@article { author = {Akgöz, Bekir and Civalek, Ömer}, title = {Frequency response of skew and trapezoidal shaped mono-layer graphene sheets via discrete singular convolution}, journal = {Scientia Iranica}, volume = {21}, number = {3}, pages = {1197-1207}, year = {2014}, publisher = {Sharif University of Technology}, issn = {1026-3098}, eissn = {2345-3605}, doi = {}, abstract = {In the present study, the frequency response of skew and trapezoidal shaped single layer graphene sheets are studied via Kirchho plate theory. A four node Discrete Singular Convolution (DSC) method is developed for free vibration analysis of arbitrary straight-sided quadrilateral graphene. The straight-sided skew and trapezoidal graphene is mapped into a square graphene in the computational space using a four-node element. By using the geometric transformation, the governing equations and boundary conditionsof the graphene are transformed from hte physical domain into a square computational domain. Numerical examples illustrating the accuracy and convergence of the DSC method for skew and trapezoidal shaped graphene sheets are presented. New results for skew and trapezoidal shaped graphene have been presented, which can serve as benchmark solutions for future investigations.}, keywords = {Graphene sheet,frequency,Discrete singular convolution,Skew shaped graphene,Vibration}, url = {https://scientiairanica.sharif.edu/article_3555.html}, eprint = {https://scientiairanica.sharif.edu/article_3555_44a8246ba78698ebf220d482fc8e59a1.pdf} }