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1. Introduction

Most engineering problems are governed by a set
of Partial Differential Equations (PDEs) with proper

boundary conditions [1]. Currently, there are many

Abstract. In this paper, a new way of implementing any homogeneous and non-
homogeneous boundary conditions in the Generalized Differential Quadrature (GDQ)
analysis of beams is presented. Like analytical methods in the solution of a differential
equation, this approach governs the general solution of GDQ discrete equations for the
differential equation of beams by assuming some unknown constants, and satisfies the
boundary conditions in the general solution. Then, unknown constants are evaluated by
solving the resultant algebraic equation system. Thus, the particular solution for the
beam equilibrium differential equation is obtained by the GD(Q method. As described,
this approach satisfies the boundary conditions in the general solution, so, it is referred
to as SBCGS (Satisfying the Boundary Conditions in the General Solution). The SBCGS
approach can satisfy any type of boundary condition exactly at boundary points with high
accuracy and can easily be implemented for each type of boundary condition. So, this
approach overcomes the drawbacks of previous approaches by its generality and simplicity.
At the end of this paper, a comparison of the SBCGS approach, using the method of
substitution of boundary conditions into governing equations (the SBCGE approach), is
made by their accuracy with the analysis of beam equilibrium under lateral loading with
combinations of simply supported and clamped boundary conditions. Other boundary
conditions and different numbers of mesh point results are also discussed for the SBCGS
approach only. The results indicate that although the SBCGS approach is essentially very
similar to some other approaches, like SBCGE, it is an easy and powerful method for
implementation of any boundary condition to the GDQ governing equations, and provides
highly accurate results.

© 2013 Sharif University of Technology. All rights reserved.

available numerical discretization techniques, like con-
ventional Finite Element (FE) and Finite Difference
(FD), to solve engineering problems. These methods
need a large number of grid points to achieve an accept-
able degree of accuracy, and so, lots of virtual storage
and computational effort are required. In seeking an
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efficient discretization technique to obtain accurate nu-
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the method of Differential Quadrature (DQ), where
a partial derivative of a function, with respect to a
coordinate direction, is expressed as a linear weighted
sum of all functional values at all mesh points along
that direction [1,4,5]. The basic idea of DQ comes
from Gauss quadrature or Integral Quadrature (1Q),
which is a simple and useful numerical integration
method [1,4]. In order to apply the DQ method to
solve PDEs and achieve more accurate results, two
extremely important issues show how to determine
weighting coefficients and implement boundary condi-
tions.

Bellman et al. (1972) [3] suggested two methods
to determine the weighting coefficients of the first
order derivative. The first method solves an algebraic
equation system, with the drawback that when the
order of the algebraic equation system is large, its
matrix is ill-conditioned. The second uses a simple
algebraic formulation with this restriction; that the
coordinates of grid points have to be chosen as the
roots of the shifted Legendre polynomial [1]. To
overcome the drawbacks of the above methods, Quan
and Chang (1989) [6], and Wen and Yu (1993) [7] used
Lagrange interpolation polynomials as test functions
and then obtained explicit formulations to determine
the weighting coefficient for the first and second order
derivatives discretization. More generally, Shu and
Richards (1990) [8] and Shu (1991) [9] presented the
Generalized Differential Quadrature (GDQ) in which
all current methods for determination of weighting
coefficients are generalized under the analysis of a high
order polynomial approximation and the analysis of a
linear vector space. In GDQ, the weighting coefficients
of the first order derivative are determined by a simple
algebraic formulation without any restriction on the
choice of grid points, and the weighting coefficients
of the second and higher order derivatives are de-
termined by a recurrence relationship [1,5,10]. In
recent years, the DQ method has become increasingly
popular in numerical solutions of initial and bound-
ary value problems. As described, the DQ method
can yield accurate solutions with relatively few grid
points [1,11]. The pioneering work for application
of the DQ method to the general area of structural
mechanics was carried out by Bert et al. [12-14], Wang
and Bert [15], and Wang et al. [16,17]. Like some
other numerical methods, the GDQ method discretizes
the spatial derivates and, therefore, reduces the partial
differential equations into a set of algebraic equations
[18,19].

A differential equation is undetermined if bound-
ary conditions are not provided, and for their GDQ
solution, the boundary conditions have to be imple-
mented appropriately to the resultant algebraic equa-
tions. For cases where there is only one boundary
condition at each boundary, the implementation is

very simple and can be done in a straightforward
manner. One just needs to replace the discretized
governing equations of GDQ by boundary condition
equations at all boundary points. Difficulty, however,
arises when applying multi-boundary conditions at
each boundary, which could result in difficulties in
the numerical implementation of the boundary condi-
tions. For example, to solve fourth-order differential
equations, where two boundary conditions are present
at each end, Bert et al. (1988) [12], and Jang et
al. (1989) [20] proposed the é-technique in which a
6-point is introduced apart from the boundary point
by a small distance, as an additional boundary point,
and the other boundary condition is applied at that
point. It is found, however, that solution accuracy
may not be assured since ¢ is problem-dependent,
and to obtain an accurate numerical solution, the
6 should be chosen to be very small (possibly no
greater than 0.0001l, where 1 is the length of the
beam or the plate) [1,5,21]. Moreover there are some
difficulties in applying the multi-boundary conditions
accurately at the corner points for two-dimensional
problems. There are several approaches available in the
literature for implementing multi-boundary conditions.
One is the replaced equation approach [22], where,
instead of 6 separation, two DQ equations at the
inner grid points are replaced by the second boundary
conditions. It is found, however, that solution accuracy
may vary, depending on which DQ equations at the
inner grid points are replaced by the boundary condi-
tions [23]. Wang and Bert (1993) [15] introduced the
Modifying Weighting Coefficient Matrices (MWCM)
method.  For this approach, only one boundary
condition is numerically implemented and the other
boundary conditions (derivative conditions) are built
into the derivative weighting coefficient matrices. This
method is very simple to use, but there are some
difficulties in the application of this approach for non-
homogeneous derivate conditions and some limitations
in its application to implementation of some combi-
nations of boundary condition, like Clamped-Clamped
(C-C) boundary conditions. The other method, in-
troduced by Shu and Du (1997) [5], can be referred
to as direct Substitution of Boundary Conditions into
discrete Governing Equations (SBCGE) [24]. This
method substitutes the boundary conditions directly
into the governing equation, and was proposed in order
to implement simply supported, clamped conditions
and their combinations [18,23].

In this paper, the proposed SBCGS approach
will be explained, applied to a variety of beams with
different boundary conditions and validated by the
accuracy of the result. Also, the general solution for
GDQ analysis of beam equilibrium and a particular
solution for a cantilever beam will be obtained by the
SBCGS method.
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2. Generalized differential quadrature

In this section, we shall adopt the GDQ method
developed by Shu [1,5,21]. Following the concept of
classical integral quadrature, the first-order derivative
of a smooth function, f(x), with respect to x at z;, can
be approximated by DQ as:

df 371 Zc(l

for 1=1,2,3,--- N, (1)

where N is the number of grid points in the whole
computational domain and CZ(;) indicates the weighting
coefficients of the first order derivative. Following the
same procedure as in discretization of the first order
derivate, a recurrence relationship may be developed
to calculate the weighting coefficients for higher-order
derivatives. For example, the GDQ approximation of
the nth-order derivative of a one-dimensional function,
f(x), with respect to z, is given by [21]:

dr f (z:)
Cdan ZC

fori=1,2,3,--- | N; n=23--,N-1, (2)

where the weighting coefficients for the first and nth-
order derivatives can be computed by Shu’s general
approach as [21,25]:

( N
oM [Thm1 gz (@i — i)
i = ~
(s = 25)- [lk=1,k25 (75 — 2k)
for i,j:1’27...7]\/‘; 37527
(3)
(1) a (1)
Ci’ = Z Cw
Jj=1,j#1
fOI' 1= 1’ 27 ’N’
oD
C(n) -n C_(})C(nfl) ij
1] k¥ (X T .CL']
for 17]21727 7]\/‘7 j#"v
n = 2,3, N — ]_, (4)
(n) S
Cil == 2 G
Jj=1,5#1
for i=1,2,---,N;
n:2737... ‘N_]_

\

It is noted that in multi-dimensional cases, it has been
shown [1,5] that each direction can be treated using the
same method as in the one-dimensional case.

3. Explanation of the SBCGS approach

To compute the nth-order derivative of a known
smooth function, the GDQ method can be easily
applied and written in the form of a matrix equation
by discretization of its domain and calculation of the
weighting coefficients matrix. For example, for a one-
dimensional function, y, the procedure is as follows:

dy _ [
{dgﬁn}zvm - [C ]NXN{y}NXh

or:
{v} = [e™] . (5)

where N, n and [C(")] indicate the number of grid
points, the order of the derivative and the weighting
coefficients of the nth-order derivative, respectively.
Also, {y} and {y(™} are the discretized functional
values and their nth-order derivative values in the form
of column matrices.

But, in cases where {y} is undetermined and
{y™} is determined in the above equation (a differen-
tial equation), direct application of the above matrix
form is impossible because the determinant of the
weighting coefficients matrix, [C(™)], is zero and its
inverse does not exist. This is because a very important
property of the weighting coefficient matrices implies
that the rank of the weighting coefficient matrix for
the nth-order derivative, [C(™)], is (N —n). According
to this property, the DQ approximation should only be
applied at (IV —n) grid points. Otherwise, the resulting
discretization matrix will be singular. This is a very
interesting result, which is in good agreement with the
well-post problem (the number of equations is equal
to the number of unknowns, because the nth-order
differential equation also requires n initial or boundary
conditions, which provide n equations) [1].

Note that in the present paper, A, B, C and D
indicate the weighting coefficients of 1st, 2nd, 3rd and
4th-order derivatives, respectively.

As a simple instance:

dy

% - f7
where:

0<z>1L, and y(0) = a.
Here:

(f) is a known function,

(y) is an unknown function, (6)

W f Wi = U,
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or:
Y1 fi
Y2 f2

RS
YN In

Rank of [A] = (N — 1) so [4] ': Does not exist.
(7)

The SBCGS approach overcomes this drawback by
deriving n rows and their rival columns out of [C(™)]
and, thereupon, converts it to a full-rank matrix, whose
inverse does exist. For this purpose, it supposes that
the functional values at n points are known and are
indicated by some constants (it is better to select
boundary points for this purpose). Thus, n equations
must be eliminated, and to change the coefficients
matrix to square form, it derives the rival columns of
those n rows and transfers them to the other side of the
equation. For example, in Eq. (6), which is a first-order
differential equation discretized by GDQ and written in
the matrix form as Eq. (7), the procedure is as follows:

[y} = {/}

or:
Y1 fi
Y2 f2
[A] ys \ ) f3
yN f}v

Supposing: y; = ¢1:

C1 fl
Y2 fa

[A]q ¥ p =9 8, (8)
yN f}v

Elimination of the extra equation:

C1 -

a1 Q22 Q23 - 2N Yo fa

a3y dz2 a3z - A3N ys \ _ J f3
S o)

ant anz ans - ann] \YN In

Deriving out the rival column:

| @22 @23 -+ G2N Yo f2
| as2 as; -+ asn y3 \ _ ) f3
| an2 ans -+ ann| \YN fn
a21
—cp{ @31 %,
aN1

([A] {7} = {F} — e {Ar}. (10)

It is noted that for simplicity in formulation throughout
this paper, the elimination of a row or column in a
matrix has been indicated by dashed rows or dashed
columns, respectively. For example, [|4] is matrix [A],
whose first row and first column are eliminated. Also,
{Ay} and {A}) indicate the kth column and kth row of
matrix [A].

Now, by multiplying the inverse of the coefficients
matrix to both sides of the equation and returning the
eliminated constant to their places in the achieved so-
lution, the general solution of the differential equation
will be governed (like Eq. (11), which is the general
solution for Eq. (7)). Note that this solution is not
the final and particular one, because it includes n
unknown constants that must be evaluated by n initial
or boundary conditions. So, it is referred to as the
general solution of the differential equation.

hv-nper = (AT} e {A1}).

Returning the unknown constant to its place:

{yInx1 = {{C;}} . General solution. (11)

Finally, by implementing the discretized boundary
condition equations exactly at the boundary points
to the general solution, particular solution of the
differential equation will be obtained, which satisfies
both discretized differential and boundary condition
equations (like Eq. (12), which governs the particular
solution for Eq. (7)).

Eq. (1) = BC.:y(0) = a.
Discretization:
Y1 = .

Eq. (11)



1118 B. Golfam and F. Rezaie/Scientia Iranica, Transactions A: Civil Engineering 20 (2013) 1114-1123

where:

{m}=[4] - {{f}—a{A:}}: Particular solution.
(12)

Note that this methodology of solution is general for
any type of linear differential equation and boundary
condition and there is no difference in the procedure
of using this approach to solve them. Also, it is
very important to know that choosing the unknown
constants at each point except from those of the bound-
ary (choosing from inner points), does not mean that
implementation of boundary conditions is out of the
boundary points, because this part of the operation is
done to govern the general solution and implementation
of boundary conditions will be done, finally, exactly at
the boundary points. It does, however, provide more
accurate results to choose unknown constants from
the boundary points and extra ones from boundary
adjacent points (for cases in which the order of the
differential equation is more than two, because the
number of boundary points in each direction is two).

4. Discretization of equations by GDQ

In this section, the GDQ method is applied to discrete
the differential equation of a Euler-Bernoulli beam
under lateral loading with various boundary conditions,
which is governed by the following fourth-order differ-
ential equation:

% = %, O0<z>1L,
or:
%—q(w), 0<xz>L,
where:
o) = 22, (13)

where EI is the flexural rigidity of the beam, f(x) is
the lateral distributed load, and L is the length of the
beam. Eq. (13) is a 4th order ordinary differential
equation, which requires four boundary conditions to
be a well-posed problem. These can be given by
specifying two boundary conditions at the end, x = 0,
and the other two at the end, x = L. In this paper,
the following four non-homogeneous types of boundary
condition are considered:
Atz =0o0rz=1L
Simply Supported end (SS):

2
M = —EId—y = g, (14)

Y =aqi, and 7r2

where a7 and as are non-zero displacement and non-

zero concentrated moment, respectively.
Clamped end (C):

_dy _
H_da:_62’ (15)

where 8; and (5 are non-zero displacement and non-
zero slope, respectively.

y=p,  and

Free end (F):
d3y dzy
V=-El75=mn and M=-El-—5 =",

(16)

where v, and 7, are non-zero concentrated load and
non-zero concentrated moment, respectively.

Guided end (G) (or sliding support which can freely
slide perpendicular to the beam direction):

d3y
= 0= i b2,  (17)
where 6; and 6, are non-zero concentrated load and
non-zero slope, respectively.

Note that these boundary conditions are ho-
mogeneous when the constants defined in the above
equations are zero.

For numerical computation, the continuous solu-
tion is approximated by the function values at discrete
points. Now, the computational domain, 0 < x > L,
is divided by (N — 1) intervals with coordinates of grid
points as x1,Zo, - ,xy. With these coordinates of
the grid points, the GDQ method can be applied to
compute the weighting coefficient through Egs. (3) and
(4). Then, by applying the GDQ method to discrete
the spatial derivatives, Eq. (13) yields:

_dy

V = —FI = 61, and

N
4
j=1

where Cl-(;-l), 1,7 = 1,2,--- /N, are the weighting
coeflicients of the 4th-order derivative, and y; and g¢;
are the values of y(z) and ¢(x) at the grid points, z;.
Similarly, the derivatives in the boundary conditions
can be discretized by the GDQ method. As a result,
the numerical boundary conditions can be written as:
Simply Supported end (SS):

for the end of z = 0:

N
Y1 = O, and Ml = —EIl ZCff)yJ = 9,

J=1

for the end of z = L:

N
YN = a3, and MN:_EINZC](\?J)y]:azl
j=1 (19)
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Clamped end (C):

for the end of x = 0:

y1 =P, and

Z% y; = B,

for the end of x = L:

yv =P,  and eN—Zchyj B (20)

Jj=1
Free end (F):

for the end of x = 0:

=-EL 201] Yi =71,

= -EL chj Yj =2

for the end of x = L:

N
Vv = —EBIy > C¥)y; =7,

j=1

N
My =-Ely Y C%)y; = . (21)
j=1
Guided end (G):
for the end of x = 0:

N

Vi=-EL Y Yy, =6,
j=1
N
6= Cljy; =5,
j=1

for the end of x = L:

N
VN = —EIN ZC](\?J):U] = 537

j=1

N
Z N]y] - 647 (22)
=1

where EI;, El,, --- |, EIy are constant and equal to the
flexural rigidity of beam (EI)

5. Governing the general solution of the
Bernoulli-beam by the SBCGS approach

In the present section, the SBCGS approach will be
used to obtain the general solution of Eq. (18). Then,
an explicit formulation will be governed as the general
solution for the GDQ analysis of the Bernoulli-beam.
Finally, any boundary conditions can be implemented
easily by satisfying them into the general solution, and,
so, the particular solution will be obtained in the next
section.

Eq. (18) can be written in matrix form as follows:

[DHy} = {q}. (23)

As described in Section 3, the rank of matrix D is
(N —4), so, we need to suppose four unknown constants
in the solution progress. Now, in order to apply the
SBCGS approach to Eq. (23), all the steps described
in Section 3 are followed exactly:

Supposing:

Y1 = <1, Y2 = C2,

YN—1 = C3, YN = Ca,
C1 q1
C2 q2
Ys q3

DI =13 . (24)
C3 gN-1
Cq ) qN )

Elimination of the extra equations:

C1 —
Co —

B -1

C3 —

Csa ) Y,

Deriving out the rival columuns:

8] {7} - {3} -« {2} - ()

—c3 {EN_l}—al {E } (26)

Multiplying the inverse of coefficient matrix:

@ =21 {@ - {2}
e {B) o (B

~a{D, }} (27)

Tl
ISl

=2
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Returning the unknown constants to their places:

@]
C2

{y}le = {Q}

c3
Cq

: General solution. (28)

For more simplification and to obtain an explicit and
usable formulation for the general solution, it can be
written in separated matrix form as below:

{y}le = {Q}le =+ [T]Nx4{S}4><1’ (29)
where:

[Tnxa = [{T1} AT} AT} {14},

and:
0
01
(@b =121 {@} ¢
0
1
o
T =1 - 127 {2} ¢
o
0 A
Lo
{Tohva =1~ II] " {T,} ¢-
o
0
o _
T =3 - 121 {2, ) ¢
0
0
o
{Tihwa =4 = [IDI] " {Dy} ¢t
X
{Shax1 = zi

So, the general solution of the Bernoulli-beam is
governed with an explicit and simple formulation as
below:

{y} ={Q} + [T{5}. (30)

Now, we can easily implement the homogeneous and
non-homogeneous boundary conditions exactly at the
boundary points by satisfying them into the general
solution in Eq. (30). Then, by solving the resulting
algebraic equation system, the unknown constants will
be evaluated. Finally, the particular solution of each
boundary condition will be obtained by substituting
the value of unknown constants back into the general
solution of Eq. (30).

6. Implementation of boundary conditions and
obtaining particular solutions

There is no difference as to which different boundary
condition is implemented, because the procedures for
implementation of all of them are the same as in the
present method. In this section, we will govern the
particular solution for a cantilever beam as an example,
and the other conditions can be implemented as the
same procedure.

For a cantilever beam, the non-homogeneous
boundary conditions are:

Clamped at z =0 :
_ I A AC ) S
v = i, 01 =221 Cij'y; = Ba

(31)
Freeat x =L :

Vv =-EIy 300, C](\?]).y]— =M
My = —Ely Z;V:l C](\?])-yj =7

where 31, B2, 71 and 5 indicate the deflection at z = 0,
the slope at © = 0, the concentrated lateral load at x =
L and the concentrated moment at x = L, respectively.

By writing these four equations for boundary
conditions in matrix form, we have:

y1 =M

(Ai{y} = B2
(CnM{y} = —5r5
(ByvH{y} = -5

(32)

Note that {Aj} and (A) indicate the kth column and
kth row of matrix A.

By substituting these four equations into Eq.
(30), an algebraic equation system consisting of four
equations will be obtained that provides the value of
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four unknown constants in matrix S:

B Q1

Ba _ ) (A{@}

s (CnH{Q}

_E’}ZN ax1 (By){@} ax1
<f§T>1[>T]

tliewm| Slea=1s)
(BTN, .4
(1) - P Q1

_ | (A)[T] B | ) (A{Q}
(Cn)[T] — iy (CN{Q} '(33)
(Bn)[TT] i (BN{Q}

Last, by substituting matrix S into the general solution
in Eq. (30), the particular solution for a cantilever
beam with non-homogeneous boundary conditions will
be governed in Eq. (33).

It is noted that the general solution is the same
for each boundary condition, but matrix S and its
resultant particular solution differs for each one of the
boundary conditions. Here, we provide the particular
solution for a cantilever beam with non-homogeneous
boundary conditions as an example, and the particular
solution of other types of boundary condition can be
obtained in a similar procedure. Note that for the
purpose of using the proposed formulations, we need
just to calculate the following matrices: A, B, C, T
and @, where A, B and C are the weighting coefficient
matrices. So, just two matrices (T and Q) are new
in the formulations, which can easily be derived from
other existing matrices.

7. Results and discussion

In this paper, the proposed SBCGS method is applied
to the GDQ analysis of a Bernoulli-beam with a variety
of boundary conditions. The analytical solutions for
the Bernoulli-beam equation will be used to validate
this approach, and a comparison will be made between
SBCGS and SBCGE for the accuracy of their results,
in any combination of simply supported and clamped

boundary conditions. For this aim, a Bernoulli-beam
with constant flexural rigidity is subjected under a
uniform lateral load per unit of length with different
boundary conditions. The coordinates of grid points
are chosen as Chebyshev-Gauss-Lobatto points [24,26]:

L j— 1
X¢:2|:1—COS<JZV 17r>]7 1=1,2,.---,N.
B (34)

The results are presented in Table 1. It shows the
accuracy of this approach for a variety of boundary
conditions with only nine grid points. The accuracy of
the SBCGE method results is also illustrated.

Table 1 indicates that SBCGS is a general ap-
proach to implementing any boundary condition, and
its accuracy is in the range of other accurate methods
like SBCGE, because it satisfies boundary conditions
exactly at boundary points. So, SBCGS agrees very
well with analytical results and makes a very inconsid-
erable percentage of error. Also, virtual storage, run-
ning time and computational effort were in acceptable
ranges in comparison with other methods. The error
percent between SBCGS (or SBCGE) results and exact
analytical results (Err.%) in Table 1 is defined as:

Err. % = relative diff. with exact result %

SBCGS (or SBCGE) result

-exact analytical result
= 100 t analytical result ||
exact analytical resu (35)

Note that error percentage values presented in Table 1
for each boundary condition are the maximum value in
the whole domain of that case.

Table 2 shows that GDQ analysis of a cantilever
beam using the SBCGS method provides very good
results with a low number of mesh points for each type
of Chebyshev or uniform grid spacing. It also indicates
that Chebyshev grid spacing provides more accurate
results than a uniform one. However, by increasing the
number of mesh points, the accuracy of the SBCGS
method decreases, due to an increase in the amount of
computational effort.

Table 1. Err.% for two approach results (SBCGS and SBCGE) in the GDQ analysis of Bernouli-beam with different

boundary conditions (N =9).

BCs.
S-S C-C S-C G-C F-C G-S
SBCGS <HE-12 <9E-13 <5HE-13 <2E-11 <2E-9 <1E-10
Error %
SBCGE <5E-12 <5E-13 <6E-12 - - -
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Table 2. Err.% for GDQ analysis of cantilever beam with
different method and number of grid spacing.

Number of Err.%

grid points Chebyshev grids Uniform grids
6 <6E-12 <3E-11
7 <HE-11 <2E-10
8 <2E-10 <6E-11
9 <2E-9 <2E-9
10 <2E-9 <5E-10
11 <2E-8 <4E-8
12 <3E-8 <5E-8
13 <3E-8 <4E-6
14 <2E-8 <3E-6
15 <8E-8 <1E-5
16 <2E-7 <4E-5

8. Conclusions

In this paper, a new approach is proposed for im-
plementing any homogeneous and non-homogeneous
boundary condition in the GDQ analysis of beams.
Like an analytical solution of a differential equation,
this approach firstly governs a general solution for the
GDQ discretized equations by assuming n unknown
constants (n is the order of differential equation)
as known answers to change the coefficients matrix
to a full rank matrix. It then obtains the general
solution, which contains n unknown constants, by pre-
multiplying the inverse of the coefficient matrix to both
sides of the equation. Finally, it evaluates the amount
of unknown constant by satisfying n boundary con-
ditions in the general solution, and so, the particular
solution for any boundary condition will be obtained.
It is, therefore, referred to as Satisfying Boundary
Conditions in General Solution (SBCGS). In addition,
in this paper, a general solution for GDQ discretized
equations of a Bernoulli-beam is presented and the
particular solution for a cantilever beam (Clamped-
Free boundary conditions) is also governed by the
SBCGS method. Note that the general solution is
written in the form of a simple and explicit matrix
equation to further simplify its format. The accuracy
of the results for a variety of boundary conditions, in
comparison with exact analytical results for SBCGS
and SBCGE, is presented in Table 1, and it is shown
in Table 2 that the accuracy of the SBCGS method
decreases by increasing the number of mesh points.
Finally, results show that the SBCGS approach works
very well with any boundary conditions and the rel-
ative errors are very small and negligible. Also, the
SBCGS approach has some high grade advantages, as
follows: easiness and generality of use for any linear
differential equation with proper boundary conditions;
no difference between the implementation procedure

of any homogeneous and non-homogeneous boundary
condition; satisfying boundary conditions exactly at
boundary points; high accuracy and less computational
effort, and, finally, by using the SBCGS approach,
the GDQ method will be expandable for analyzing
continuous beams as a result of the implementation of
non-homogeneous boundary conditions.
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