Ant Colony Op-
timization [26], Improved ACO [27] and Teaching And
Learning Based Optimization, TALBO [28] belonging
to the last method. In addition, Figure 4 shows that

Figure 3. Convergence history of the one-bay ten-story
frame.

Figure 4. The optimal inter-story drift ratios obtained by
SDS for the 1st example.

the proposed SDS has forced most of the inter-story
drifts to get close to their allowable limit in the optimal
result.
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5.2. Fifteen-story three-bay frame
All standard W sections are considered as the section
list in this example. The frame members are catego-
rized in 12 groups; the �rst 2 belonging to the girders
while the others are assigned to the column members
as shown in Figure 5.

Allowable inter-story drift is con�ned to 0.52 in
for the 1st story and 0.48 in for the others, while
the maximum allowable absolute displacement of nodes
at roof level is taken 6.95 in. Other assumptions,
including material elastic modulus and strength, and
e�ective and unbraced member lengths, are the same
as the previous example.

In this example, the discrete search space cardi-
nality or the number of searchable particle positions
will be 26712, i.e. of order 1029, which is quite large.
However, it is greater than the 1-bay 10-story frame.
The convergence curve of Figure 6 again declares the
superiority of the proposed SDS over PSO. It is notable

Figure 5. Three-bay �fteen-story frame, member groups
and the appllied loading.

Figure 6. Convergence history of the 3-bay 15-story
frame.

Figure 7. The optimal inter-story drift ratios obtained by
SDS for the 2nd example.

that the SDS curve is also smoother than that of the
PSO, which means more stable convergence toward
the global optimum. The matter is con�rmed by
adding the previously reported best results of Genetic
Algorithm and Simulated Annealing to a comparison
with the present work of PSO and SDS. It is observed
in Table 2 that the best structural weight of 37143 kg
belongs to the proposed SDS, standing better than SA,
GA [29] and PSO. In the SDS optimal solution, the
inter-story drifts have gotten close to their limit, but
have not overridden it. This achievement con�rms the
proper constraint handling capability of the algorithm
(Figure 7).

5.3. Twenty-four-story three-bay frame
This example consists of a 3-bay 24-story moment
frame under lateral point loads of w = 5761:8lb at
each story level, and distributed gravitational loads of
w1 = 300lb=ft, w2 = 436lb=ft, w3 = 474lb=ft and w4 =
408lb=ft, as depicted in Figure 8. Modulus of elasticity
is 29732 ksi and the yielding strength of the material
is assumed to be 33.4 ksi. The frame is designed under
AISC-LRFD requirements, with maximum allowable
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Figure 8. Applied loading and member groups for the
three-bay tweny four-story frame.

displacement of 11.52 in, and inter-story drifts are
con�ned to 0.48 in. The unbraced lengths are assigned
joint-to-joint free lengths for both column and beam
members. The e�ective length factors are computed as
in the �rst example.

This frame consists of 96 columns in 16 groups
and 72 girders in 4 groups. Considering 37 W14
sections assignable to the columns and all W-sections

Figure 9. Convergence history of the 3-bay 24-story
frame.

Figure 10. Maximum inter-story drift ratios for optimum
design in the 3-bay 24-story frame.

to the girders, the resulting search space will be of order
1034. Figure 9 shows that, even in such a large search
space, the proposed algorithm is again more e�cient
and e�ective than PSO. Table 3 declares the least frame
weight is obtained by SDS as 20216 lb, while it is
24868 lb for PSO. Using even more �tness evaluations
by other methods, such as 13924 analyses by HS, has
not revealed better results than the SDS result, which is
achieved only via 6000 �tness evaluations. The matter
shows the e�ciency of the proposed method in addition
to its e�ectiveness in searching the global optimum of
the problem. Figure 10 also illustrates that in this
higher story example, more inter-story drift responses
have tended towards their constraint boundary.

6. Conclusion

In this study, directional decomposition of the search
space in swarm algorithms has been concerned. Con-
sequently, the idea of the stochastic explicit selection
of direction states is utilized in the proposed SDS
method. Despite vector-sum movements in any PSO
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Table 2. Comparison of optimal results by di�erent methods for the 3-bay 15-story frame.

Optimal cross-sections
Element Saka [29] Present work
group GA SA PSO SDS

1 W21�50 W21�50 W8�67 W6�20
2 W24�55 W21�57 W24�62 W24�62
3 W10�39 W10�33 W8�67 W8�31
4 W14�53 W10�39 W10�49 W10�33
5 W14�53 W12�53 W10�27 W10�45
6 14W�68 W16�67 W10�88 W10�54
7 W24�117 W24�104 W12�87 W12�72
8 W14�43 W10�39 W8�67 W8�31
9 W14�48 W14�48 W10�54 W14�43
10 W14�68 W14�61 W12�65 W18�60
11 W14�109 W14�99 W12�120 W18�76
12 W16�100 W14�99 W18�97 W21�101

Weight (kg) 40949 39262 45240 37143

Table 3. Comparison of optimal results by di�erent methods for the 3-bay 24-story frame.

Optimal cross-sections
Elements

Group
ACO

Camp et al.
IACO

Kaveh et al.
HS

Degertekin
TALBO
Togan

Present works

[26] [27] [25] [28] PSO PDS

1 W30�90 W30�99 W30�90 W30�90 W27�94 W30�90
2 W8�18 W16�26 W10�22 W8�18 W10�45 W8�18
3 W24�55 W18�35 W18�40 W24�62 W18�46 W21�44
4 W8�21 W14�22 W12�16 W6�9 W6�9 W6�9
5 W14�145 W14�145 W14�176 W14�132 W14�176 W14�159
6 W14�132 W14�132 W14�176 W14�120 W14�283 W14�132
7 W14�132 W14�120 W14�132 W14�99 W14�233 W14�132
8 W14�132 W14�109 W14�109 W14�82 W14�176 W14�90
9 W14�68 W14�48 W14�82 W14�74 W14�38 W14�61
10 W14�53 W14�48 W14�74 W14�53 W14�109 W14�48
11 W14�43 W14�34 W14�34 W14�34 W14�38 W14�26
12 W14�43 W14�30 W14�22 W14�22 W14�53 W14�22
13 W14�145 W14�159 W14�145 W14�109 W14�145 W14�99
14 W14�145 W14�120 W14�132 W14�99 W14�109 W14�109
15 W14�90 W14�99 W14�82 W14�90 W14�120 W14�90
16 W14�90 W14�99 W14�82 W14�90 W14�120 W14�90
17 W14�90 W14�82 W14�61 W14�68 W14�90 W14�74
18 W14�61 W14�53 W14�48 W14�53 W14�22 W14�53
19 W14�30 W14�38 W14�30 W14�34 W14�26 W14�38
20 W14�26 W14�26 W14�22 W14�22 W14�38 W14�22

Weight (lb) 220465 217464 214860 203008 242868 202116
Num. of required

Analyses
15500 13924 6000 6000
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iteration, the SDS strategy enables application of a
roulette wheel selection, guided by �ne tuned probabil-
ity thresholds, in selecting each direction state. Hence,
SDS is expected to show a superior performance by
�ner balancing the intensi�cation and diversi�cation
features of the search process.

Such an expected search improvement is then
evaluated using three literature benchmarks of steel
moment frames. PSO results in the examples proves it
can lead to premature convergence into local optima,
while the smoother convergence curves of SDS exhibit
its e�ectiveness and higher stability search toward the
global optimum.

The achieved solutions by PSO and SDS in the
treated examples were further compared with those
reported in literature by GA, ACO, SA, HS and
TALBO algorithms.

Consequently, SDS led to the highest quality
solutions among all these algorithms, even with less
computational e�ort in function evaluations. It again
con�rmed the importance of the better tuning capabil-
ities in SDS.

It is worth mentioning that in the optimal frame
design by SDS, inter-story drifts tend to their allowable
limits, showing the proper constraint handling perfor-
mance of this algorithm.

Finally, in view of the obtained results, the
developed stochastic directional search is an e�ective
and e�cient search method in weight minimization
of moment frames under behavioral and section-size
constraints. Based on the revealed theoretical dis-
cussion, further investigation into the performance
of the algorithms in other �elds of optimization is
recommended as a future scope of research.
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