Sharif University of TechnologyScientia Iranica1026-309828620211201Transport of MHD nanofluid in a stratified medium containing gyrotactic microorganisms due to a stretching sheet378638052242910.24200/sci.2021.56459.4734ENF.ShahzadDepartment of Mathematics, Capital University of Science and Technology (CUST), Islamabad, 44000, PakistanM.SagheerDepartment of Mathematics, Capital University of Science and Technology (CUST), Islamabad, 44000, PakistanS.HussainDepartment of Mathematics, Capital University of Science and Technology (CUST), Islamabad, 44000, Pakistan0000-0003-1023-1534Journal Article20200722In this article, an elaborated evaluation has been presented for the stratified MHD Jeffrey nanofluid flow towards a stretching surface in the presence of gyrotactic micro-organisms. The analysis of the flow by taking into consideration the viscous dissipation, Brownian motion, Joule heating and thermophoresis aspects. The governing nonlinear system of partial differential equations (PDEs), administering the flow, are turned to a group of the nonlinear ordinary differential equations (ODEs) via using an appropriate similarity transformation and later solved numerically by implementing the Keller-box approach with the help of algebraic software Matlab. The impacts of a variety of parameters on the fluid motion, heat, mass, density of the motile micro-organisms, skin friction, Nusselt number, Sherwood number and local density number of the motile micro-organisms are examined with the aid of graphs as well as tables. The results suggest that the motile micro-organisms density is a decreasing function of the Lewis number, Pecket number and microorganisms concentration difference. The Sherwood number and density rate of motile micro-organisms are bigger in the case of magnetic parameter and Lewis number. It is identified that temperature, density of nanoparticles and motile micro-organisms density stratification parameters lead to decrease the temperature and density of nanoparticles profiles.http://scientiairanica.sharif.edu/article_22429_3ef4c005f6de4e5afb6c7b242c0b5568.pdf