TY - JOUR ID - 4530 TI - Increasing the flexural capacity of geopolymer concrete beams using partially deflection hardening cement-based layers: Numerical study JO - Scientia Iranica JA - SCI LA - en SN - 1026-3098 AU - Mastali, M. AU - Mastali, M.. AU - Abdollahnejad, Z. AU - Dalvand, A. AD - ISISE, Department of Civil Engineering, University of Minho, 4800-058 Guimaraes, Portugal AD - Faculty of Civil Engineering, Western Michigan University, Kalamazoo, MI 49008-5316, USA AD - C-TAC Research Centre, Department of Civil Engineering, University of Minho, 4800-058 Guimaraes, 4800-058, Portugal AD - Department of Engineering, Lorestan University, Khorramabad, Iran Y1 - 2017 PY - 2017 VL - 24 IS - 6 SP - 2832 EP - 2844 KW - FEM KW - Material nonlinear analysis KW - Flexural strengthening KW - DHCC KW - enlargement method DO - 10.24200/sci.2017.4530 N2 - Experimental research has demonstrated the great flexural performance of deflection hardening cement based composites for strengthening the beams. This paper numerically investigates the feasibility of adding thin deflection hardening fiber reinforced layers to the bottom of geopolymer concrete beams to enhance the flexural performance.  To properly predict the structural behavior and crack patterns of beams, the smeared crack approach was adopted to simulate the beams. The numerical simulations executed in the FEM-based computer program. To validate the developed numerical models, the tested experimental tests beams with two layers cross section were numerically simulated. Regarding the results obtained , the models would well predict the structural behavior and crack patterns of beams. Ensuring the efficiency and accuracy of the adopted constitutive model to predict the structural behavior and crack patterns of beams, the numerical FE models used to simulate the added hardening deflection fiber reinforced layer to the bottom of geopolymer concrete beams. The numerical results revealed that adding a thin fiber reinforced layer to geopolymer concrete beams results in increasing ultimate load capacity, ultimate deflection, and ductility. The greatest enhancement in the flexural performance of the strengthened beams was found in the ultimate load capacity of the strengthened beams. UR - https://scientiairanica.sharif.edu/article_4530.html L1 - https://scientiairanica.sharif.edu/article_4530_7814a0e43a0dbeff2a4084b4a3a419eb.pdf ER -